請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68949
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 柯彥廷(Yen-Ting Ko) | |
dc.contributor.author | En-Shih Wu | en |
dc.contributor.author | 吳恩世 | zh_TW |
dc.date.accessioned | 2021-06-17T02:43:42Z | - |
dc.date.available | 2020-08-24 | |
dc.date.copyright | 2020-08-24 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-18 | |
dc.identifier.citation | 莊文星、陳汝勤 (1989) 臺灣北部火山岩之定年與地球化學研究:經濟部中央地質調查所彙刊,第 5 號,第 31-66 頁。 陳正宏、劉聰桂、楊燦堯、陳于高(1994a) 綠島地質圖幅說明書,第六十五號。經濟部中央地質調查所,共 57 頁。 陳正宏、劉聰桂、楊燦堯、陳于高(1994b) 蘭嶼地質圖幅說明書,第七十一號。經濟部中央地質調查所,共 55 頁。 曹恕中(1994) 大屯火山群火山岩的鉀氬年代分析。經濟部中央地質調查所彙刊,第九號,第 137-154 頁。 李淑芬(1996) 大屯火山群七星火山亞群熔岩層序之研究。國立臺灣大學地質學研究所碩士論文,136 頁。 莊文星(1999) 台灣之火山活動與火成岩。國立自然科學博物館叢書,共300頁。 楊燦堯、何孝恆、謝佩珊、劉念宗、陳于高、陳正宏(2003)大屯火山群火山氣體成份與來源之探討。國家公園學報,13(1), 127-156 頁。 陳中華和林朝宗 (2006)從台北盆地中初生火山灰來推斷大屯火山群近期噴發,中國地質學會九十五年年會暨學術研討會論文集,第 65 頁。 宋聖榮、楊燦堯、徐春田、蔡裕偉 (2011) 大台北地區特殊地質災害調查與監測第二期--火山地質與火山活動調查與監測(4/4):經濟部中央地質調查所報告,共 259 頁。 陳文山、楊志成、楊小青、劉進金、詹瑜璋、謝凱旋 (2007) 從 LiDAR 的 2 公尺 x 2 公尺數值模擬地形分析大屯火山群的火山地形。經濟部中央地質調查所彙刊,第 20 號,101-128 頁。 宋聖榮、李元希(2016) 大屯火山地區岩石定年研究(1/2)。經濟部中央地質所報告。 林正洪、洪國騰(2018) 臺灣北部火山地區地震與地球化學監測第二期(1/2)。 Aki, K., A. Christoffersson, and E. S. Husebye (1977), Determination of the three-dimensional seismic structure of the lithosphere, J. Geophys. Res., 82, 277–296,doi:10.1029/JB082i002p00277. Belousov A., Belousova M. and Chen C. H., (2010) Deposits, character and timing of recent eruption and gravitational collapses in Tatun Volcanic Group, northern 106 Taiwan: hazard-related issues. Journal of Volcanology and Geothermal Research 191, 205-221. Chung, S. L., Wang, K. L., Crawford, A. J., Kamenetsky, V. S., Chen, C.-H., Lan, C. Y. Chen, C. H. (2001). High-Mg potassic rocks from Taiwan: implication for the genesis of orogenic potassic magmas. Lithos 59, 153-170. Chen, C-H. and Lin, S.B. (2002) Eruptions younger than 20Ka of the Tatun Volcano Group as viewed from the sediments of the Sungshan Formation in Taipei Basin. Western Pacific Earth Sciences, 2, 191-204. Chou, H.-C., B.-Y. Kuo, L.-Y. Chiao, D. Zhao, and S.-H. Hung (2009), Tomography of the westernmost Ryukyu subduction zone and the serpentinization of the fore-arc mantle, J. Geophys. Res., 114, B12301, doi:10.1029/2008JB006192. Ching, K.-E., M.-L. Hsieh, K. M. Johnson, K.-H. Chen, R.-J. Rau, and M. Yang (2011), Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008, J. Geophys. Res., 116, B08406, doi:10.1029/2011JB008242. Fillerup, M.A., Knapp, J.H., Knapp, C.C., and Raileanu, V., 2010, Mantle earthquakes in the absence of subduction? Continental delamination in the Romanian Carpathians: Lithosphere, v. 2, p. 333–340, doi:10.1130/L102.1. Giggenbach, W. F. (1996). Chemical Composition of Volcanic Gases. Monitoring and Mitigation of Volcano Hazards, 221-256. doi:10.1007/978-3-642-80087-0_7 Göğüş, O. H., Pysklywec, R. N., Şengör, A. M. C., Gün, E. (2017). Drip tectonics and the enigmatic uplift of the Central Anatolian Plateau. Nature García, M. A., Vargas, C. A., amp; Koulakov, I. Y. (2019). Local Earthquake Tomography of the Nevado del Huila Volcanic Complex (Colombia): Magmatic and Tectonic Interactions in a Volcanic‐Glacier Complex System. Journal of Geophysical Research: Solid Earth, 124(2), 1688-1699. doi:10.1029/2018jb016324 Huang, H.-H., J. B. H. Shyu, Y.-M. Wu, C.-H. Chang, and Y.-G. Chen (2012), Seismotectonics of northeastern Taiwan: Structural characteristics of a transitional area from wanning collision to subduction and post-collisional extension, J. Geophys. Res., 117, B01313, doi:10.1029/2011JB008852. Huang, H.-H., Z. Xu, Y.-M. Wu, X. Song, B.-S. Huang, and N. L. Minh (2013), First Local Seismic Tomography for Red River Shear Zone, northern Vietnam: Stepwise inversion employing crustal P and Pn waves, Tectonophysics, 584, 230- 239. Huang, H., Wu, Y., Song, X., Chang, C., Lee, S., Chang, T., amp; Hsieh, H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177-191. doi:10.1016/j.epsl.2014.02.026 Huang, H., Wu, Y., Song, X., Chang, C., Kuo-Chen, H., amp; Lee, S. (2014). Investigating the lithospheric velocity structures beneath the Taiwan region by nonlinear joint inversion of local and teleseismic P wave data: Slab continuity and deflection. Geophysical Research Letters, 41(18), 6350-6357. doi:10.1002/2014gl061115 Huang, H., Lin, F., Schmandt, B., Farrell, J., Smith, R. B., amp; Tsai, V. C. (2015). The Yellowstone magmatic system from the mantle plume to the upper crust. Science, 348(6236), 773-776. doi:10.1126/science.aaa5648 Institute Of Earth Sciences, A. S. (2017). Formosa Array. Institute of Earth Sciences, Academia Sinica, Taiwan. https://doi.org/10.7914/SN/FM Juang, W. S. and Bellon H., (1984) The Potassium-argon dating of andesites from Taiwan. Proc. Geol. Soc. China, 27, 86-100 Juang, W. S. (1993). Diversity and origin of Quaternary basaltic magma series in northern Taiwan. Bulletin of the National Museum of Natural Science 4, 125---166. Kay, R.W., and Kay, S.M. (1993), Delamination and Delamination Magmatism, Tectonophysics, v. 219, p. 177–189, doi:10.1016/0040-1951(93)90295-U. Koulakov, I., Abkadyrov, I., Arifi, N. A., Deev, E., Droznina, S., Gordeev, E. I., . . . West, M. (2017). Three different types of plumbing system beneath the neighboring active volcanoes of Tolbachik, Bezymianny, and Klyuchevskoy in Kamchatka. Journal of Geophysical Research: Solid Earth, 122(5), 3852-3874. doi:10.1002/2017jb014082 Kaneko, K., Mishiro, K., amp; Tatsumi, Y. (2019). Control of Volcanic Activity by Crustal Structure: Inference from the Izu‐Bonin‐Mariana and Northeast Japan Arcs. Geophysical Research Letters, 46(22), 12968-12976. doi:10.1029/2019gl084554 Lallemand, S., Y. Font, H. Bijwaard, and H. Kao (2001), New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications, Tectonophysics, 335, 229–253. Leech, M. L. (2001), Arrested orogenic development: eclogitization, delamination, and tectonic collapse: Earth and Planetary Science Letters, v. 185, p. 149–159, doi:10.1016/S0012-821X(00)00374-5. Lee, H.F., Yang, T.F., Lan, T.F., Song, S.R. and Tsao, S. (2005) Fumarolic gas composition of the Tatun Volcano Group, northern Taiwan. T Terrestrial, Atmospheric and Oceanic Sciences 16, 843-864. Lin, J.-Y., S.-K. Hsu, and J.-C. Sibuet (2004), Melting features along the western Ryukyu slab edge (northeast Taiwan): Tomographic evidence, J. Geophys. Res., 109, B12402, doi:10.1029/2004JB003260. Lin, G., Shearer, P. M., Matoza, R. S., Okubo, P. G., amp; Amelung, F. (2014). Three-dimensional seismic velocity structure of Mauna Loa and Kilauea volcanoes in Hawaii from local seismic tomography. Journal of Geophysical Research: Solid Earth, 119(5), 4377-4392. doi:10.1002/2013jb010820 Lin, C., amp; Pu, H. (2016). Very-long-period seismic signals at the Tatun Volcano Group, northern Taiwan. Journal of Volcanology and Geothermal Research, 328, 230-236. doi:10.1016/j.jvolgeores.2016.11.007 Lin, C. (2016). Evidence for a magma reservoir beneath the Taipei metropolis of Taiwan from both S-wave shadows and P-wave delays. Scientific Reports, 6(1). doi:10.1038/srep39500 Lin, C., Lai, Y., Shih, M., Pu, H., amp; Lee, S. (2018). Seismic Detection of a Magma Reservoir beneath Turtle Island of Taiwan by S-Wave Shadows and Reflections. Scientific Reports, 8(1). doi:10.1038/s41598-018-34596-0 Rawlinson, N., amp; Kennett, B. L. (2004). Rapid estimation of relative and absolute delay times across a network by adaptive stacking. Geophysical Journal International, 157(1), 332-340. doi:10.1111/j.1365-246x.2004.02188.x Song, S.R., Tsao, S. and Lo, H.J. (2000a) Characteristics of the Tatun Volcanic eruptions, north Taiwan: implications for a cauldron formation and volcanic evolution: Journal of Geological. Society of China 43, 361-378. Song, S.R., Yang, T.Y., Yeh, Y.H., Tsao, S., Lo, H.J. (2000b) The Tatun Volcano Group is active or extinct ? Journal of Geological. Society of China 43, 521-534. Takei, Y. (2002). Effect of pore geometry onVP/VS: From equilibrium geometry to crack. Journal of Geophysical Research, 107(B2). doi:10.1029/2001jb000522 Tsai, P.F. and Lee, T.Q. (1988) Magnetic susceptibility anisotropy of the Tatun Volcano Group. J. Geol. Soc. China 31, 73-86. Toomey, D. R., and G. R. Foulger (1989), Tomographic inversion of local earthquake data from the Hengill-Grensdalur central volcano complex, Iceland, J. Geophys. Res., 94, 17,497–17,510, doi:10.1029/JB094iB12p17497. Teng, L. S. (1996). Extensional collapse of the northern Taiwan mountain belt. Geology 24, 949-952. Teng, L. S., C. T. Lee, Y. B. Tsai, and L. Y. Hsiao (2000), Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan, Geology, 28, 155–158. Ustaszewski, K., Y.-M. Wu, J. Suppe, H.-H. Huang, C.-H. Chang, and S. Carena (2012), Crust-mantle boundaries in the Taiwan - Luzon arc-continent collision system determined from local earthquake tomography and 1D models: Implications for the mode of subduction polarity reversal, Tectonophysics, 578, 31-49. Wang, W.H. and Chen, C.H. (1991) The volcanology and fission track age dating of pyroclastic deposits in Tatun Volcano Group. Acta Geologica Taiwanica 28, 1-30. Wang, K.L., Chung, S.L., Chen, C.H., Shinjo, R., Yang, T.F., Chen, C.H., 1999. Post- collisional magmatism around northern Taiwan and its relation with opening of the Okinawa trough. Tectonophysics 308, 363–376. Wang, K.-L., Chung, S.-L., O'Reilly, S.Y., Sun, S.-S., Shinjo, R., Chen, C.-H., 2004. Geochemical constraints for the genesis of post-collisional magmatismand the geodynamic evolution of the Northern Taiwan Region. Journal of Petrology 45, 975–1011. Wang, H.-L., Zhu, L., Chen, H.-W., 2010. Moho depth variation in Taiwan from teleseismic receiver functions. Journal of Asian Earth Sciences 37, 286–291. Wu, Y. M., J. B. H. Shyu, C. H. Chang, L. Zhao, M. Nakamura, and S. K. Hsu (2009a), Improved seismic tomography offshore northeastern Taiwan: Implications for subduction and collision processes between Taiwan and the southernmost Ryukyu, Geophys. J. Int., 178, 1042–1054. Wu, Y. M., C. H. Chang, L. Zhao, N. C. Hsiao, Y. G. Chen, and S. K. Hsu (2009b), Relocation of the 2006 Pingtung earthquake sequence and seismotectonics in southern Taiwan, Tectonophysics, 479, 19–27, doi:10.1016/j.tecto.2008.12.001. Yang, T.F., Sano, Y., and Song, S.R. (1999) 3He/4He ratio of fumaroles and bubbling gases of hot springs in Tatun volcano Group, North Taiwan, Il Nuovo Cimento 22c, 281-286. Zelt, C.A. (1998), Lateral velocity resolution from three-dimensional seismic refraction data, Geophys. J. Int., 135, 1101–1112. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68949 | - |
dc.description.abstract | 台灣北部正經歷板塊碰撞的轉變時期,從前期的斜向碰撞到後期的弧後張裂,形成複雜且不同階段的岩漿作用與火山構造。其中,大屯火山群緊鄰大台北都會區,是否會造成火山災害長期備受關注。大屯火山群在過去被認為是一座死火山,但在近期的研究證據指出,最近一次的噴發時間為6000年前左右,並且在火山群下方可能有岩漿庫的存在。為了探究大屯火山群下的岩漿系統,在本研究中結合原有觀測網與新布設的北台灣密集寬頻地震陣列-福爾摩沙陣列-的資料來進行三維速度構造的聯合反演。 在資料處理上,本研究將近震及遠震分開進行前處理。近震的部分,使用了集成的地震觀測網,共計671個測站在研究區域內。地震資料經篩選自1991年1月到2017年12月共計60081筆近震事件。為了避免事件分布不均造成反演結果不穩定,本研究進一步將地震事件以半徑兩公里為標準,在三維空間中進行分布均勻化的處理 (Liang et al, 2004; Huang et al., 2014a),最後事件數量為3587筆。遠震的部分,使用福爾摩沙陣列 (Formosa Array) 的寬頻地震站 (Academia Sinica, Institute of Earth Sciences, 2017)。本研究共蒐集了2018/4-2019/10震央距在30-90度之間、規模大於5.0共371筆遠震事件。在波形的前處理上,P波及S波均經過帶通濾波0.08-0.15 Hz 並利用adaptive stacking method (Rawlinson and Kennett, 2004) 來進行相對走時的計算,在經過多次迭代後留下訊噪比大於5且互相關值大於0.9的事件,P波留下148筆S波留下66筆的事件數量。 本研究使用三維速度模型近、遠震聯合反演法 (Huang et al., 2014a,b; Huang et al., 2015) ,除了利用近震約束淺層速度構造外,並加入遠震資料來增加在深部構造的解析能力,使得速度構造整體可解析的範圍更廣更深。從反演後的結果顯示,相較於前人在過去只使用近震的研究結果 (Huang et al., 2014),在加入了遠震後明顯地增強了對於北部區域的解析能力。此一新的速度模型中顯示出了大屯火山群下的岩漿庫幾何形狀,為一半徑約10公里的橢球狀,在垂直方向上為狹長狀落於5-25公里深,比前人研究所提出的30公里 (Lin, 2016) 來得淺。 此密集且均勻分布的福爾摩沙陣列提供了一獨特的機會去獲得較高解析的大屯火山群火山系統及北台灣的深部速度構造。根據本研究P波與S波速度構造的結果顯示,此岩漿庫為低P波與S波波速比值,並非如常見因部分融熔岩漿產生的高P波與S波波速比值的構造,暗示可能是由氣體為主的組成。岩漿庫的成像表示大屯火山應是一座活火山。因此,持續的監控大屯火山群各類火山活動與徵候 (例如: 火山微震、地熱活動、氣/液體排放、CO2/SiO2通量、地表變形等。),對其火山災害的防制及減輕至關重要。 | zh_TW |
dc.description.abstract | Northern Taiwan has experienced a tectonic transition from oblique collision to post-collisional extension with multiple-stage and complex volcanisms. Among which, the Tatun volcano group (TVG) proximate to the 7-million-population metropolis Taipei has long been a central concern in volcanic hazard. While the TVG has been previously considered an extinct volcano, recent evidences indicated a much younger age of the last eruption event (~6000 years) and the possible existence of magma reservoir beneath the TVG. To examine and unveil the TVG magmatic plumbing system in detail, the local P-wave travel time data and the teleseismic waveform data from a new island-wide Formosa Array Project are combined for a 3D joint inversion. We do the data preprocessing of local events and teleseismic events separately. We use both local earthquake and teleseismic data for a joint inversion in this study. The local earthquake data are compiled from an integrated regional seismic network. A total of 671 stations and 60,081 events are sorted out from January 1991 to December 2017 in the study area. For better conditioning the inversion, a 3-D event grouping method (Liang et al, 2004; Huang et al., 2014a) with a 2 km radius is applied to homogenize the event distribution and reduce the event number to 3,587 in the end. For the teleseismic data, we collect the waveform data of 371 teleseismic events (ML≥5.0) in a distance range of 30°-90° recorded by the newly-deployed Formosa Array (Academia Sinica, Institute of Earth Sciences, 2017) from April 2018 to October 2019. The vertical component of waveform data is bandpass-filtered in 0.08-0.15 Hz to measure the P- and S-wave relative travel times between stations using the adaptive stacking method (Rawlinson and Kennett, 2004). Through the iterative measuring process, only those signal-to-noise ratio (S/N) larger than 5 and the cross-correlation coefficient (CC) greater than 0.9 are retained. After the final visual screening, we obtain a total of 148 events and 66 events for P- and S-wave respectively in the end. The new model derived from the joint inversion with both local earthquake and teleseismic data confirms the existence of the TVG magma reservoir and further unveils its geometry and extent. The magma reservoir is ~10 km in diameter and a vertically elongated shape at the depth range of 5-25 km, shallower than the previously proposed depth of ~30 km (Lin, 2016). The 120 uniformly-distributed broadband stations of Formosa Array provide a unique opportunity to illuminate the Tatun volcanic plumbing system and deep subsurface velocity structure beneath northern Taiwan in greater detail. The unveiled Tatun magma reservoir characterized by low Vp/Vs ratios contains likely volcanic gases rather than partial melts that would result in high Vp/Vs ratios. Though Monitoring all kinds of activity in the TVG (e.g. hydrothermal, microseismicity, gas/fluid chemistry, CO2/SiO2 flux, ground deformation, etc.) as now the Tatun volcano observatory operates is therefore of great importance for volcanic hazard forecasting and mitigation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:43:42Z (GMT). No. of bitstreams: 1 U0001-1708202001523400.pdf: 28817964 bytes, checksum: ebbeffc822cd6d0be7af355a43dc69b4 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 目錄..............................................................................................................I 圖表目錄.....................................................................................................III 口試委員會審定 ........................................................................................V 誌謝 ...........................................................................................................VI 中文摘要 .................................................................................................VII Abstract ......................................................................................................IX 第一章 緒論.................................................................................................1 1.1 研究內容簡介................................................................................1 1.2 研究動機與目的............................................................................2 第二章 研究區域背景.................................................................................3 2.1 地形與地質....................................................................................3 2.2 前人研究........................................................................................6 2.2.1 大屯火山群噴發歷史.........................................................6 2.2.2 大屯火山群噴氣成分分析.................................................8 2.2.3 P波走時延遲及S波影區..............................................11 第三章 資料與方法...................................................................................13 3.1 資料來源與處理..........................................................................13 3.1.1 福爾摩沙陣列觀測網.......................................................14 3.1.2 台灣集成地震觀測站.......................................................15 3.1.3 遠震資料前處理...............................................................16 3.1.4 近震資料前處理...............................................................18 3.2 地震層析成像法..........................................................................19 第四章 模型反演參數與解析度測試.......................................................23 4.1 模型設定......................................................................................23 4.2 棋盤格解析度測試及解析能力指數..........................................24 4.3 特徵模型測試..............................................................................35 第五章 結果與討論...................................................................................40 5.1成像結果.......................................................................................40 5.2 大屯火山群之岩漿系統討論......................................................53 5.3 初始模型的影響及結合遠震之差異…......................................56 第六章 結論...............................................................................................60 參考文獻.....................................................................................................62 附錄.............................................................................................................69 | |
dc.language.iso | zh-TW | |
dc.title | 利用近、遠震P波與S波資料聯合反演探查北台灣三維速度構造 | zh_TW |
dc.title | Investigating 3D velocity structure beneath the northern Taiwan using joint inversion of local and teleseismic P- and S-wave data | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 黃信樺(Hsin-Hua Huang) | |
dc.contributor.oralexamcommittee | 林正洪(Cheng-Horng Lin),林佩瑩(Pei-Ying Lin),陳伯飛(Po-fei Chen) | |
dc.subject.keyword | 大屯火山群,岩漿庫,地震層析影像,聯合反演,台灣造山,拆沉作用, | zh_TW |
dc.subject.keyword | Tatun volcano group,magma reservoir,seismic tomography,joint inversion,delamination,Taiwan orogeny, | en |
dc.relation.page | 74 | |
dc.identifier.doi | 10.6342/NTU202003654 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-19 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1708202001523400.pdf 目前未授權公開取用 | 28.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。