Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68997
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖運炫
dc.contributor.authorZong-Shung Liuen
dc.contributor.author劉宗昇zh_TW
dc.date.accessioned2021-06-17T02:46:15Z-
dc.date.available2022-08-25
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-15
dc.identifier.citation[1] C. Andrew and S. A. Tobias, 'A critical comparison of two current theories of machine tool chatter,' International Journal of Machine Tool Design and Research, vol. 1, pp. 325-335, 1961.
[2] M. K. Das and S. A. Tobias, 'The relation between the static and the dynamic cutting of metals,' International Journal of Machine Tool Design and Research, vol. 7, pp. 63-89, 1967.
[3] H. E. Merritt, 'Theory fo self-excited machine-tool chatter - contribution to machine-tool chatter research .1,' Journal of Engineering for Industry, vol. 87, pp. 447-, 1965.
[4] J. Tlusty and F. Ismail, 'Basic non-linearity in machining chatter,' CIRP Annals - Manufacturing Technology, vol. 30, pp. 299-304, 1981.
[5] J. Tlusty, W. Zaton, and F. Ismail, 'Stability lobes in milling,' CIRP Annals - Manufacturing Technology, vol. 32, pp. 309-313, 1983.
[6] Y. Altintas, Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, 2nd ed., 2012.
[7] Y. Altintaş and E. Budak, 'Analytical prediction of stability lobes in milling,' CIRP Annals - Manufacturing Technology, vol. 44, pp. 357-362, 1995.
[8] G. Boothroyd and W. A. Knight, Fundamentals of Machining and Machine Tools, 2nd Edtion, 1989.
[9] G. Quintana and J. Ciurana, 'Chatter in machining processes: A review,' International Journal of Machine Tools & Manufacture, vol. 51, pp. 363-376, May 2011.
[10] T. Delio, J. Tlusty, and S. Smith, 'Use of audio signals for chatter dectection and control,' Journal of Engineering for Industry-Transactions of the Asme, vol. 114, pp. 146-157, May 1992.
[11] E. Kuljanic, M. Sortino, and G. Totis, 'Multisensor approaches for chatter detection in milling,' Journal of Sound and Vibration, vol. 312, pp. 672-693, May 2008.
[12] E. Kuljanic, G. Totis, and M. Sortino, 'Development of an intelligent multisensor chatter detection system in milling,' Mechanical Systems and Signal Processing, vol. 23, pp. 1704-1718, Jul 2009.
[13] 吳宏亮, '遠端監控系統應用於工具機切削動態異常診控之應用研究,' 碩士論文, 中原大學, 2007.
[14] 張成綱, 'CNC工具機之切削異常線上監控系統改善研究,' 碩士論文, 中原大學, 2010.
[15] Z. H. Yao, D. Q. Mei, and Z. C. Chen, 'On-line chatter detection and identification based on wavelet and support vector machine,' Journal of Materials Processing Technology, vol. 210, pp. 713-719, Mar 2010.
[16] N. C. Tsai, D. C. Chen, and R. M. Lee, 'Chatter prevention for milling process by acoustic signal feedback,' International Journal of Advanced Manufacturing Technology, vol. 47, pp. 1013-1021, Apr 2010.
[17] 郭耀文, 'CNC立式銑削再生式顫振預測之研究,' 碩士論文, 國立台灣大學2015.
[18] Y. S. Tarng, Y. W. Hseih, and T. C. Li, 'Automatic selection of spindle speed for suppression of regenerative chatter in turning,' International Journal of Advanced Manufacturing Technology, vol. 11, pp. 12-17, 1996.
[19] Y. Altintas and P. K. Chan, 'In-process detection and suppression of chatter in milling,' International Journal of Machine Tools & Manufacture, vol. 43, pp. 1229-1240, 2003.
[20] Y. S. Liao and Y. C. Young, 'A new on-line spindle speed regulation strategy for chatter control,' International Journal of Machine Tools & Manufacture, vol. 36, pp. 651-660, May 1996.
[21] 孟尚賢, '銑削顫振之控制-主軸轉速調整方法之研究,' 碩士論文, 國立臺灣大學2002.
[22] Y. Altintas, Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, 2nd Edition, 2012.
[23] J.Tlusty, 'Dynamics of High - Speed Milling,' Journal of Engineering for Industry, Trans. ASME, vol. 108, pp. 59-61, May 1986.
[24] 稻崎一郎, 'Machine Tool Dynamics and Control – Analysis and Control of Machine Tool Chatter,' 1985.
[25] J.Tlusty, Manufacturing Processes and Equipment, 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68997-
dc.description.abstract銑削製程由於能製作複雜形狀而被廣泛用於機械製造,然而不適當的切削條件之選用會容易產生加工時的顫振。再生式顫振屬於加工顫振中最常見的一種,再生式顫振發生時會造成刀具的損傷與降低工件的表面光度並且產生大量的噪音。為了避免發生再生式顫振,應在加工前選擇適當的切削條件,維持較佳的加工效率又不會導致再生式顫振,即使如此,亦可能有突發的再生式顫振,當再生式顫振出現時,就已造成刀具磨損及工件表面的損壞,因此應在顫振尚未造成影響前預測出顫振即將發生,並且及時抑制顫振的出現,保護刀具及工件的表面。
針對加工前選擇的切削條件,本文提出一結合切削經濟性與工具機穩定性的決定方法。計算出使加工的時間及成本最佳的轉速,配合切削穩定性圖及工具機主軸馬達的功率,得到可使工具機發揮最大效能的切削條件。目前在實務上因動力計成本昂貴,無法直接求得切削穩定性圖中必須的切削力係數,本文亦提出一簡便的策略,建立出切削負載率與平均切削力的線性模型,藉由此模型,可直接由CNC工具機控制器中量得並紀錄的切削負載率求得對應的平均切削力,以得到當時加工的切削力係數,讓切削穩定性圖及求得的切削條件更為準確。在顫振預測與顫振抑制方面,優化改良過去實驗室所提出的再生式顫振預測法則與顫振抑制策略,使其適用在更多的加工狀況,並將其整合實作出程式模組,可直接與CNC工具機的控制器連線以實際應用在加工上。實驗驗證發現,以本文提出的方法決定的切削條件,相較經驗及查表的條件加工效率最高可提升23%,且刀具壽命最高亦可多達3.6倍的壽命。而本文提出的切削力係數估算策略,經過不同材料的測試,估算結果與實際的切削力係數誤差在5.5% 以內,在容許的範圍內。顫振預測與抑制方面,在時域訊號還未有明顯變化前,程式模組即可預測出顫振將要出現,並自動調變至穩定主軸轉速,在顫振發生前即時抑制顫振的出現,達到預測顫振與抑制顫振的效果。本文從尚未加工的過程到切削過程為止,皆避免了再生式顫振的出現,成功地開發出一套實用且具商業價值的CNC銑床智能化顫振控制系統。
zh_TW
dc.description.abstractMilling process can produce complicated workpieces, so it was used widely in manufacturing. However, the inappropriate cutting conditions will be easy to induce regenerative chatter, which is the most common of chatter in milling, and it will damage tools and the surface of workpieces, and cause a lot of noise. To prevent regenerative chatter from affecting manufacturing quality, the select of appropriate cutting condition is necessary. Besides, the understand of machine tool dynamics will also increase production efficiency. On the other hand, in cutting processes, there may be unexpectedly regenerative chatter, so the cutting process should be monitored on-line. Nevertheless, when the regenerative chatter happens, the tool and surface of workpieces were injured. Therefore, the chatter is supposed to be predicted and be suppress to occur before it damage tool and workpieces.
This work proposes a decision of appropriate cutting condition before machining, combining the economics of cutting and the stability of machine tool. It offers the cutting speeds for minimum cost and for minimum production time, and considers the stability lobe diagrams and the power of spindle to get appropriate cutting conditions, making the most of efficiency of machine tool. Moreover, in practice, the dynamometers are expensive , so it can’t be used to get the cutting coefficient , essential to build the stability lobe diagram . This work also proposes a convenient strategy, and sets up a linear model of the cutting load and average cutting forces . By the model, the cutting load from CNC controller can be transfered to the average cutting force to get the real cutting coefficient , it makes the stability lobe diagrams and cutting conditions more accurate . For the prediction of chatter and the suppression of chatter , this work improves the strategies , presented by the lab , makes them more useful to machining , and implements a modular program , able to connect the CNC controller . The experiment result shows that, the material removal rate of cutting condition decided by this work increases by 35% and the tool life goes up to 2 times, compared to the experienced cutting conditions . Addtionally, the differences between the cutting coefficients by the strategy and the real cutting coefficients are less than 5.5%. The modular program can preditct the chatter occur before the chatter amplitude is still small, and quickly suppress the chatter.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:46:15Z (GMT). No. of bitstreams: 1
ntu-106-R04522715-1.pdf: 4462811 bytes, checksum: 37235b6b4c0f2bba785776b755815df7 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 xii
1 序論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.2.1 切削穩定性圖與切削條件 3
1.2.2 線上監控顫振與切削的異常狀態 4
1.2.3 抑制再生式顫振的方法 6
1.3 研究目的與方法 7
1.4 本文架構 8
2 再生式顫振的相關理論 10
2.1 銑床動態切削力模型 10
2.2 銑床的方向因子 12
2.3 銑床再生式顫振的閉迴路模型 15
2.4 切削穩定性圖 19
3 適當粗加工切削條件 23
3.1 決定適當切削條件的方法 24
3.2 切削速度及切深的選擇 26
3.2.1 切削的經濟性 26
3.2.2 使用參數的預估 29
3.2.3 最大利潤率的切削速度 30
3.3 進給率的決定 33
3.4 切削力係數估算的策略 34
3.4.1 銑床靜態切削力模型 34
3.4.2 實際切削力係數之測量 38
3.4.3 切削負載率與切削力之關係 39
3.4.4 切削力係數估算的流程 41
4 線上預測與抑制顫振 43
4.1 線上再生式顫振預測策略 43
4.1.1 傅立葉轉換與短時傅立葉轉換 43
4.1.2 P階代表頻率 45
4.1.3 再生式顫振的預測法則 47
4.2 預測法則的改良 49
4.2.1 快速移動雜訊的影響 49
4.2.2 進退刀不穩定切削 52
4.2.3 預測法則的補充 55
4.3 抑制再生式顫振策略 57
4.3.1 簡化的閉迴路模型與特徵方程式 57
4.3.2 系統振動頻率與相位差之關係 60
4.3.3 主軸調整轉速方法 63
4.4 線上預測顫振及抑制顫振模組 65
4.4.1 工具機控制器的連結 65
4.4.2 程式模組設計 66
5 系統驗證與分析 68
5.1 系統執行流程與目的 68
5.2 系統設備與材料 70
5.2.1 加工設備與材料 70
5.2.2 量測設備 72
5.2.3 實驗設計 75
5.3 適當切削條件的驗證 76
5.3.1 使用參數的計算 76
5.3.2 切削穩定性圖 78
5.3.3 適當切削條件 82
5.4 切削力係數的估算 88
5.4.1 平均切削力與切削負載率的關係 88
5.4.2 平均切削力與切削負載率比值對轉速的線性模型 89
5.4.3 不同材料的驗證 94
5.5 線上預測顫振與抑制顫振模組驗證 102
5.5.1 動力計驗證實驗 102
5.5.2 加速度規驗證實驗 118
6 結論與未來展望 127
6.1 結論 127
6.2 未來展望 128
7 參考文獻 130
dc.language.isozh-TW
dc.subject顫振抑制zh_TW
dc.subject銑削加工zh_TW
dc.subject再生式顫振zh_TW
dc.subject切削條件zh_TW
dc.subject切削力係數zh_TW
dc.subject顫振預測zh_TW
dc.subjectmillingen
dc.subjectcutting coefficienten
dc.subjectcutting conditionen
dc.subjectregenerative chatteren
dc.titleCNC銑削智能化顫振控制系統之研究zh_TW
dc.titleDevelopment of an Intelligent Chatter Control System in CNC Milling Processen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡曜陽,李貫銘,王世明
dc.subject.keyword銑削加工,再生式顫振,切削條件,切削力係數,顫振預測,顫振抑制,zh_TW
dc.subject.keywordmilling,regenerative chatter,cutting condition,cutting coefficient,en
dc.relation.page131
dc.identifier.doi10.6342/NTU201703453
dc.rights.note有償授權
dc.date.accepted2017-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
4.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved