請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68955完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許麗卿(Lih-Ching Hsu) | |
| dc.contributor.author | Yu-Liang Li | en |
| dc.contributor.author | 利友良 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:44:02Z | - |
| dc.date.available | 2022-09-14 | |
| dc.date.copyright | 2017-09-14 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-16 | |
| dc.identifier.citation | 1. Siegel RL, Miller KD and Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016; 66:7–30.
2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015; 65:87–108. 3. Dean-Colomb W and Esteva FJ. Emerging agents in the treatment of anthracycline- and taxane-refractory metastatic breast cancer. Semin Oncol. 2008; 35:S31–38. 4. Rivera E. Implications of anthracycline–resistant and taxane–resistant metastatic breast cancer and new therapeutic options. The breast journal. 2010; 16:252–263. 5. McGrogan BT, Gilmartin B, Carney DN and McCann A. Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta. 2008; 1785:96–132. 6. Lindsley CW. The Akt/PKB family of protein kinases: a review of small molecule inhibitors and progress towards target validation: a 2009 update. Curr Top Med Chem. 2010; 10:458–477. 7. Saal LH, Johansson P, Holm K, Gruvberger–Saal SK, She QB, Maurer M, Koujak S, Ferrando AA, Malmstrom P, Memeo L, Isola J, Bendahl PO, Rosen N, Hibshoosh H, Ringner M, Borg A, et al. Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc Natl Acad Sci U S A. 2007; 104:7564–7569. 8. Lara PN, Jr., Longmate J, Mack PC, Kelly K, Socinski MA, Salgia R, Gitlitz B, Li T, Koczywas M, Reckamp KL and Gandara DR. Phase II Study of the AKT Inhibitor MK-2206 plus Erlotinib in Patients with Advanced Non–Small Cell Lung Cancer Who Previously Progressed on Erlotinib. Clin Cancer Res. 2015; 21:4321–4326. 9. Oki Y, Fanale M, Romaguera J, Fayad L, Fowler N, Copeland A, Samaniego F, Kwak LW, Neelapu S, Wang M, Feng L and Younes A. Phase II study of an AKT inhibitor MK2206 in patients with relapsed or refractory lymphoma. Br J Haematol. 2015; 171:463–470. 10. Ma CX, Sanchez C, Gao F, Crowder R, Naughton M, Pluard T, Creekmore A, Guo Z, Hoog J, Lockhart AC, Doyle A, Erlichman C and Ellis MJ. A Phase I Study of the AKT Inhibitor MK-2206 in Combination with Hormonal Therapy in Postmenopausal Women with Estrogen Receptor–Positive Metastatic Breast Cancer. Clin Cancer Res. 2016; 22:2650–2658. 11. Vander Heiden MG, Cantley LC and Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009; 324:1029–1033. 12. Macheda ML, Rogers S and Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005; 202:654–662. 13. Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, Colvin R, Ding J, Tong L, Wu S, Hines J and Chen X. A small–molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell–cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther. 2012; 11:1672–1682. 14. Konopleva MY, Walter RB, Faderl SH, Jabbour EJ, Zeng Z, Borthakur G, Huang X, Kadia TM, Ruvolo PP, Feliu JB, Lu H, Debose L, Burger JA, Andreeff M, Liu W, Baggerly KA, et al. Preclinical and early clinical evaluation of the oral AKT inhibitor, MK-2206, for the treatment of acute myelogenous leukemia. Clin Cancer Res. 2014; 20:2226–2235. 15. Ahn DH, Li J, Wei L, Doyle A, Marshall JL, Schaaf LJ, Phelps MA, Villalona–Calero MA and Bekaii–Saab T. Results of an abbreviated phase-II study with the Akt Inhibitor MK-2206 in Patients with Advanced Biliary Cancer. Sci Rep. 2015; 5:12122. 16. American Cancer Society. Breast cancer https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/breast-cancer-facts-and-figures/breast-cancer-facts-and-figures-2015-2016.pdf. Accessed on 8 June, 2017. 17. Subik K, Lee JF, Baxter L, Strzepek T, Costello D, Crowley P, Xing L, Hung MC, Bonfiglio T, Hicks DG and Tang P. The Expression Patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by Immunohistochemical Analysis in Breast Cancer Cell Lines. Breast Cancer (Auckl). 2010; 4:35–41. 18. Sangai T, Akcakanat A, Chen H, Tarco E, Wu Y, Do KA, Miller TW, Arteaga CL, Mills GB, Gonzalez-Angulo AM and Meric-Bernstam F. Biomarkers of response to Akt inhibitor MK-2206 in breast cancer. Clin Cancer Res. 2012; 18:5816–5828. 19. Liu P, Cheng H, Roberts TM and Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009; 8:627–644. 20. Zhao L and Vogt PK. Class I PI3K in oncogenic cellular transformation. Oncogene. 2008; 27:5486–5496. 21. Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, Ueno Y, Hatch H, Majumder PK, Pan BS and Kotani H. MK–2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther. 2010; 9:1956–1967. 22. Lin YH, Chen BY, Lai WT, Wu SF, Guh JH, Cheng AL and Hsu LC. The Akt inhibitor MK-2206 enhances the cytotoxicity of paclitaxel (Taxol) and cisplatin in ovarian cancer cells. Naunyn Schmiedebergs Arch Pharmacol. 2015; 388:19–31. 23. Ganapathy-Kanniappan S and Geschwind JF. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer. 2013; 12:152. 24. Porporato PE, Dhup S, Dadhich RK, Copetti T and Sonveaux P. Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol. 2011; 2:49. 25. Liu W, Fang Y, Wang XT, Liu J, Dan X and Sun LL. Overcoming 5-Fu resistance of colon cells through inhibition of Glut1 by the specific inhibitor WZB117. Asian Pac J Cancer Prev. 2014; 15:7037–7041. 26. Zhao F, Ming J, Zhou Y and Fan L. Inhibition of Glut1 by WZB117 sensitizes radioresistant breast cancer cells to irradiation. Cancer Chemother Pharmacol. 2016; 77:963–972. 27. Ceccaldi R, Rondinelli B and D'Andrea AD. Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol. 2016; 26:52–64. 28. Chapman JR, Taylor MR and Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. 2012; 47:497–510. 29. Goodarzi AA and Jeggo PA. The repair and signaling responses to DNA double-strand breaks. Adv Genet. 2013; 82:1–45. 30. Krejci L, Altmannova V, Spirek M and Zhao X. Homologous recombination and its regulation. Nucleic Acids Res. 2012; 40:5795–5818. 31. Davis AJ and Chen DJ. DNA double strand break repair via non-homologous end-joining. Translational cancer research. 2013; 2:130–143. 32. Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B and Bao JK. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012; 45:487–498. 33. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007; 35:495–516. 34. Nikoletopoulou V, Markaki M, Palikaras K and Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta. 2013; 1833:3448–3459. 35. Gupta RK, Patel AK, Shah N, Chaudhary AK, Jha UK, Yadav UC, Gupta PK and Pakuwal U. Oxidative stress and antioxidants in disease and cancer: a review. Asian Pac J Cancer Prev. 2014; 15:4405–4409. 36. Liou GY and Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010; 44:479–496. 37. Chou TC. Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res. 2010; 70:440–446. 38. Lai WT, Cheng KL, Baruchello R, Rondanin R, Marchetti P, Simoni D, Lee RM, Guh JH and Hsu LC. Hemiasterlin derivative (R)(S)(S)-BF65 and Akt inhibitor MK-2206 synergistically inhibit SKOV3 ovarian cancer cell growth. Biochem Pharmacol. 2016; 113:12–23. 39. Circu ML and Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 2010; 48:749–762. 40. Chen X, Dai X, Zou P, Chen W, Rajamanickam V, Feng C, Zhuge W, Qiu C, Ye Q, Zhang X and Liang G. Curcuminoid EF24 enhances the anti–tumour activity of Akt inhibitor MK-2206 through ROS–mediated endoplasmic reticulum stress and mitochondrial dysfunction in gastric cancer. Br J Pharmacol. 2017; 174:1131–1146. 41. Porta C, Paglino C and Mosca A. Targeting PI3K/Akt/mTOR Signaling in Cancer. Front Oncol. 2014; 4:64. 42. Barthel A, Okino ST, Liao J, Nakatani K, Li J, Whitlock JP, Jr. and Roth RA. Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1. J Biol Chem. 1999; 274:20281–20286. 43. Nitulescu GM, Margina D, Juzenas P, Peng Q, Olaru OT, Saloustros E, Fenga C, Spandidos D, Libra M and Tsatsakis AM. Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review). Int J Oncol. 2016; 48:869–885. 44. Jin P, Wong CC, Mei S, He X, Qian Y and Sun L. MK-2206 co–treatment with 5-fluorouracil or doxorubicin enhances chemosensitivity and apoptosis in gastric cancer by attenuation of Akt phosphorylation. Onco Targets Ther. 2016; 9:4387–4396. 45. Jiao P, Zhou YS, Yang JX, Zhao YL, Liu QQ, Yuan C and Wang FZ. MK–2206 induces cell cycle arrest and apoptosis in HepG2 cells and sensitizes TRAIL-mediated cell death. Mol Cell Biochem. 2013; 382:217–224. 46. Xu N, Lao Y, Zhang Y and Gillespie DA. Akt: a double-edged sword in cell proliferation and genome stability. J Oncol. 2012; 2012:951724. 47. Whicker ME, Lin ZP, Hanna R, Sartorelli AC and Ratner ES. MK–2206 sensitizes BRCA-deficient epithelial ovarian adenocarcinoma to cisplatin and olaparib. BMC Cancer. 2016; 16:550. 48. Demel HR, Feuerecker B, Piontek G, Seidl C, Blechert B, Pickhard A and Essler M. Effects of topoisomerase inhibitors that induce DNA damage response on glucose metabolism and PI3K/Akt/mTOR signaling in multiple myeloma cells. Am J Cancer Res. 2015; 5:1649–1664. 49. Liu XS, Little JB and Yuan ZM. Glycolytic metabolism influences global chromatin structure. Oncotarget. 2015; 6:4214–4225. 50. Podhorecka M, Skladanowski A and Bozko P. H2AX Phosphorylation: Its Role in DNA Damage Response and Cancer Therapy. Journal of nucleic acids. 2010; 2010. 51. Rogakou EP, Nieves-Neira W, Boon C, Pommier Y and Bonner WM. Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem. 2000; 275:9390–9395. 52. Plo I, Laulier C, Gauthier L, Lebrun F, Calvo F and Lopez BS. AKT1 inhibits homologous recombination by inducing cytoplasmic retention of BRCA1 and RAD51. Cancer Res. 2008; 68:9404–9412. 53. Toulany M, Kehlbach R, Florczak U, Sak A, Wang S, Chen J, Lobrich M and Rodemann HP. Targeting of AKT1 enhances radiation toxicity of human tumor cells by inhibiting DNA-PKcs-dependent DNA double–strand break repair. Mol Cancer Ther. 2008; 7:1772–1781. 54. Chang L, Graham PH, Hao J, Ni J, Bucci J, Cozzi PJ, Kearsley JH and Li Y. PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing NHEJ and HR repair pathways. Cell Death Dis. 2014; 5:e1437. 55. Holler M, Grottke A, Mueck K, Manes J, Jucker M, Rodemann HP and Toulany M. Dual Targeting of Akt and mTORC1 Impairs Repair of DNA Double-Strand Breaks and Increases Radiation Sensitivity of Human Tumor Cells. PLoS One. 2016; 11:e0154745. 56. Bhatt AN, Chauhan A, Khanna S, Rai Y, Singh S, Soni R, Kalra N and Dwarakanath BS. Transient elevation of glycolysis confers radio-resistance by facilitating DNA repair in cells. BMC Cancer. 2015; 15:335. 57. Kang MA, So EY, Simons AL, Spitz DR and Ouchi T. DNA damage induces reactive oxygen species generation through the H2AX-Nox1/Rac1 pathway. Cell Death Dis. 2012; 3:e249. 58. Shimanishi M, Ogi K, Sogabe Y, Kaneko T, Dehari H, Miyazaki A and Hiratsuka H. Silencing of GLUT-1 increases sensitization of oral cancer cells to cisplatin during hypoxia. J Oral Pathol Med. 2013; 42:382–388. 59. Li S, Yang X, Wang P and Ran X. The effects of GLUT1 on the survival of head and neck squamous cell carcinoma. Cell Physiol Biochem. 2013; 32:624–634. 60. Vanhaesebroeck B, Stephens L and Hawkins P. PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol. 2012; 13:195–203. 61. Lobrich M and Jeggo PA. The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer. 2007; 7:861–869. 62. Sulli G, Di Micco R and d'Adda di Fagagna F. Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nat Rev Cancer. 2012; 12:709–720. 63. Tait SW and Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010; 11:621–632. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68955 | - |
| dc.description.abstract | 乳癌是在全世界女性中最常被診斷的癌症,也是造成女性癌症死亡的第二大主要原因。 PI3K/Akt/mTOR訊息傳導的調控已經被證明在癌細胞之生長、存活和代謝方面上皆扮演重要的角色。MK-2206是一已經進入臨床試驗且具有高效價的異位Akt抑制劑。雖然MK-2206先前在許多癌細胞株中被證明是有效的,但是臨床試驗結果顯示單獨使用MK-2206有治療失敗的情況發生。本篇研究之目的是探討MK-2206在乳癌細胞株中的作用、以及尋找是否有其它藥物具有殺死癌細胞的協同作用。在研究過程中發現MK-2206與WZB117(GLUT1抑制劑)合併使用能夠抑制乳癌細胞的生長。使用Western blot來分析Akt/mTOR訊息傳導通路蛋白表現的改變:包括p-Akt、p-mTOR及其下游p70S6K和4E-BP-1。結果顯示僅抑制Akt可能不足以導致細胞死亡。接續的研究說明MK-2206和WZB117的併用可以使DNA損傷的標記,-H2AX上升。同時,分別參與同源重組(homologous recombination, HR)和非同源末端連接(non-homologous end joining, NHEJ)的DNA修復蛋白Rad51、Ku80在併用時顯著減少。如此說明兩者併用不僅能導致DNA損傷,而且也會阻止DNA修復途徑。之後使用siRNA靜默GLUT1,以檢視GLUT1在合併使用而造成DNA損傷作用所扮演的角色。然而,靜默GLUT1對MK-2206誘導的細胞死亡並沒有顯著影響。於是根據以上結果推測,WZB117造成的DNA損傷作用可能來自非依賴GLUT1的訊息傳導機制。 | zh_TW |
| dc.description.abstract | Breast cancer is the most commonly diagnosed cancer and is the second leading cause of cancer death in female worldwide. Regulation of the PI3K/Akt/mTOR signaling pathway has been shown to play a crucial role in cancer cell growth, survival, and metabolism. MK-2206 is a potent allosteric Akt inhibitor that has entered clinical trials. Although MK-2206 was proved to be effective in many cancer cell lines, MK-2206 alone in clinical trials has met treatment failure. The purpose of this study was to explore the effect of MK-2206 in breast cancer cell lines and the possible synergistic combination with other agents. In the present study, it was discovered that MK-2206 in combination with WZB117, a GLUT1 inhibitor, could inhibit cell proliferation. Akt/mTOR pathway proteins including p-Akt, p-mTOR and its downstream effectors p70S6K and 4E-BP-1 were analyzed by Western blot. Results showed that inhibition of Akt may not be sufficient to induce cell death. Further investigation revealed that MK-2206 and WZB117 combination could induce -H2AX, a DNA damage marker. Expression of levels of Rad51 and Ku80, participating in homologous recombination (HR) and non-homologous end joining (NHEJ) repair respectively, were significantly decreased in combination treatment. It indicated that MK-2206 and WZB117 combination not only causes DNA damage, but also impairs DNA repair system. Silencing GLUT1 with siRNA was conducted to evaluate the role of GLUT1 participating in DNA damage effect in the combinatorial treatment. However, silencing GLUT1 did not produce significant effect on MK-2206 induced cell death. Accordingly, it is speculated that DNA damage effect caused by WZB117 may result from GLUT1-independent signaling. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:44:02Z (GMT). No. of bitstreams: 1 ntu-106-R04423010-1.pdf: 4278834 bytes, checksum: f231d43a5840fdf3cca113abd425370c (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 國立臺灣大學(碩)博士學位論文口試委員審定書 i
致謝 ii List of Abbreviations iii 中文摘要 v Abstract vi Contents vii Aim of the study 1 Chapter 1: Introduction 3 1.1. Breast cancer 3 1.2. Human breast cancer cell lines 6 1.3. The PI3K/Akt/mTOR pathway 7 1.4. The Warburg effect 7 1.5. DNA double-strand breaks repair 8 1.6. Programmed cell death 9 1.7. Oxidative stress 11 Chapter 2: Materials and Methods 12 2.1 Materials 12 2.2 Methods 12 2.2.1. Cell culture 12 2.2.2. Cell viability assay and combination index analysis 13 2.2.3. Colony formation assay 13 2.2.4. Annexin V-FITC/PI double staining 13 2.2.5. Western blotting 14 2.2.6. Comet assay 15 2.2.7. Measurement of reactive oxygen species (ROS) 15 2.2.8. Immunofluorescence staining 15 2.2.9. Small interfering RNA (siRNA) transfection 16 2.2.10. Data analysis 16 Chapter 3: Results 17 3.1 Effect of MK-2206 and WZB117 on cell growth inhibition in MCF-7 and MDA-MB-231 cells 17 3.2 Effect of MK-2206 and WZB117 on Akt/mTOR signaling in MCF-7 and MDA-MB-231 cells 17 3.3 Combination of MK-2206 and WZB117 induces apoptosis in MCF-7 cells 18 3.4 MK-2206 and WZB117 induces DNA damage in MCF-7 and MDA-MB-231 cells 19 3.5 Effect of MK-2206 and WZB117 on ROS generation 20 3.6 Effect of GLUT1 knockdown on DNA damage effect in MCF-7 cells 20 Chapter 4: Discussion 21 4.1. Effect of MK-2206 and WZB117 on the Akt/mTOR pathway 21 4.2. Effect of MK-2206 and WZB117 on apoptosis 22 4.3. DNA damage effect induced by MK-2206 and WZB117 22 4.4. DNA repair systems inhibited by MK-2206 and WZB117 23 4.5. The role of ROS production in MK-2206 and WZB117 24 4.6. Effect of GLUT1 knockdown on MK-2206 induced cell death 24 Chapter 5: Conclusion 25 Figures Figure 1. The combination of MK-2206 and WZB117 shows synergistic cell growth inhibition in MCF-7 and MDA-MB-231 cells. 27 Figure 2. Effect of MK-2206 and WZB117 combination on Akt/mTOR pathway proteins in MCF-7 cells. 29 Figure 3. Effect of MK-2206 and WZB117 combination on Akt/mTOR pathway proteins in MDA-MB-231 cells. 31 Figure 4. MK-2206 and WZB117 combination significantly induced apoptosis in MCF-7 cells. 33 Figure 5. MK-2206 and WZB117 combination significantly induced apoptosis in MDA-MB-231 cells. 35 Figure 6. Effect of MK-2206 and WZB117 combination on several apoptosis markers in MCF-7 cells 36 Figure 7. Effect of MK-2206 and WZB117 combination on several apoptosis markers in MDA-MB-231 cells 37 Figure 8. DNA damage effect of MK-2206 and WZB117 combination in MCF-7 cells 38 Figure 9. DNA damage effect of MK-2206 and WZB117 combination in MDA-MB-231 cells 39 Figure 10. Effect of MK-2206 and WZB117 on DNA integrity in MCF-7 cells 40 Figure 11. Effect of MK-2206 and WZB117 on Rad51 foci formation in MCF-7 cells 42 Figure 12. Effect of MK-2206 and WZB117 on ROS generation in MCF-7 cells 43 Figure 13. Effect of GLUT1 knockdown on MK-2206 treatment in MCF-7 cells 46 Tables Table 1. The stages and estimated 5-year survival rates for breast cancers 5 Table 2. Commonly used human breast cancer cell lines for research 6 Appendixes 47 Appendix 1. The PI3K/Akt/mTOR signaling pathway 47 Appendix 2. The Warburg effect 48 Appendix 3. The DNA repair system 49 Appendix 4. The DNA damage response 50 Appendix 5. Intrinsic and extrinsic apoptosis pathway 51 References 52 | |
| dc.language.iso | en | |
| dc.subject | MK-2206 | zh_TW |
| dc.subject | WZB117 | zh_TW |
| dc.subject | DNA修復 | zh_TW |
| dc.subject | DNA損傷 | zh_TW |
| dc.subject | MK-2206 | en |
| dc.subject | DNA repair | en |
| dc.subject | DNA damage | en |
| dc.subject | WZB117 | en |
| dc.title | 併用MK-2206與WZB117於乳癌細胞株之協同機轉探討 | zh_TW |
| dc.title | Study of synergistic mechanism of MK-2206 and WZB117 combination against breast cancer cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 顧記華(Jih-Hwa Guh),孔繁璐(Fan-Lu Kung),蘇瑀(Yeu Su) | |
| dc.subject.keyword | MK-2206,WZB117,DNA損傷,DNA修復, | zh_TW |
| dc.subject.keyword | MK-2206,WZB117,DNA damage,DNA repair, | en |
| dc.relation.page | 58 | |
| dc.identifier.doi | 10.6342/NTU201703201 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-16 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 4.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
