Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68948
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余家斌(Chia-Pin (Simon)
dc.contributor.authorLéo Gaillarden
dc.contributor.author高亞立zh_TW
dc.date.accessioned2021-06-17T02:43:39Z-
dc.date.available2017-08-24
dc.date.copyright2017-08-24
dc.date.issued2017
dc.date.submitted2017-08-16
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68948-
dc.description.abstractMany psychological studies have shown an effect of environment on human stress, and emphasized that natural environments, on the contrary to urban ones, have positive effects at several levels: cognitive, affective and physiological. Different theories tried to propose a global frame that explains these observations, but a key issue that seems to make them contradict each other is to know if human response facing an environment is first cognitive or affective. However, in all the proposed theories, evolution plays an important role as it gives us tools to deal with information we received, which isn’t possible without establishing preferences. In this study, we try to have a more objective view on the phenomenon, as we hope retrieving any psychological aspect from the reasoning. We consider human a little like a machine, but one shouldn’t be fooled, it is only to understand better our differences. This paper aims to establish a first attempt to understand how the environment, seen as neutral information as long as it has not been treated yet, may hide in its very structure some triggers of stress or even meaning. Can we analyze independently this structure from the receiver that deals with the information? To this end we set up an experiment that tries to determine a complexity effect of the signal on affective and cognitive state. For this experiment we recorded EEG from 40 participants while they were listening to 4 songs of different complexities and doing some simple arithmetical tasks. At the end they were asked to rank the sounds according to their preference. We used several measures of complexity of the stimuli to see more in detail how it would impact the EEG, the participants’ results and the song they preferred. We got significant results for the preference ratings but not for the tasks results. Because our way of recording EEG was a little inadequate, it was difficult to draw any definitive conclusion out of the data but we presented a lot of techniques to be applied in further studies and drew some hypothesis from the literature. In this respect, our paper doesn’t have any other claim that proposing a general frame and hypothesis that link stress recovery and predictive coding, before a stronger validation from robust EEG data.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:43:39Z (GMT). No. of bitstreams: 1
ntu-106-R03625059-1.pdf: 12652389 bytes, checksum: f4fa511c6c3bd562b9483d7cf671e8ff (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsAcknowledgment i
Abstract iii
Table of Contents v
List of Figures p.1
List of Tables p.4
Chapter 1 Introduction p.5
1.1 General Introduction p.5
1.2 Research Questions p.10
1.3 Research Process p.10
Chapter 2 Literature Review p.10
2.1 Stress and Environments p.10
2.1.1 Theoretical Approach p.10
2.1.2 Measuring Approach p.18
2.1.2.1 Measuring Restoration p.19
2.1.2.1.1 Shema of Experiments p.19
2.1.2.1.2 Provoke the Stressor p.20
2.1.2.1.3 Questionnaire p.20
2.1.2.1.4 Physiological Measurements p.21
2.1.2.2 Being Aware of Bias p.22
2.1.2.2.1 Concerning Participants p.22
2.1.2.2.2 Concerning the Displayed Environments p.23
2.1.2.3 Discussion p.24
2 2.1.2.3.1 Parameters which Impact Restoration p.24
2.1.2.3.2 Where in the Brain? p.27
2.1.2.3.3 Focus on Audio Only p.29
2.1.3 Conclusion p.30
2.2 Predictive Coding: a General Frame to Understand the Brain p.31
2.2.1 Bayesian Brain and Predictive Coding p.31
2.2.1.1 Universal Computation and a Priori from Dataset p.31
2.2.1.2 Bayesian Inferences and Predictive Coding Theory p.36
2.2.1.3 Evidences of Such Calculation in Experiments p.38
2.2.1.4 Learning from Errors p.39
2.2.1.5 The Role of Attention p.40
2.2.1.6 Combining Different Levels p.44
2.2.1.7 A word about the “Free Energy Principle” p.45
2.2.2 Mismatch Negativity, PEs and Other Brain Responses p.46
2.2.2.1 Observed Waveforms after a Deviant p.46
2.2.2.2 Explaining MMN and these Observed Waveforms p.50
2.2.3 Zoom on Audio p.52
2.2.3.1 Single, Double and Triple “Simple” Deviants p.52
2.2.3.2 Deeper Levels p.54
2.2.3.3 Focus on Music p.56
2.2.3.4 About Cognitive and Affective Responses p.58
2.2.3.5 Conclusion p.60
Chapter 3 Research Methodology p.62
3.1 Environment as Information p.62
3.1.1 Approach p.62
3.1.2 Four Characteristics of a Signal as Carrying Information p.68
3.1.2.1 Duration p.68
3.1.2.2 Energy p.69
3.1.2.3 Entropy p.71
3.1.2.4 Complexity/Predictability p.73
3.1.2.4.1 Variogram Approach p.74
3.1.2.4.1.1 Simple Formula p.74
3.1.2.4.1.2 Another Use of Variogram p.77
3.1.2.4.2 Algorithm Complexity p.80
3.1.2.4.3 Fractals p.81
3.1.2.4.3.1 For a Time Series p.81
3.1.2.4.3.2 For an Image p.83
3.1.2.4.4 Entropy Approach p.85
3.1.2.4.4.1 Approximate Entropy and Sample Entropy p.85
3.1.2.4.4.2 Permutation Entropy p.87
3.1.2.4.4.3 Other Use p.88
3.1.2.4.4.4 2D predictability p.95
3.1.2.4.5 Dynamical Analysis; Global and Local Predictability p.98
3.1.2.5 Complements p.102
3.1.3 Stimulus Complexity VS EEG Complexity p.104
3.2 Experiment p.106
3.2.1 Design p.106
3.2.2 Sound Complexity p.115
3.3 Summary and Hypothesis p.121
Chapter 4 Results and Discussion p.122
4.1 Preference and Tasks Results p.122
4.2 EEG Analysis p.133
4.2.1 A Quick View on the Data p.133
4.2.2 Analysis p.139
4.2.2.1 Local Study p.142
4.2.2.1.1 Peaks p.142
4.2.2.1.2 Shape of the Response p.144
4.2.2.2 Global Study p.146
Chapter 5 Conclusion p.153
References p.156
Appendix p.179
Appendix A-Waveforms likely to be observed after a deviant p.179
Appendix B- Math task answer sheet p.180
Appendix C- Analysis of the complexity of the 4
sounds with several methods. p.183
Appendix D- Complexity of EEG
and energy of EEG of several frequency bands p.194
Appendix E- Spectrogram of several environments sounds p.200
dc.language.isoen
dc.title聲音療癒特性的評估zh_TW
dc.titleAssessment of the restorative properties of soundsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee袁孝維(Hsiao-Wei Yuan),劉奇璋(Chi-Chang Liu)
dc.subject.keywordstress recovery,predictive coding,ART,SRT,auditory perception,signal complexity,MMN,nature and urban environments,en
dc.relation.page204
dc.identifier.doi10.6342/NTU201700773
dc.rights.note有償授權
dc.date.accepted2017-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
12.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved