請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68983
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
dc.contributor.author | Chia-Kuei Li | en |
dc.contributor.author | 李家逵 | zh_TW |
dc.date.accessioned | 2021-06-17T02:45:31Z | - |
dc.date.available | 2020-08-25 | |
dc.date.copyright | 2017-08-25 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-15 | |
dc.identifier.citation | 1. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
2. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature materials, 2007. 6(3): p. 183-191. 3. Novoselov, K.S., et al., A roadmap for graphene. nature, 2012. 490(7419): p.192-200. 4. Bao, Q. and K.P. Loh, Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS nano, 2012. 6(5): p. 3677-3694. 5. Schwierz, F., Graphene transistors. Nature nanotechnology, 2010. 5(7): p.487-496. 6. Dean, C.R., et al., Boron nitride substrates for high-quality graphene electronics. Nature nanotechnology, 2010. 5(10): p. 722-726. 7. Lipp, A., K.A. Schwetz, and K. Hunold, Hexagonal boron nitride: fabrication, properties and applications. Journal of the European Ceramic Society, 1989. 5(1): p. 3-9. 8. Schwetz, K.A., Boron carbide, boron nitride, and metal borides. Ullmann's encyclopedia of industrial chemistry, 1985. 9. Miró, P., M. Audiffred, and T. Heine, An atlas of two-dimensional materials. Chemical Society Reviews, 2014. 43(18): p. 6537-6554. 10. Azevedo, S., et al., Corrigendum: Theoretical investigation of native defects in a boron nitride monolayer. Nanotechnology, 2012. 23. 11. Wilson, J. and A. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics, 1969. 18(73): p. 193-335. 12. Fivaz, R. and E. Mooser, Mobility of charge carriers in semiconducting layer structures. Physical Review, 1967. 163(3): p. 743. 13. Mak, K.F., et al., Atomically thin MoS2: a new direct-gap semiconductor. Physical review letters, 2010. 105(13): p. 136805. 14. Radisavljevic, B., et al., Single-layer MoS2 transistors. Nature nanotechnology, 2011. 6(3): p. 147-150. 15. Kaasbjerg, K., K.S. Thygesen, and K.W. Jacobsen, Phonon-limited mobility in n-type single-layer MoS2 from first principles. Physical Review B, 2012. 85(11): p. 115317. 16. Chhowalla, M., et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature chemistry, 2013. 5(4): p. 263-275. 17. Geim, A.K. and I.V. Grigorieva, Van der Waals heterostructures. Nature, 2013. 499(7459): p. 419-425. 18. Bandurin, D.A., et al., High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat Nano, 2017. 12(3): p.223-227. 19. Mudd, G.W., et al., Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement. Advanced Materials, 2013. 25(40): p. 5714-5718. 20. Kam, K. and B. Parkinson, Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. The Journal of Physical Chemistry, 1982. 86(4): p. 463-467. 21. Coehoorn, R., C. Haas, and R. De Groot, Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Physical Review B, 1987. 35(12): p. 6203. 22. Li, H., et al., From bulk to monolayer MoS2: evolution of Raman scattering. Advanced Functional Materials, 2012. 22(7): p. 1385-1390. 23. Lee, C., et al., Anomalous lattice vibrations of single-and few-layer MoS2. ACS nano, 2010. 4(5): p. 2695-2700. 24. Camassel, J., et al., Excitonic absorption edge of indium selenide. Physical Review B, 1978. 17(12): p. 4718. 25. Chen, Z., et al., Anodic bonded 2D semiconductors: from synthesis to device fabrication. Nanotechnology, 2013. 24(41): p. 415708. 26. Bonaccorso, F., et al., Production and processing of graphene and 2d crystals. Materials today, 2012. 15(12): p. 564-589. 27. Novoselov, K., Nobel lecture: Graphene: Materials in the flatland. Reviews of Modern Physics, 2011. 83(3): p. 837. 28. Nicolosi, V., et al., Liquid exfoliation of layered materials. Science, 2013. 340(6139): p. 1226419. 29. Wei, D., et al., Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano letters, 2009. 9(5): p. 1752-1758. 30. Reina, A., et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters, 2008. 9(1): p. 30-35. 31. Shi, Y., H. Li, and L.-J. Li, Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chemical Society Reviews, 2015. 44(9): p. 2744-2756. 32. Liu, Q., et al., Tuning electronic structure of bilayer MoS2 by vertical electric field: a first-principles investigation. The Journal of Physical Chemistry C, 2012. 116(40): p. 21556-21562. 33. Korn, T., et al., Low-temperature photocarrier dynamics in monolayer MoS2. Applied Physics Letters, 2011. 99(10): p. 102109. 34. McCreary, A., et al., Effects of uniaxial and biaxial strain on few-layered terrace structures of MoS2 grown by vapor transport. ACS nano, 2016. 10(3):p. 3186-3197. 35. Mouri, S., Y. Miyauchi, and K. Matsuda, Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano letters, 2013. 13(12): p.5944-5948. 36. Zhao, H.-Q., et al., Bandgap modulation of MoS2 monolayer by thermal annealing and quick cooling. Nanoscale, 2016. 8(45): p. 18995-19003. 37. Kohn, W. and L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical review, 1965. 140(4A): p. A1133. 38. Hartree, D.R. The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods. in Mathematical Proceedings of the Cambridge Philosophical Society. 1928. Cambridge University Press. 39. Hartree, D.R. The wave mechanics of an atom with a non-Coulomb central field. Part II. Some results and discussion. in Mathematical Proceedings of the Cambridge Philosophical Society. 1928. Cambridge University Press. 40. Kohn, W., A.D. Becke, and R.G. Parr, Density functional theory of electronic structure. The Journal of Physical Chemistry, 1996. 100(31): p. 12974-12980. 41. Klimeš, J., D.R. Bowler, and A. Michaelides, Chemical accuracy for the van der Waals density functional. Journal of Physics: Condensed Matter, 2009. 22(2): p. 022201. 42. Ramakrishna Matte, H., et al., MoS2 and WS2 analogues of graphene. Angewandte Chemie International Edition, 2010. 49(24): p. 4059-4062. 43. Frindt, R., Optical Absorption of a Few Unit-Cell Layers of Mo S2. Physical Review, 1965. 140(2A): p. A536. 44. Lauritsen, J.V., et al., Size-dependent structure of MoS2 nanocrystals. Nature nanotechnology, 2007. 2(1): p. 53-58. 45. Remskar, M., et al., Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes. Science, 2001. 292(5516): p. 479-481. 46. Splendiani, A., et al., Emerging photoluminescence in monolayer MoS2. Nano letters, 2010. 10(4): p. 1271-1275. 47. Madelung, O., Semiconductors: data handbook. 2012: Springer Science & Business Media. 48. Kress-Rogers, E., et al., Cyclotron resonance studies on bulk and two-dimensional conduction electrons in InSe. Solid State Communications, 1982. 44(3): p. 379-383. 49. Manjón, F., et al., Band structure of indium selenide investigated by intrinsic photoluminescence under high pressure. Physical Review B, 2004. 70(12): p.125201. 50. Sánchez-Royo, J.F., et al., Electronic structure, optical properties, and lattice dynamics in atomically thin indium selenide flakes. Nano Research, 2014. 7(10): p. 1556-1568. 51. Zhang, Y., et al., Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 2009. 459(7248): p. 820. 52. Tang, K., et al., Electric-field-induced energy gap in few-layer graphene. The Journal of Physical Chemistry C, 2011. 115(19): p. 9458-9464. 53. Dungey, K.E., M.D. Curtis, and J.E. Penner-Hahn, Structural characterization and thermal stability of MoS2 intercalation compounds. Chemistry of Materials, 1998. 10(8): p. 2152-2161. 54. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical review letters, 1996. 77(18): p. 3865. 55. Ortmann, F., F. Bechstedt, and W. Schmidt, Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Physical Review B, 2006. 73(20): p. 205101. 56. Fox, M., Optical properties of solids. 2002, AAPT. 57. Ferrari, A.C., et al., Raman spectrum of graphene and graphene layers. Physical review letters, 2006. 97(18): p. 187401. 58. Berkdemir, A., et al., Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific reports, 2013. 3. 59. Novoselov, K., et al., 2D materials and van der Waals heterostructures. Science, 2016. 353(6298): p. aac9439. 60. Yang, R., et al., Multilayer MoS2 transistors enabled by a facile dry-transfer technique and thermal annealing. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2014. 32(6): p. 061203. 61. Shih, F.-Y., et al., Residue-free fabrication of high-performance graphene devices by patterned PMMA stencil mask. AIP Advances, 2014. 4(6): p.067129. 62. Howland, R., L. Benatar, and P.S. Instruments, A practical guide to scanning probe microscopy. 1996: Park scientific instruments. 63. Thornton, J., Scanning Probe Microscopy Training Notebook. 2000, version. 64. Qiu, H., et al., Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Applied Physics Letters, 2012. 100(12): p. 123104. 65. Jariwala, D., et al., Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Applied Physics Letters, 2013. 102(17): p.173107. 66. Plechinger, G., et al., Low‐temperature photoluminescence of oxide‐covered single‐layer MoS2. physica status solidi (RRL)-Rapid Research Letters, 2012. 6(3): p. 126-128. 67. Sercombe, D., et al., Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates. Scientific reports, 2013. 3:p. 3489. 68. Klein, J., et al., Stark effect spectroscopy of mono-and few-layer MoS2. Nano letters, 2016. 16(3): p. 1554-1559. 69. O’Donnell, K. and X. Chen, Temperature dependence of semiconductor band gaps. Applied physics letters, 1991. 58(25): p. 2924-2926. 70. Miller, D.A., et al., Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect. Physical Review Letters, 1984. 53(22): p.2173. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68983 | - |
dc.description.abstract | 調控半導體元件的光學特性可以應用在光電子學。二維材料的能帶結構決定了光的躍遷。由於二維材料有獨特的物理特性,可以透過不同的方法來調控它們的能帶結構,包含了張力、溫度和電場等。在這篇論文中,我們將致力於薄層硒化銦與二硫化鉬場效電晶體之光學特性。在第一個部分,我們研究以薄層氮化硼覆蓋的雙層二硫化鉬在二氧化矽上的場效。我們在雙層二硫化鉬上外加垂直電場。基於理論,外加電場可以調控雙層二硫化鉬的光學性質。我們使用二硫化鉬的光致螢光光譜並分析其場效的峰值。二硫化鉬的兩個直接能隙躍遷,A 和B 激子可以透過垂直電場來調控。由於斯塔克效應,我們觀察到外加的閘極電壓降低了光致螢光放射光能量。在第二個部分,我們研究薄層硒化銦在二氧化矽上的場效。因為硒化銦容易在大氣的環境下變質,我們發展了一項非常有效的技術,用聚甲基丙烯酸甲酯立刻覆蓋在薄層硒化銦上面。我們比較了不同層數的硒化銦場效電晶體的光致螢光光譜。然後我們使用石墨烯當作上層閘極去製造雙閘極為了外加垂直電場到薄層硒化銦。硒化銦從厚層數到薄層數的能帶是由直接到非直接。我們觀察到薄層硒化銦具有顯卓的光致螢光光譜峰值能量轉移。 | zh_TW |
dc.description.abstract | Tunable optical properties of semiconductor devices can have useful applications in optoelectronics. The optical transitions of 2D materials are determined by their band structures. Due to the unique physical properties of the 2D materials, there are various methods to modify their band structures, including application of strain, temperature and electric field. In this thesis, we dedicate to the optical properties of field-effect devices based on few-layer InSe and MoS2. In the first part, we study the electric field-effect of bilayer MoS2 on silicon dioxide (SiO2) cover with few-layer boron nitride. We fabricate field-effect device structure to apply vertical electric field on the bilayer MoS2. Based on the theory, electric field can tune the bandgap and optical properties of bilayer MoS2. We perform photoluminescence (PL) spectroscopy of the MoS2 devices and analyze the field-effect of the PL peaks. The peaks energy of the two direct optical transitions of MoS2, known as the A and B excitons, is tunable as the vertical electric field is applied. We observe that PL emission energy can be reduced by increasing external gate voltage at given temperature, which may be due to Stark effect. In the second part, we study the electric field-effect of few-layer InSe on silicon dioxide. Because InSe is easily degraded in ambient condition, we develop a technique to cover the few-layer InSe with polymethylmethacrylate immediately which is very effective. We compare the thickness dependence of photoluminescence of the InSe field-effect devices with different temperature. We then fabricate graphene top gate to create a duel-gate structure for applying vertical electric field on few-layer InSe. For InSe, the bandgap are direct and indirect for bulk and few-layer InSe, respectively. We observe pronounced shift of the peak energy of photoluminescence in few-layer InSe. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:45:31Z (GMT). No. of bitstreams: 1 ntu-106-R04222078-1.pdf: 4153431 bytes, checksum: c0b555d123cb6f0311de33ac072fc153 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 致謝...................................................................................................................... iii
摘要.......................................................................................................................iv ABSTRACT...........................................................................................................i CONTENTS........................................................................................................ iii LIST OF FIGURES ............................................................................................vi Chapter 1 Introduction ..................................................................................1 1.1Physical properties of 2D materials ...................................................1 1.1.1 Graphene and boron nitride .......................................................1 1.1.2 Transition metal dichalcogenides...............................................2 1.1.3 Layered metal chalcogenides .....................................................3 1.2 Optical properties of layered semiconductors....................................4 1.2.1 Molybdenum disulphide (MoS2)................................................4 1.2.2 Indium selenide (InSe) ...............................................................6 1.3 Synthesis methods of 2D materials....................................................7 1.4 Tuning optical properties of 2D materials .......................................10 1.5 Motivation........................................................................................13 1.6 Thesis structure ................................................................................13 Chapter 2 Theory of optical properties in field-effect device ..................15 2.1 Density functional theory (DFT) .....................................................15 2.1.1 Local density approximation (LDA)........................................17 2.1.2 Generalized gradient approximation (GGA) ...........................18 2.2 Quantum Confinement of 2D semiconductors ................................18 2.3 Effect of external electric field on the band gaps.............................23 2.4 Photoluminescence of 2D semiconductors ......................................25 2.5 Raman of 2D semiconductors ..........................................................27 Chapter 3 Device fabrication and experiment techniques .......................28 3.1 Fabrication of field-effect devices ...................................................28 3.1.1 Exfoliating MoS2 and InSe flakes on substrates ......................28 3.1.2 Polymethylmethacrylate (PMMA) spin coating ......................29 3.1.3 Transfer technique of 2D materials..........................................30 3.1.4 Fabrication of contact electrodes .............................................32 3.2 Experiment techniques.....................................................................34 3.2.1 Optical measurement systems..................................................34 3.2.2 Atomic force microscope .........................................................36 Chapter 4 Results and discussions..............................................................38 4.1 Thermal annealing ...........................................................................38 4.2 Tuning the optical properties of bilayer MoS2 .................................40 4.2.1 Electrical characterization of bilayer MoS2 .............................42 4.2.2 Low energy L-peak of MoS2....................................................43 4.2.3 Temperature dependence of the optical properties of MoS2 ....44 4.2.4 Electric field dependence of the optical properties of MoS2 ...46 4.3 Tuning the optical properties of few-layer InSe ..............................50 4.3.1 Effect of encapsulated InSe by PMMA ...................................50 4.3.2 Electrical characterization of few-layer InSe...........................51 4.3.3 Quantum confinement effect of PL at different thickness .......52 4.3.4 Temperature dependence of the optical properties of InSe......56 4.3.5 Electric field dependence of the optical properties of InSe .....58 Chapter 5 Conclusions .................................................................................62 Reference ............................................................................................................63 | |
dc.language.iso | en | |
dc.title | 薄層硒化銦與二硫化鉬場效電晶體之電制光學特性 | zh_TW |
dc.title | Electrically Tunable Optical Properties of
Field-effect Devices Based on Few-layer InSe and MoS2 | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 王偉華(Wei-Hua Wang) | |
dc.contributor.oralexamcommittee | 蘇清源(Ching-Yuan Su) | |
dc.subject.keyword | 二維材料,硒化銦,二硫化鉬,氮化硼,聚甲基丙烯酸甲酯,石墨烯,垂直電場,斯塔克效應,光致螢光光譜, | zh_TW |
dc.subject.keyword | 2D materials,InSe,MoS2,boron nitride,polymethylmethacrylate (PMMA),graphene,vertical electric field,Stark effect,photoluminescence spectroscopy, | en |
dc.relation.page | 67 | |
dc.identifier.doi | 10.6342/NTU201703514 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-16 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理學研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 4.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。