Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/689
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor錢宗良(Chung-Liang Chien)
dc.contributor.authorTzu-Chuen Linen
dc.contributor.author林子純zh_TW
dc.date.accessioned2021-05-11T04:58:01Z-
dc.date.available2019-08-28
dc.date.available2021-05-11T04:58:01Z-
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-08-08
dc.identifier.citationBadiu, C., Badiu, L., Coculescu, M., Vilhardt, H., & Møller, M. (2001). Presence of oxytocinergic neuronal‐like cells in the bovine pineal gland: an immunocytochemical and in situ hybridization study. Journal of pineal research, 31(3), 273-280.
Biswas, S., Haselier, C., Mataruga, A., Thumann, G., Walter, P., & Muller, F. (2014). Pharmacological analysis of intrinsic neuronal oscillations in rd10 retina. PLoS One, 9(6), e99075.
Blackiston, D. J., & Levin, M. (2013). Ectopic eyes outside the head in Xenopus tadpoles provide sensory data for light-mediated learning. The Journal of Experimental Biology, 216(6), 1031-1040.
Bousfield, J., & Pessoa, V. (1980). Changes in ganglion cell density during post-metamorphic development in a neotropical tree frog Hyla raniceps. Vision research, 20(6), 501-510.
Bowmaker, J. K. (1990). Visual pigments of fishes. In The visual system of fish (pp. 81-107): Springer.
Browne, R. K., Seratt, J., Vance, C., & Kouba, A. (2006). Hormonal priming, induction of ovulation and in-vitro fertilization of the endangered Wyoming toad (Bufo baxteri). Reproductive Biology and Endocrinology, 4(1), 34.
Charnas, L. R., Szaro, B. G., & Gainer, H. (1992). Identification and developmental expression of a novel low molecular weight neuronal intermediate filament protein expressed in Xenopus laevis. J Neurosci, 12(8), 3010-3024.
Chien, C. L., & Liem, R. K. (1995). The neuronal intermediate filament, α-internexin is transiently expressed in amacrine cells in the developing mouse retina. Experimental eye research, 61(6), 749-756.
Chien, C. L., Lee, T. H., & Lu, K. S. (1998). Distribution of neuronal intermediate filament proteins in the developing mouse olfactory system. J Neurosci Res, 54(3), 353-363.
Chien, C. L., Mason, C., & Liem, R. (1996). α‐internexin is the only neuronal intermediate filament expressed in developing cerebellar granule neurons. Journal of neurobiology, 29(3), 304-318.
Chou, W. H., & Lin, J. Y. (1997). Tadpoles of Taiwan. National Museum of Natural Sciences in Taiwan, Special Publication, 7, 1-98.
Collin, J. P. (1971). Differentiation and regression of the cells of the sensory line in the epiphysis cerebri. The pineal gland, 79-125.
Curcio, C. A., Sloan, K. R., Kalina, R. E., & Hendrickson, A. E. (1990). Human photoreceptor topography. J Comp Neurol, 292(4), 497-523. doi:10.1002/cne.902920402
Denton, E. J., & Wyllie, J. (1955). Study of the photosensitive pigments in the pink and green rods of the frog. The Journal of Physiology, 127(1), 81-89.
Diesmos, A. C., Brown, R. M., & Gee, G. V. (2004). Preliminary report on the amphibians and reptiles of Balbalasang-Balbalan national Park, Luzon Island, Philippines. Sylvatrop, The Technical Journal of Philippine Ecosystems and Natural Resources, 13, 63-80.
Dodd, M. H. I., & Dodd, J. M. (1976). The biology of metamorphosis. Physiology of the Amphibia, 3, 467-599.
Donner, K., & Reuter, T. (1976). Visual pigments and photoreceptor function. In Frog neurobiology (pp. 251-277): Springer.
Dunlop, S., & Beazley, L. (1981). Changing retinal ganglion cell distribution in the frog Heleioporus eyrei. Journal of Comparative Neurology, 202(2), 221-236.
Eisthen, H. (2000). Amphibian Biology. Volume 3. Sensory Perception (Vol. 2000).
Falcón, J. (1999). Cellular circadian clocks in the pineal. Progress in neurobiology, 58(2), 121-162.
Falcón, J., Thibault, C., Begay, V., Zachmann, A., & Collin, J.-P. (1992). Regulation of the rhythmic melatonin secretion by fish pineal photoreceptor cells. In Rhythms in fishes (pp. 167-198): Springer.
Feehan, J. M., Chiu, C. N., Stanar, P., Tam, B. M., Ahmed, S. N., & Moritz, O. L. (2017). Modeling dominant and recessive forms of retinitis pigmentosa by editing three rhodopsin-encoding genes in Xenopus laevis using Crispr/Cas9. Scientific reports, 7(1), 6920.
Fliegner, K. H., Kaplan, M. P., Wood, T. L., Pintar, J. E., & Liem, R. K. (1994). Expression of the gene for the neuronal intermediate filament protein α‐internexin coincides with the onset of neuronal differentiation in the developing rat nervous system. Journal of Comparative Neurology, 342(2), 161-173.
Gervasi, C., Stewart, C. B., & Szaro, B. G. (2000). Xenopus laevis peripherin (XIF3) is expressed in radial glia and proliferating neural epithelial cells as well as in neurons. J Comp Neurol, 423(3), 512-531.
Gervasi, C., & Szaro, B. G. (1997). Sequence and expression patterns of two forms of the middle molecular weight neurofilament protein (NF-M) of Xenopus laevis. Molecular brain research, 48(2), 229-242.
Gordon, J., & Hood, D. C. (1976). Anatomy and physiology of the frog retina. In The Amphibian Visual System (pp. 29-86): Elsevier.
Hao, C. M. (2018). The development of photoreceptor-like cells in chicken pineal gland. (master). National Taiwan University, Available from Airiti AiritiLibrary database. (2018)
Harris, W. A., & Messersmith, S. L. (1992). Two cellular inductions involved in photoreceptor determination in the Xenopus retina. Neuron, 9(2), 357-372.
Heatwole, H. (1998). Amphibian Biology: Sensory perception: Surrey Beatty & Sons.
Hárosi, F. I. (1994). An analysis of two spectral properties of vertebrate visual pigments. Vision research, 34(11), 1359-1367.
Kaplan, M. P., Chin, S., Fliegner, K. H., & Liem, R. (1990). Alpha-internexin, a novel neuronal intermediate filament protein, precedes the low molecular weight neurofilament protein (NF-L) in the developing rat brain. Journal of Neuroscience, 10(8), 2735-2748.
Kappers, J. A. (1979). Short history of pineal discovery and research. In Progress in brain research (Vol. 52, pp. 3-22): Elsevier.
Kelber, A., Balkenius, A., & Warrant, E. J. (2003). Colour vision in diurnal and nocturnal hawkmoths. Integrative and Comparative Biology, 43(4), 571-579.
Kelber, A., Vorobyev, M., & Osorio, D. (2003). Animal colour vision–behavioural tests and physiological concepts. Biological Reviews, 78(1), 81-118.
Kim, S., & Coulombe, P. A. (2007). Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes & development, 21(13), 1581-1597.
Klein, D. C. (1985). Photoneural regulation of the mammalian pineal gland. Paper presented at the Ciba Found Symp.
Klein, D. C. (2004). The 2004 Aschoff/Pittendrigh lecture: theory of the origin of the pineal gland—a tale of conflict and resolution. Journal of biological rhythms, 19(4), 264-279.
Klein, S. L., Strausberg, R. L., Wagner, L., Pontius, J., Clifton, S. W., & Richardson, P. (2002). Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative. Dev Dyn, 225(4), 384-391. doi:10.1002/dvdy.10174
Ko, T.-L., Chien, C.-L., & Lu, K.-S. (2005). The expression of α-internexin and peripherin in the developing mouse pineal gland. Journal of biomedical science, 12(5), 777-789.
Lariviere, R. C., & Julien, J. P. (2004). Functions of intermediate filaments in neuronal development and disease. Journal of neurobiology, 58(1), 131-148.
Liao, M. L., Peng, W. H., Kan, D., & Chien, C. L. (2016). Developmental pattern of the neuronal intermediate filament inaa in the zebrafish retina. Journal of Comparative Neurology, 524(18), 3810-3826.
Liao, M. L., Peng, W. H., Kan, D., & Chien, C. L. (2019). Distribution patterns of the zebrafish neuronal intermediate filaments inaa and inab. J Neurosci Res, 97(2), 202-214. doi:10.1002/jnr.24347
Liebman, P. (1972). Microspectrophotometry of photoreceptors. In Photochemistry of vision (pp. 481-528): Springer.
Lin, Z. & X, Ji. (2005). Sexual dimorphism in morphological traits and food habits in tiger frogs, Hoplobatrachus rugulosus in Lishui, Zhejiang. Zoological Research, 26 (3): 255–262.
Liu, C. H., & Chien, C. L. (2013). Molecular cloning and characterization of chicken neuronal intermediate filament protein α‐internexin. Journal of Comparative Neurology, 521(9), 2147-2164.
Liu, C. H., Wang, I. J., Wei, F. D., & Chien, C. L. (2013). Neuronal intermediate filament alpha-internexin is expressed by neuronal lineages in the developing chicken retina. Exp Eye Res, 110, 18-25. doi:10.1016/j.exer.2013.02.013
Lue, K. Y. (2012). Hoplobatrachus rugulosus. BiotaTaiwanica.
Lythgoe, J., & Partridge, J. (1989). Visual pigments and the acquisition of visual information. Journal of Experimental Biology, 146(1), 1-20.
Marchiafava, P. L., & Kusmic, C. (1993). Chapter 1: The electrical responses of the trout pineal photoreceptors to brief and prolonged illumination. In T. P. Hicks, S. Molotchnikoff, & T. Ono (Eds.), Progress in Brain Research (Vol. 95, pp. 3-13): Elsevier.
Mariani, A. (1986). Photoreceptors of the larval tiger salamander retina. Proceedings of the Royal society of London. Series B. Biological sciences, 227(1249), 483-492.
Maturana, H. R., Lettvin, J. Y., McCulloch, W. S., & Pitts, W. H. (1960). Anatomy and physiology of vision in the frog (Rana pipiens). J Gen Physiol, 43(6)Suppl(6), 129-175.
McNulty, J. A. (1984). Organ culture of the goldfish pineal body. An ultrastructural and biochemical study. Cell Tissue Res, 238 (3), 565-575
Nguyen, V., & Straznicky, C. (1989). The development and the topographic organization of the retinal ganglion cell layer in Bufo marinus. Experimental Brain Research, 75(2), 345-353.
Nieuwkoop, P., & Faber, J. (1994). Normal Table of Xenopus laevis (Daudin) Garland Publishing. New York, 252.
Omura, Y., & Oguri, M. (1969). Histological Studies on the Pineal Organ of 15 Species of Teleosts. Bulletin of the Japanese Society of Scientific Fisheries, 35(10), 10.
Oshima, R. G. (2007). Intermediate filaments: a historical perspective. Experimental cell research, 313(10), 1981-1994.
Osterberg, G. (1935). Topography ofthe layer of rods and cones in the human retina. Acta, 11-97.
Pawlina, W., & Ross, M. H. (2018). Histology: a text and atlas: with correlated cell and molecular biology: Lippincott Williams & Wilkins.
Perry, R., & McNaughton, P. (1991). Response properties of cones from the retina of the tiger salamander. The Journal of Physiology, 433(1), 561-587.
Pignatelli, V., Champ, C., Marshall, J., & Vorobyev, M. (2010). Double cones are used for colour discrimination in the reef fish, Rhinecanthus aculeatus. Biology letters, 6(4), 537-539.
Purves, D., Lotto, R. B., Williams, S. M., Nundy, S., & Yang, Z. (2001). Why we see things the way we do: evidence for a wholly empirical strategy of vision. Philos Trans R Soc Lond B Biol Sci, 356(1407), 285-297.
Puthussery, T., Percival, K. A., Venkataramani, S., Gayet-Primo, J., Grunert, U., & Taylor, W. R. (2014). Kainate receptors mediate synaptic input to transient and sustained OFF visual pathways in primate retina. J Neurosci, 34(22), 7611-7621.
Redies, C., & Takeichi, M. (1993). Expression of N‐cadherin mRNA during development of the mouse brain. Developmental dynamics, 197(1), 26-39.
Relkin, R. (1966). The pineal gland. New England Journal of Medicine, 274(17), 944-950.
Sapede, D., & Cau, E. (2013). The pineal gland from development to function. Curr Top Dev Biol, 106, 171-215.
Schwab, I. R. (2004). Look before you leap. The British Journal of Ophthalmology, 88(11), 1361-1361.
Sharpe, C., Pluck, A., & Gurdon, J. (1989). XIF3, a Xenopus peripherin gene, requires an inductive signal for enhanced expression in anterior neural tissue. Development, 107(4), 701-714.
Sihag, R. K., Inagaki, M., Yamaguchi, T., Shea, T. B., & Pant, H. C. (2007). Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Experimental cell research, 313(10), 2098-2109.
Strausberg, R. L., Feingold, E. A., Grouse, L. H., Derge, J. G., Klausner, R. D., Collins, F. S. ,& Marra, M. A. (2002). Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A, 99(26), 16899-16903.
Ebinuma, T. (2013). 世界の両生類ビジュアル図鑑―カエル・有尾類(イモリ・サンショウウオの仲間)・無足類(アシナシイモリ)図鑑+人気種の飼育方法. 誠文堂新光社.
Mizutani, T. (2013). カエル飼育ノート: カエルの生態から飼育、繁殖まで. 誠文堂新光社.
Tata, J. R. (2006). Amphibian metamorphosis as a model for the developmental actions of thyroid hormone. Molecular and Cellular Endocrinology, 246(1), 10-20.
Thyagarajan, A., Strong, M. J., & Szaro, B. G. (2007). Post-transcriptional control of neurofilaments in development and disease. Experimental cell research, 313(10), 2088-2097.
Toivola, D. M., Tao, G.-Z., Habtezion, A., Liao, J., & Omary, M. B. (2005). Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends in cell biology, 15(11), 608-617.
Vollrath, L., Semm, P., & Gammel, G. (1981). Sleep induction by intranasal application of melatonin. In Melatonin: Current status and perspectives (pp. 327-329): Elsevier.
Xu, J., Dodd, R. L., Makino, C. L., Simon, M. I., Baylor, D. A., & Chen, J. (1997). Prolonged photoresponses in transgenic mouse rods lacking arrestin. Nature, 389(6650), 505.
Young, R. W. (1967). The renewal of photoreceptor cell outer segments. J Cell Biol, 33(1), 61-72.
Yovanovich, C. A., Koskela, S. M., Nevala, N., Kondrashev, S. L., Kelber, A., & Donner, K. (2017). The dual rod system of amphibians supports colour discrimination at the absolute visual threshold. Philos Trans R Soc Lond B Biol Sci, 372(1717).
Zhang, Y., & Straznicky, C. (1991). The morphology and distribution of photoreceptors in the retina of Bufo marinus. Anatomy and embryology, 183(1), 97-104.
Zhao, Y., & Szaro, B. G. (1997). Xefiltin, a new low molecular weight neuronal intermediate filament protein of Xenopus laevis, shares sequence features with goldfish gefiltin and mammalian alpha-internexin and differs in expression from XNIF and NF-L. J Comp Neurol, 377(3), 351-364.
Zhao, Y., & Szaro, B. G. (1997). Xefiltin, a Xenopus laevis neuronal intermediate filament protein, is expressed in actively growing optic axons during development and regeneration. Journal of neurobiology, 33(6), 811-824.
Zhu, B., & Straznicky, C. (1990a). Dendritic morphology and retinal distribution of tyrosine hydroxylase-like immunoreactive amacrine cells in Bufo marinus. Anatomy and embryology, 181(4), 365-371.
Zhu, B., & Straznicky, C. (1990b). Morphology and distribution of serotonin-like immunoreactive amacrine cells in the retina of Bufo marinus. Vis Neurosci, 5(4), 371-378.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/689-
dc.description.abstract本研究我們選擇虎皮蛙 (學名: Hoplobatrachus rugulosus) 作為實驗動物;依據實驗室先前的研究,我們發現雞的 α-internexin 及斑馬魚的 inaa 不僅會出現在視網膜的感光細胞中,也可以在松果體中的類感光細胞中有表現分布。然而,α-internexin 在兩生類松果體中的表現尚未被探討,作為在演化史上可以彌補斑馬魚及脊椎動物中空缺的角色,虎皮蛙可為一個重要的兩生類神經發育模式動物。
關於一種常用於兩生類發育研究的實驗動物:爪蟾Xenopus laevis的研究指出,Xenopus α-internexin mRNA序列已被命名為“xefiltin”。雖然虎皮蛙和Xenopus 並不是同一物種,但是屬於同一目。因此,本論文研究目的是在探討 α-internexin 的同源基因xefiltin: ina.S 及 nif.S 在虎皮蛙發育中,於視網膜及松果體內之表現與分布狀況。因此,我們特別製作多株抗體可以標定虎皮蛙的 α-internexin 的同源基因 ina.S 及 nif.S 蛋白,並使用西方墨點法與免疫組織染色確認 ina.S 及 nif.S 在發育中視網膜及松果體之表現與分布情況。為了確認 ina.S 及 nif.S 可以在松果體中的類感光細胞中之可能表現分布,另外選擇了兩隻可用於標定感光細胞的抗體: recoverin 及 XAP1 於實驗中來比較其分布情形。
根據免疫染色結果, nif.S 可以於感光細胞的外段 (outer segment) 被觀察到,但是另一隻抗體: ina.S 只有在視網膜神經元 (retinal neurons) 中可檢測到。相對的,並未在感光細胞中檢測到。在松果體中,recoverin 及 XAP1 皆可以標示出感光細胞;另一方面,ina.S 及 nif.S 只能在早期虎皮蛙的松果體少許細胞中被偵測到。綜合本研究結果,我們針對感光細胞在發育中虎皮蛙視網膜及松果體的表達和分布做詳細的觀察及比較。我們認為XAP1,而非ina.S 或 nif.S,可以應用成為研究青蛙松果體中的感光細胞的特定標示物,有助於提供在青蛙的松果體中感光細胞演化發育生物學研究更多線索。
zh_TW
dc.description.abstractIn this study, Hoplobatrachus rugulosus, commonly referred to as tiger-skinned frog, is to be chosen the animal model. In previous studies, it has been found that both chicken α-internexin and zebrafish inaa (an ortholog of mammalian α-internexin) were developmentally distributed not only in photoreceptors of retina but also in the photoreceptor-like cells of the pineal gland. However, from an evolutionary point of view, there is still lack of evidence to illustrate the temporal and spatial distribution of frog α-internexin protein in the developing pineal gland.
According to the previous studies about Xenopus laevis, the animal model that is usually used for amphibian developmental research, the mRNA sequence which encodes Xenopus α-internexin had been identified as “xefiltin”. Although H. rugulosus is not the same species with X. laevis, both of them are classified in the same order. The aims of this study is to characterize the expression pattern of α-internexin-like proteins, internexin neuronal intermediate filament protein alpha S homeolog (ina.S) and low molecular weight neuronal intermediate filament S homeolog (nif.S) which might be expressed in the developing retina and the pineal gland of the tiger-skinned frog. Thus, for this study these 2 antibodies were generated to detect the frog α-internexin-like proteins and to confirm the distribution of these proteins in the developing frog retina as well as the pineal gland by western blot and immunohistochemistry. Furthermore, the markers applied to detect the photoreceptor cell in the retina and the pineal gland are recoverin and XAP1 (Clone 3D2), both of them are reported to be specific to photoreceptors.
Based on the distribution patterns in frog retina, immunopositive staining of anti-nif.S could be observed in the outer segment of photoreceptors, but anti-ina.S could only be found in retinal neurons. In the pineal gland, both photoreceptor markers, recoverin and XAP1, could be detected. The α-internexin-like protein, ina.S and nif.S, could be detected only in a few photoreceptor-like cells at the early stage of the frog pineal gland. In summary, this thesis has studied the distribution patterns of photoreceptor cells in retina and in pineal gland of developing tiger-skinned frogs. It can be concluded that XAP1 could be a good marker to identify the photoreceptor cells in the developing pineal gland of frogs.
en
dc.description.provenanceMade available in DSpace on 2021-05-11T04:58:01Z (GMT). No. of bitstreams: 1
ntu-108-R06446004-1.pdf: 4705376 bytes, checksum: 02e701d77b9252c149e115622f8a8ab5 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 ... i
摘要 ... iii
Abstract ... iv
List of Figures ... vii
List of Tables ... viii
Chapter 1: Introduction ... 1
Chapter 2: Materials and Methods ... 12
Chapter 3: Results ... 18
Chapter 4: Discussion ... 24
Figures and Figure Legends ... 29
Tables ... 60
References ... 64
dc.language.isoen
dc.title虎皮蛙視網膜及松果體中的感光細胞zh_TW
dc.titleThe Photoreceptor Cells in Retina and Pineal Gland of Tiger-skinned Frogen
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳玉怜,楊懿如
dc.subject.keyword虎皮蛙(Hoplobatrachus rugulosus),感光細胞,視網膜,松果體,α- internexin,zh_TW
dc.subject.keywordTiger-skinned frog (Hoplobatrachus rugulosus),Photoreceptor,Retina,Pineal gland,α-internexin,en
dc.relation.page72
dc.identifier.doi10.6342/NTU201902659
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-08-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學暨細胞生物學研究所zh_TW
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf4.6 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved