Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68963
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor歐展言(Chan-Yen Ou)
dc.contributor.authorJhao-Ching Jhongen
dc.contributor.author鍾昭慶zh_TW
dc.date.accessioned2021-06-17T02:44:28Z-
dc.date.available2022-09-08
dc.date.copyright2017-09-08
dc.date.issued2017
dc.date.submitted2017-08-16
dc.identifier.citationAhmari, S.E., Buchanan, J., and Smith, S.J. (2000). Assembly of presynaptic active zones from cytoplasmic transport packets. Nat. Neurosci. 3, 445-451.
Aizawa, H., Sekine, Y., Takemura, R., Zhang, Z., Nangaku, M., and Hirokawa, N. J. (1992). Kinesin family in murine central nervous system. Cell Biol. 119, 1287–1296.
Akerboom, J., Chen, T.W., Wardill, T.J., Tian, L., Marvin, J.S., Mutlu, S., Calderón, N.C., Esposti, F., Borghuis, B.G., Sun, X.R., Gordus, A., Orger, M.B., Portugues, R., Engert, F., Macklin, J.J., Filosa, A., Aggarwal, A., Kerr, R.A., Takagi, R., Kracun, S., Shigetomi, E., Khakh, B.S., Baier, H., Lagnado, L., Wang, S.S., Bargmann, C.I., Kimmel, B.E., Jayaraman, V., Svoboda, K., Kim, D.S., Schreiter, E.R., and Looger, L.L. (2012). Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32, 13819-13840.
Berlot, C.H. (2002). Use of scanning mutagenesis to delineate structure-function relationships in G protein alpha subunits. Methods Enzymol. 344, 455-468.
Besset, V., Rhee, K., and Wolgemuth, D.J. (1999). The cellular distribution and kinase activity of the Cdk family member Pctaire1 in the adult mouse brain and testis suggest functions in differentiation. Cell Growth Differ. 10, 73-81.
Bradshaw, N.J., Soares, D.C., Carlyle, B.C., Ogawa, F., Davidson-Smith, H, Christie, S., Mackie, S., Thomson, P.A., Porteous, D.J., Millar, J.K. (2011). PKA phosphorylation of NDE1 is DISC1/PDE4 dependent and modulates its interaction with LIS1 and NDEL1. J Neurosci. 31,9043-9054.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
Buechler, Y.J., Herberg, F.W., and Taylor, S.S. (1993). Regulation-defective mutants of type I cAMP-dependent protein kinase. Consequences of replacing arginine 94 and arginine 95. J. Biol. Chem. 268, 16495-16503.
Burkhardt, J.K. (1998). The role of microtubule-based motor proteins in maintaining the structure and function of the Golgi complex. Biochim. Biophys. Acta. 1404, 113-126.
Bury, L.A., and Sabo, S.L. (2011). Coordinated trafficking of synaptic vesicle and active zone proteins prior to synapse formation. Neural Dev. 6, 24.
Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev. 57, 411–425.
Chetkovich, D.M., and Sweatt, J.D. (1993). nMDA receptor activation increases cyclic AMP in area CA1 of the hippocampus via calcium/calmodulin stimulation of adenylyl cyclase. J. Neurochem. 61, 1933-1942.
Chung, S.H., Sun, L., and Gabel, C.V. (2013). In vivo neuronal calcium imaging in C. elegans. J. Vis. Exp. 74.
Caylor, R., Jin Y., Ackley. B.D. (2013). The Caenorhabditis elegans voltage-gated calcium channel subunits UNC-2 and UNC-36 and the calcium-dependent kinase UNC-43/CaMKII regulate neuromuscular junction morphology. Neural Dev. 8, 10.
Delghandi, M.P., Johannessen, M., and Moens, U. (2005). The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3T3 cells. Cell. Signal. 17, 1343-1351.
Dujardin, D.L., Barnhart, L.E., Stehman, S.A., Gomes, E.R., Gundersen, G.G., and Vallee, R.B. (2003). A role for cytoplasmic dynein and LIS1 in directed cell movement. J. Cell Biol. 163, 1205-1211.
Duncan, J.E., and Goldstein, L.S. (2006). The genetics of axonal transport and axonal transport disorders. PLoS Genet. 29, e124.
Endicott, J.A., and Noble, M.E. (2013). Structural characterization of the cyclin-dependent protein kinase family. Biochem. Soc. Trans. 41, 1008-1016.
Esteban, J.A., Shi, S.H., Wilson, C., Nuriya, M., Huganir, R.L., and Malinow, R. (2003). PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat. Neurosci. 6, 136-143.
Fioravante, D., Chu, Y., de Jong, A.P., Leitges, M., Kaeser, P.S., Regehr, W.G. (2014). eLife. 3, e03011.
Ganguly, K., Kiss, L., and Poo, M. (2000). Enhancement of presynaptic neuronal excitability by correlated presynaptic and postsynaptic spiking. Nat. Neurosci. 3, 1018-1026.
Ghosh-Roy, A., Wu, Z., Goncharov, A., Jin, Y., Chisholm, A.D. (2010). Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase. J Neurosci. 30,3175-3183.
Goldstein, L.S., and Yang, Z. (2000). Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu. Rev. Neurosci. 23, 39-71.
Graeser, R., Gannon, J., Poon, R.Y., Dubois, T., Aitken, A., and Hunt, T. (2002). Regulation of the CDK-related protein kinase PCTAIRE-1 and its possible role in neurite outgrowth in Neuro-2A cells. J. Cell Sci. 115, 3479-3490.
Gunawardena, S., and Goldstein, L.S. (2001). Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32, 389–401.
Gunawardena, S., Her, L.S., Brusch, R.G., Laymon, R.A., Niesman, I.R., Gordesky-Gold, B., Sintasath, L., Bonini, N.M., and Goldstein, L.S. (2003) Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40, 25–40.
Hall, D.H., and Hedgecock, E.M. (1991). Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 65, 837-847.
Hawasli, A.H., and Bibb, J.A. (2007). Alternative roles for Cdk5 in learning and synaptic plasticity. Biotechnol. J. 2, 941-948.
Hirokawa, N. (1998). Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526.
Hirokawa, N., Noda, Y., Tanaka, Y., and Niwa, S. (2009). Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10, 682-696.
Hirose, T., Tamaru, T., Okumura, N., Nagai, K., and Okada, M. (1997). PCTAIRE 2, a Cdc2-related serine/threonine kinase, is predominantly expressed in terminally differentiated neurons. Eur. J. Biochem. 249, 481-488.
Hoerndli, F.J., Wang, R., Mellem, J.E., Kallarackal, A., Brockie, P.J., Thacker, C., Madsen, D.M., Maricq, A.V. (2015). Neuronal activity and CaMKII regulate kinesin-mediated transport of synaptic AMPARs. Neuron 86, 457-474.
Hoerndli, F.J., Maxfield, D.A., Brockie, P.J., Mellem, J.E., Jensen, E., Wang, R., Madsen, D.M., Maricq, A.V. (2013). Kinesin-1 regulates synaptic strength by mediating the delivery, removal, and redistribution of AMPA receptors. Neuron. 80,1421-1437.
Horiuchi, D., Collins, C.A., Bhat, P., Barkus, R.V., Diantonio, A., and Saxton, W.M. (2007). Control of a kinesin-cargo linkage mechanism by JNK pathway kinases. Curr. Biol. 17, 1313-1317.
Ichinose, S., Ogawa, T., and Hirokawa, N. (2015). Mechanism of Activity-Dependent Cargo Loading via the Phosphorylation of KIF3A by PKA and CaMKIIa. Neuron 87, 1022-1035.
Iwano, S., Satou, A., Matsumura, S., Sugiyama, N., Ishihama, Y., and Toyoshima, F. (2015). PCTK1 regulates integrin-dependent spindle orientation via protein kinase A regulatory subunit KAP0 and myosin X. Mol. Cell Biol. 35, 1197-1208.
Jordens, I., Marsman, M., Kuijl, C., and Neefjes, J. (2005). Rab proteins, connecting transport and vesicle fusion. Traffic 6, 1070-1077.
Kamal, A., Stokin, G.B., Yang, Z., Xia, C.H., and Goldstein, L.S. (2000). Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449–459.
Kashina, A.S., Semenova, I.V., Ivanov, P.A., Potekhina, E.S., Zaliapin, I., and Rodionov, V.I. (2004). Protein kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles. Curr. Biol. 14, 1877-1881.
Kesavapany, S., Li, B.S., Amin, N., Zheng, Y.L., Grant, P., and Pant, H.C. (2004). Neuronal cyclin-dependent kinase 5: role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. Biochim. Biophys. Acta. 1697, 143-153.
Kholmanskikh, S.S., Dobrin, J.S., Wynshaw-Boris, A., Letourneau, P.C., and Ross, M.E. (2003). Disregulated RhoGTPases and actin cytoskeleton contribute to the migration defect in Lis1-deficient neurons. J. Neurosci. 23, 8673-8681.
Klassen, M.P., and Shen, K. (2007). Wnt signaling positions neuromuscular connectivity by inhibiting synapse formation in C. elegans. Cell 130, 704-716.
Klinman, E., Holzbaur, E.L. (2015). Stress-Induced CDK5 Activation Disrupts Axonal Transport via Lis1/Ndel1/Dynein. Cell 12,462-473.
Korswagen, H.C., Park, J.H., Ohshima, Y., and Plasterk, R.H. (1997). An activating mutation in a Caenorhabditis elegans Gs protein induces neural degeneration. Genes Dev. 11, 1493-1503.
Kuijpers, M., van de Willige, D., Freal, A., Chazeau, A., Franker, M.A., Hofenk, J., Rodrigues, R.J., Kapitein, L.C., Akhmanova, A., Jaarsma, D., Hoogenraad, C.C. (2016). Dynein Regulator NDEL1 Controls Polarized Cargo Transport at the Axon Initial Segment. Neuron. 89, 461-471.
Kumar, J., Choudhary, B.C., Metpally, R., Zheng, Q., Nonet, M.L., Ramanathan, S., Klopfenstein, D.R., and Koushika, S.P. (2010). The Caenorhabditis elegans Kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo. PLoS Genet. 6, e1001200.
Lai, K.O., and Ip, N.Y. (2009). Synapse development and plasticity: roles of ephrin/Eph receptor signaling. Curr. Opin. Neurobiol. 19, 275-283.
Laine, V., Frokjaer-Jensen, C., Couchoux, H., Jospin, M.(2011). The alpha1 subunit EGL-19, the alpha2/delta subunit UNC-36, and the beta subunit CCB-1 underlie voltage-dependent calcium currents in Caenorhabditis elegans striated muscle. J Biol Chem.286,36180–36187.
Leenders, A.G., Lopes da Silva, F.H., Ghijsen, W.E., and Verhage, M. (2001). Rab3a is involved in transport of synaptic vesicles to the active zone in mouse brain nerve terminals. Mol. Biol. Cell 12, 3095-3102.
Li, M., Wang, X., Meintzer, M.K., Laessig, T., Birnbaum, M.J., and Heidenreich, K.A. (2000). Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3beta. Mol. Cell Biol. 20, 9356-9363.
Lin, S.X., and Collins, C.A. (1993). Regulation of the intracellular distribution of cytoplasmic dynein by serum factors and calcium. J. Cell Sci. 105, 579-588.
Ma, C., Su, L., Seven, A.B., Xu, Y., and Rizo, J. (2013). Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science 339, 421-425.
Macosko, E.Z., Pokala, N., Feinberg, E.H., Chalasani, S.H., Butcher, R.A., Clardy, J., and Bargmann, C.I. (2009). A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458, 1171-1175.
Malenka, R.C., and Bear, M.F. (2004). LTP and LTD: an embarrassment of riches. Neuron 44, 5-21.
Martin, M., Iyadurai, S.J., Gassman, A., Gindhart, J.G.Jr., Hays, T.S., and Saxton, W.M. (1999). Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport. Mol. Biol. Cell. 10, 3717-3728.
Mello, C.C., Kramer, J.M., Stinchcomb, D., and Ambros, V. (1991). Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959-3970.
Mikolcevic, P., Sigl, R., Rauch, V., Hess, M.W., Pfaller, K., Barisic, M., Pelliniemi, L. J., Boesl, M., and Geley, S. (2012). Cyclin-dependent kinase 16/PCTAIRE kinase 1 is activated by cyclin Y and is essential for spermatogenesis. Mol. Cell Biol. 32, 868-879.
Mullen, G.P., Grundahl, K.M., Gu, M., Watanabe, S., Hobson, R.J., Crowell, J.A., McManus, J.R., Mathews, E.A., Jorgensen, E.M., Rand, J.B. (2012). UNC-41/stonin functions with AP2 to recycle synaptic vesicles in Caenorhabditis elegans. PLoS One. 7, e40095.
Murdoch, H., Vadrevu, S., Prinz, A., Dunlop, A.J., Klussmann, E., Bolger, G.B., Norman, J.C., and Houslay, M.D. (2011). Interaction between LIS1 and PDE4, and its role in cytoplasmic dynein function. J. Cell Sci. 124, 2253-2266.
Nagy, S., Wright, C., Tramm, N., Labello, N., Burov, S., and Biron, D. (2013). A longitudinal study of Caenorhabditis elegans larvae reveals a novel locomotion switch, regulated by G(αs) signaling. Elife 2, e00782.
Nakata, T., Terada, S., and Hirokawa, N. (1998). Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J. Cell Biol. 140, 659-674.
Niethammer, M., Smith, D.S., Ayala, R., Peng, J., Ko, J., Lee, M.S., Morabito, M., and Tsai, L.H. (2000). NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28, 697-711.
Nogales, E. (2000). Structural insights into microtubule function. Annu. Rev. Biochem. 69, 277-302.
Okada, Y., Sato-Yoshitake, R., and Hirokawa, N. (1995). The activation of protein kinase A pathway selectively inhibits anterograde axonal transport of vesicles but not mitochondria transport or retrograde transport in vivo. J. Neurosci. 15, 3053-3064.
Oldham, W.M., and Hamm, H.E. (2008). Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9, 60-71.
Ou, C.Y., Poon, V.Y., Maeder, C.I., Watanabe, S., Lehrman, E.K., Fu, A.K., Park, M., Fu, W.Y., Jorgensen, E.M., Ip, N.Y., and Shen, K. (2010). Two cyclin-dependent kinase pathways are essential for polarized trafficking of presynaptic components. Cell 141, 846-858.
Poon, V.Y., Klassen, M.P., and Shen, K. (2008). UNC-6/netrin and its receptor UNC-5 locally exclude presynaptic components from dendrites. Nature 455, 669-673.
Richmond, J.E., Davis, W.S., Jorgensen, E.M. (1999). UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat Neurosci. 11,959-64.
Richmond, J.E., Weimer, R.M., Jorgensen, E.M. (2001). An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature. 412,338-41.
Rieckhof, G.E., Yoshihara, M., Guan, Z., Littleton, J.T. (2003). Presynaptic N-type calcium channels regulate synaptic growth. J Biol Chem. 278,41099-41108.
Roberts, A.J., Kon, T., Knight, P.J., Sutoh, K., and Burgess, S.A. (2013). Functions and mechanics of dynein motor proteins. Nat. Rev. Mol. Cell Biol. 14, 713-726.
Rondaij, M.G., Bierings, R., Kragt, A., Gijzen, K.A., Sellink, E., van Mourik, J.A., Fernandez-Borja, M., and Voorberg, J. (2006). Dynein-dynactin complex mediates protein kinase A-dependent clustering of Weibel-Palade bodies in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 26, 49-55.
Rouleau, G.A., Clark, A.W., Rooke, K., Pramatarova, A., Krizus, A., Suchowersky, O., Julien, J.P., and Figlewicz, D. (1996). SOD1 mutation is associated with accumulation of neurofilaments in amyotrophic lateral sclerosis. Ann. Neurol. 39, 128-131.
Sabo, S.L., Gomes, R.A., and McAllister, A.K. (2006). Formation of presynaptic terminals at predefined sites along axons. J. Neurosci. 26, 10813-10825.
Saheki, Y., Bargmann, C.I. (2009). Presynaptic CaV2 calcium channel traffic requires CALF-1 and the α2δsubunit UNC-36. Nat Neurosci. 12,1257–1265.
Sasaki, S., Shionoya, A., Ishida, M., Gambello, M.J., Yingling, J., Wynshaw- Boris, A., and Hirotsune, S. (2000). A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 28, 681-696.
Sassone-Corsi, P. (2012). The cyclic AMP pathway. Cold Spring Harb. Perspect. Biol. 4, a011148.
Sauer, B. (1998). Inducible gene targeting in mice using the Cre/lox system. Methods 14, 381-392.
Schade, M.A., Reynolds, N.K., Dollins, C.M., and Miller, K.G. (2005). Mutations that rescue the paralysis of Caenorhabditis elegans ric-8 (synembryn) mutants activate the G alpha(s) pathway and define a third major branch of the synaptic signaling network. Genetics 169, 631-649.
Scherer, J., Yi, J., and Vallee, R.B. (2014). PKA-dependent dynein switching from lysosomes to adenovirus: a novel form of host-virus competition. J. Cell Biol. 205, 163-177.
Schoch, S., Castillo, P.E., Jo, T., Mukherjee, K., Geppert, M., Wang, Y., Schmitz, F., Malenka, R.C., and Südhof, T.C. (2002). RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415, 321-326.
Schoch, S., Deák, F., Königstorfer, A., Mozhayeva, M., Sara, Y., Südhof, T.C., and Kavalali, E.T. (2001). SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 294, 1117-1122.
Shu, T., Ayala, R., Nguyen, M.D., Xie, Z., Gleeson, J.G., and Tsai, L.H. (2004). Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 44, 263-277.
Skalhegg, B.S., and Tasken, K. (2000). Specificity in the cAMP/PKA signaling pathway. Differential expression, regulation, and subcellular localization of subunits of PKA. Front. Biosci. 5, 678-693.
Skeberdis, V.A., Chevaleyre, V., Lau, C.G., Goldberg, J.H., Pettit, D.L., Suadicani, S.O., Lin, Y., Bennett, M.V., Yuste, R., Castillo, P.E., and Zukin, R.S. (2006). Protein kinase A regulates calcium permeability of NMDA receptors. Nat. Neurosci. 9, 501-510.
Stenius, K., Janz, R., Südhof, T.C., and Jahn, R. (1995). Structure of synaptogyrin (p29) defines novel synaptic vesicle protein. J. Cell Biol. 131, 1801-1809.
Tesmer, J.J., Sunahara, R.K., Gilman, A.G., and Sprang, S.R. (1997). Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science 278, 1907-1916.
Toda, H., Mochizuki, H., Flores, R. III, Josowitz, R., Krasieva, T.B., Lamorte, V.J., Suzuki, E., Gindhart, J.G., Furukubo-Tokunaga, K., Tomoda, T. (2008). UNC-51/ATG1 kinase regulates axonal transport by mediating motor-cargo assembly. Genes Dev.22,3292-3307.
Tsai, J.W., Chen, Y., Kriegstein, A.R., and Vallee, R.B. (2005). LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J. Cell Biol. 170, 935-945.
Vetter, I.R., and Wittinghofer, A. (2001). The guanine nucleotide-binding switch in three dimensions. Science 294, 1299-1304.
Wang, H., and Sieburth, D. (2013). PKA controls calcium influx into motor neurons during a rhythmic behavior. PLoS Genet. 9, e1003831.
Weimer, R.M., Gracheva, E.O., Meyrignac, O., Miller, K.G., Richmond, J.E., Bessereau, J.L. (2006). UNC-13 and UNC-10/rim localize synaptic vesicles to specific membrane domains. J. Neurosci. 26, 8040-8047.
White, J.G., Southgate, E., Thomson, J.N., and Brenner, S. (1976). The structure of the ventral nerve cord of Caenorhabditis elegans. Philos. Trans. R. Soc. Lond B Biol. Sci. 275, 327-348.
Weimer, R.M., Richmond, J.E., Davis, W.S., Hadwiger, G., Nonet, M.L., Jorgensen, E.M. (2013). Defects in synaptic vesicle docking in unc-18 mutants. Nat Neurosci. 10, 1023-1030.
Yan, J., Chao, D.L. Toba, S., Koyasako, K., Yasunaga, T., Hirotsune, S., Shen, K. (2013). Kinesin-1 regulates dendrite microtubule polarity in Caenorhabditis elegans. eLife 2, e00133
Yogev, S., Cooper, R., Fetter, R., Horowitz, M., Shen, K. (2016). Microtubule Organization Determines Axonal Transport Dynamics. Neuron. 92,449-460.
Zaccolo, M., Magalhães, P., and Pozzan, T. (2002). Compartmentalisation of cAMP and Ca(2+) signals. Curr. Opin. Cell Biol. 14, 160-166.
Zhao, C., Takita, J., Tanaka, Y., Setou, M., Nakagawa, T., Takeda, S., Yang, H.W., Terada, S., Nakata, T., Takei, Y., Saito, M., Tsuji, S., Hayashi, Y., and Hirokawa, N. (2001). Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105, 587-597.
Zhao, H., and Nonet, M.L. (2001). A conserved mechanism of synaptogyrin localization. Mol. Biol. Cell. 12, 2275-2289.
Zhou, K., Stawicki, T.M., Goncharov, A., Jin, Y. (2013). Position of UNC-13 in the active zone regulates synaptic vesicle release probability and release kinetics. Elife. 2, e01180.
Zhu, J.J., Esteban, J.A., Hayashi, Y., and Malinow, R. (2000). Postnatal synaptic potentiation: delivery of GluR4-containing AMPA receptors by spontaneous activity. Nat. Neurosci. 3, 1098-1106.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68963-
dc.description.abstract神經細胞向外伸長出樹突及軸突彼此連結。樹突負責接收來自突觸前神經的訊息,而軸突負責將訊息傳送給突觸後神經或肌肉。這兩種不同極性的功能需要不同的蛋白質及液胞(vesicle)來維持,而這些物質需要準確地分裝及運送。先前的研究發現少了CDK-5及PCT-1/CDK-16使得原本在軸突才需要的突觸小泡(synaptic vesicle)被錯誤地送到樹突。我們先前也發現當蛋白激酶A(PKA)過度活化時,也發生相同的現象。我的研究顯示蛋白激酶A與CDK-5及PCT-1/CDK-16作用在不同的訊息途徑中,並且過度活化蛋白激酶A不會影響樹突及軸突的型態及微管(mirotubule)的極性。即時影像分析(real-time imaging)的結果顯示蛋白激酶A活化了逆向運輸。
除了蛋白激酶A,鈣離子也調控了神經的運輸。我的研究顯示失去電位閘控型鈣離子通道不影響突觸小泡的極化運輸,但在缺少CYY-1、PCT-1及CDK-5的背景下,突觸小泡送到樹突的缺陷會變得更嚴重。失去神經傳遞也具有相同的現象。
這些結果顯示CDK及蛋白激酶A負責了細胞的極性運輸;而鈣離子負責維持突觸的正常功能。失去CDK及過度活化突觸小泡造成逆向運輸過度增強,而失去維持突觸正常功能的鈣離子流會讓失能的突觸小泡被過度增強的逆向運輸系統送去樹突。
zh_TW
dc.description.abstractIn neuron, there are two polarized subcellular compartments, axons and dendrites. Dendrites receive signals from presynaptic neurons while axons release signals toward postsynaptic cells. In order to maintain the polarity and function of these subcellular compartments, proteins and vesicular cargos specific for axons or dendrites need to be precisely transported and targeted. In previous studies in C. elegans DA9 motor neuron, it was found that presynaptic components in axons mislocalize to dendrites in mutants of two cyclin dependent kinases pct-1/CDK-16 and cdk-5. In our previous study, a constitutively active mutant of G protein α-subunit gsa-1 enhanced cAMP-PKA signaling and resulted in similar mislocalizing phenotype. Here, I showed that GSA-1 acts independently with CDK-5 and CYY-1/PCT-1 without affecting neuronal morphology and microtubule polarity. In the dynamic imagine assay, I found that retrograde transport of synaptic vesicles in gsa-1 is stronger than wild type. The dynein heavy chain DHC-1 and its functional regulator NUD-2 are both required for gsa-1 mislocalizing phenotypes. These findings indicate that activation of cAMP-PKA signaling promotes retrograde movement of presynaptic components. Other than cAMP-PKA signaling, another secondary messenger Ca2+ was also reported to control synaptic function and morphology. I found that the depletion of an N and PQ-type Ca2+ channel (UNC-2) enhances the defect of pct-1, cyy-1 and cdk-5, and such enhancement seems to be the result of disrupting neuronal activity. Depleting neurotransmission in unc-18 mutants also strongly enhances the defect of pct-1. Together, these results suggest that secondary messengers are required to regulate polarized trafficking of synaptic vesicles, the disruption of secondary messenger signaling and neuronal activity will change the balance of polarized trafficking.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:44:28Z (GMT). No. of bitstreams: 1
ntu-106-R04442022-1.pdf: 5282056 bytes, checksum: 4999b4e8502ed497a5cd6bfd728fb212 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents論文審定書…………………………..…………………………………………………..i
中文摘要………………………………………………………………………………..ii
ABSTRACT…………………………………………………………………………...iii
TABLE OF CONTENTS……………………………………………………………....v
I. NTRODUCTION…………………………………………………………………….1
1.1 Polarized trafficking in neuron………………………..……………………...1
1.2 Motor protein and intracellular transport……………………………………….2
1.3 Axonal transport and neuronal disorders……………………………………..4
1.4 The role of secondary messengers in neurons……………………………..4
II. MATERIALS AND METHODS……………………………………………………8
2.1 Strains and Genetics…………………………………………………………....8
2.2 Cloning and Constructs…………………………………………………………9
2.3 Combination of different genotypes…………………………………………..10
2.4 Worm lysis for genomic DNA...............................................................................11
2.5 Quantification…………………………………………………………………11
2.6 Dynamic imaging………………………………………………………………13
III. RESULTS…………………………………………………………………………14
3.1 Constitutively active PKA pathway disrupt synaptic vesicle localization………..14
3.2 GSA-1 functions in the independent pathway with PCT-1 and CDK-5………. ..16
3.3 GSA-1 do not change the morphology and axon-dendrite polarity in DA9…….17
3.4 GSA-1 promotes retrograde transport of SVs, requiring dynein components
DHC-1 and NUD-2………………………………………………………………18
3.5 Calcium signaling component UNC-2 strongly enhance synaptic vesicle localization defect of pct-1, cyy-1 and cdk-5…………………………………19
3.6 The structure and localization defects of VGCC in active zone did not result in the enhancement of unc-2gk366…………………………………………………….20
3.7 The SV trafficking defect in pct-1; unc-2gk366 seemed to be the result of losing neuronal activity………………………………………………………………..22
3.8 Calmoduin dependent kinase suppress synaptic vesicle localization defect of
cyy-1 and disrupted synapse morphology in axon of DA9 ………………….23
IV. DISCUSSION…………………………………………………………………….24
4.1 Downstream regulators of PKA signaling and CDK signaling…………………..25
4.2 The roles of Calcium signaling at presynaptic regions…………………………..25
4.3 CaMK regulates polarized postsynaptic cargo trafficking……………………….28
V. FIGURES……………………………………………………………………….....30
Figure 1. Activation the components of Gαs signaling pathway disrupted
synaptic vesicle localization ………………….…………………...........32
Figure 2.GSA-1acted independently with cyy-1, pct-1 and cdk-5 signaling ………..34
Figure 3. gsa-1ce94 did not change the morphology and axon-dendrite polarity of DA9…………………………………………………………………..……36
Figure 4. GSA-1 promotes retrograde transport of SVP…………………………….39
Figure 5. unc-2gk366 strongly enhanced SV localization defect of pct-1, cyy-1, and
cdk-5………………………………………………………………………42
Figure 6. The structure and localization defects of UNC-2 in active zone did not result in the enhancement of SV trafficking defect in pct-1;unc-2gk366………….45
Figure 7. unc-2gk366 enhancement seems to be the result of disrupting neurotransmission…………………………………………………………..47
Figure 8. unc-43e408 suppresses synaptic vesicle localization defect of cyy-1……….50
Figure 9. unc-43e408 disrupted synapse formation and localization of cyy-1………..52
VI. REFERENCE…………………………………………………………………....53
VII. APPENDIX……………………………………………………………………....70
7.1 Primers for genotyping and sequencing……………………………….......70
7.2 Constructs and transgenic worms………………………………………………..74
 7.3 Plasmid sequences and cDNAs………………………………………………….78
dc.language.isoen
dc.subject突觸小泡定位zh_TW
dc.subjectUNC-18zh_TW
dc.subjectUNC-2zh_TW
dc.subjectCDK-5zh_TW
dc.subjectPCT-1zh_TW
dc.subject鈣離子訊息途徑zh_TW
dc.subjectcAMP-PKA 訊息途徑zh_TW
dc.subjectGαs signalingen
dc.subjectUNC-2en
dc.subjectCDK-5en
dc.subjectPCT-1en
dc.subjectcalcium signalingen
dc.subjectsynaptic vesicle localizationen
dc.subjectUNC-18en
dc.subjectcAMP-PKA signalingen
dc.title次級傳訊分子與蛋白激酶如何調控神經細胞內的極性化運輸zh_TW
dc.titleThe study of how secondary messengers and protein kinases regulate neuronal polarized traffickingen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡欣祐,黃憲松
dc.subject.keyword突觸小泡定位,cAMP-PKA 訊息途徑,鈣離子訊息途徑,PCT-1,CDK-5,UNC-2,UNC-18,zh_TW
dc.subject.keywordsynaptic vesicle localization,Gαs signaling,cAMP-PKA signaling,PCT-1,CDK-5,UNC-2,calcium signaling,UNC-18,en
dc.relation.page90
dc.identifier.doi10.6342/NTU201703484
dc.rights.note有償授權
dc.date.accepted2017-08-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
5.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved