Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68937
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李永凌(Yungling Leo Lee)
dc.contributor.authorChia-Jung Leeen
dc.contributor.author李佳容zh_TW
dc.date.accessioned2021-06-17T02:43:05Z-
dc.date.available2017-09-13
dc.date.copyright2017-09-13
dc.date.issued2016
dc.date.submitted2017-08-16
dc.identifier.citation1. Miller, M.R., et al., Standardisation of spirometry. Eur Respir J, 2005. 26(2): p. 319-38.
2. Pierce, R., Spirometry: an essential clinical measurement. Australian Family Physician, 2005. 34(7): p. 535-9.
3. Pellegrino, R., et al., Interpretative strategies for lung function tests. Eur Respir J, 2005. 26(5): p. 948-68.
4. Liou, T.G. and R.E. Kanner, Spirometry. Clin Rev Allergy Immunol, 2009. 37(3): p. 137-52.
5. Quanjer, P.H., et al., Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J, 2012. 40(6): p. 1324-43.
6. Xu, X., et al., Familial aggregation of pulmonary function in a rural Chinese community. Am J Respir Crit Care Med, 1999. 160(6): p. 1928-33.
7. Weiss, S.T., Lung function and airway diseases. Nature Genetica, 2010. 42: p. 14–16.
8. Wilk, J.B., et al., A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet, 2009. 5(3): p. e1000429.
9. Hancock, D.B., et al., Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet, 2010. 42(1): p. 45-52.
10. Lee, B.Y., et al., Genome-wide association study of copy number variations associated with pulmonary function measures in Korea Associated Resource (KARE) cohorts. Genomics, 2011. 97(2): p. 101-5.
11. Wilk, J.B., et al., Framingham Heart Study genome-wide association: results for pulmonary function measures. BMC Med Genet, 2007. 8 Suppl 1: p. S8.
12. Imboden, M., et al., Genome-wide association study of lung function decline in adults with and without asthma. J Allergy Clin Immunol, 2012. 129(5): p. 1218-28.
13. Hansel, N.N., et al., Genome-wide study identifies two loci associated with lung function decline in mild to moderate COPD. Hum Genet, 2013. 132(1): p. 79-90.
14. Tang, W., et al., Large-scale genome-wide association studies and meta-analyses of longitudinal change in adult lung function. PLoS One, 2014. 9(7): p. e100776.
15. Rebordosa, C., et al., ADRB2 Gly16Arg polymorphism, asthma control and lung function decline. Eur Respir J, 2011. 38(5): p. 1029-35.
16. Dijkstra, A., et al., Estrogen receptor 1 polymorphisms are associated with airway hyperresponsiveness and lung function decline, particularly in female subjects with asthma. J Allergy Clin Immunol, 2006. 117(3): p. 604-11.
17. Barton, S.J., et al., PLAUR polymorphisms are associated with asthma, PLAUR levels, and lung function decline. J Allergy Clin Immunol, 2009. 123(6): p. 1391-400.e17.
18. Jongepier, H., et al., Polymorphisms of the ADAM33 gene are associated with accelerated lung function decline in asthma. Clin Exp Allergy, 2004. 34(5): p. 757-60.
19. Vonk, J.M., et al., Arginase 1 and arginase 2 variations associate with asthma, asthma severity and beta2 agonist and steroid response. Pharmacogenet Genomics, 2010. 20(3): p. 179-86.
20. Hansel, N.N., et al., Leptin receptor polymorphisms and lung function decline in COPD. Eur Respir J, 2009. 34(1): p. 103-10.
21. Hansel, N.N., et al., Aquaporin 5 polymorphisms and rate of lung function decline in chronic obstructive pulmonary disease. PLoS One, 2010. 5(12): p. e14226.
22. Quint, J.K., et al., SERPINA1 11478G-->A variant, serum alpha1-antitrypsin, exacerbation frequency and FEV1 decline in COPD. Thorax, 2011. 66(5): p. 418-24.
23. van Diemen, C.C., et al., A disintegrin and metalloprotease 33 polymorphisms and lung function decline in the general population. Am J Respir Crit Care Med, 2005. 172(3): p. 329-33.
24. Soler Artigas, M., et al., Effect of five genetic variants associated with lung function on the risk of chronic obstructive lung disease, and their joint effects on lung function. Am J Respir Crit Care Med, 2011. 184(7): p. 786-95.
25. Cordoba-Lanus, E., et al., IL-8 gene variants are associated with lung function decline and multidimensional BODE index in COPD patients but not with disease susceptibility: a validation study. Copd, 2015. 12(1): p. 55-61.
26. Xie, J., et al., Gene susceptibility identification in a longitudinal study confirms new loci in the development of chronic obstructive pulmonary disease and influences lung function decline. Respir Res, 2015. 16: p. 49.
27. Guenegou, A., et al., Association of lung function decline with the heme oxygenase-1 gene promoter microsatellite polymorphism in a general population sample. Results from the European Community Respiratory Health Survey (ECRHS), France. J Med Genet, 2006. 43(8): p. e43.
28. van Diemen, C.C., et al., Genetic variation in TIMP1 but not MMPs predict excess FEV1 decline in two general population-based cohorts. Respir Res, 2011. 12: p. 57.
29. Guenegou, A., et al., Interaction between a heme oxygenase-1 gene promoter polymorphism and serum beta-carotene levels on 8-year lung function decline in a general population: the European Community Respiratory Health Survey (France). Am J Epidemiol, 2008. 167(2): p. 139-44.
30. Ogawa, E., et al., Transforming growth factor-beta1 polymorphisms, airway responsiveness and lung function decline in smokers. Respir Med, 2007. 101(5): p. 938-43.
31. Jaakkola, M.S., et al., Effect of cigarette smoking on evolution of ventilatory lung function in young adults: an eight year longitudinal study. Thorax, 1991. 46(12): p. 907-13.
32. Sherrill, D.L., et al., Longitudinal analysis of the effects of smoking onset and cessation on pulmonary function. Am J Respir Crit Care Med, 1994. 149(3 Pt 1): p. 591-7.
33. Peat, J.K., A.J. Woolcock, and K. Cullen, Decline of lung function and development of chronic airflow limitation: a longitudinal study of non-smokers and smokers in Busselton, Western Australia. Thorax, 1990. 45(1): p. 32-7.
34. Tashkin, D.P., et al., The UCLA population studies of chronic obstructive respiratory disease: XI. Impact of air pollution and smoking on annual change in forced expiratory volume in one second. Am J Respir Crit Care Med, 1994. 149(5): p. 1209-17.
35. Downs, S.H., et al., Accelerated decline in lung function in smoking women with airway obstruction: SAPALDIA 2 cohort study. Respir Res, 2005. 6: p. 45.
36. Lee, P.N. and J.S. Fry, Systematic review of the evidence relating FEV1 decline to giving up smoking. BMC Med, 2010. 8: p. 84.
37. Chinn, S., et al., Smoking cessation, lung function, and weight gain: a follow-up study. Lancet, 2005. 365(9471): p. 1629-35; discussion 1600-1.
38. Chaudhuri, R., et al., Effects of smoking cessation on lung function and airway inflammation in smokers with asthma. Am J Respir Crit Care Med, 2006. 174(2): p. 127-33.
39. Burchfiel, C.M., et al., Effects of smoking and smoking cessation on longitudinal decline in pulmonary function. Am J Respir Crit Care Med, 1995. 151(6): p. 1778-85.
40. Carey, I.M., D.G. Cook, and D.P. Strachan, The effects of environmental tobacco smoke exposure on lung function in a longitudinal study of British adults. Epidemiology, 1999. 10(3): p. 319-26.
41. Jaakkola, M.S., et al., Passive smoking and evolution of lung function in young adults. An 8-year longitudinal study. J Clin Epidemiol, 1995. 48(3): p. 317-27.
42. Gauderman, W.J., et al., The effect of air pollution on lung development from 10 to 18 years of age. N Engl J Med, 2004. 351(11): p. 1057-67.
43. Gauderman, W.J., et al., Effect of exposure to traffic on lung development from 10 to 18 years of age: a cohort study. Lancet, 2007. 369(9561): p. 571-7.
44. Gauderman, W.J., et al., Association of improved air quality with lung development in children. N Engl J Med, 2015. 372(10): p. 905-13.
45. Kunzli, N., et al., Traffic-related air pollution correlates with adult-onset asthma among never-smokers. Thorax, 2009. 64(8): p. 664-70.
46. Ackermann-Liebrich, U., et al., Lung function and long term exposure to air pollutants in Switzerland. Study on Air Pollution and Lung Diseases in Adults (SAPALDIA) Team. Am J Respir Crit Care Med, 1997. 155(1): p. 122-9.
47. Adam, M., et al., Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis. Eur Respir J, 2015. 45(1): p. 38-50.
48. Slaughter, J.C., J.Q. Koenig, and T.E. Reinhardt, Association between lung function and exposure to smoke among firefighters at prescribed burns. J Occup Environ Hyg, 2004. 1(1): p. 45-9.
49. Wang, M.L., et al., A prospective cohort study among new Chinese coal miners: the early pattern of lung function change. Occup Environ Med, 2005. 62(11): p. 800-5.
50. Jacobsen, G., et al., Longitudinal lung function decline and wood dust exposure in the furniture industry. Eur Respir J, 2008. 31(2): p. 334-42.
51. Aldrich, T.K., et al., Longitudinal pulmonary function in newly hired, non-World Trade Center-exposed fire department City of New York firefighters: the first 5 years. Chest, 2013. 143(3): p. 791-7.
52. Algranti, E., et al., Longitudinal decline in lung function in former asbestos exposed workers. Occup Environ Med, 2013. 70(1): p. 15-21.
53. Jacobsen, G.H., et al., Cross-shift and longitudinal changes in FEV1 among wood dust exposed workers. Occup Environ Med, 2013. 70(1): p. 22-8.
54. Gaughan, D.M., et al., Exposures and cross-shift lung function declines in wildland firefighters. J Occup Environ Hyg, 2014. 11(9): p. 591-603.
55. Lai, P.S., et al., Endotoxin and gender modify lung function recovery after occupational organic dust exposure: a 30-year study. Occup Environ Med, 2015. 72(8): p. 546-52.
56. Kotecha, S.J., et al., The effect of birth weight on lung spirometry in white, school-aged children and adolescents born at term: a longitudinal population based observational cohort study. J Pediatr, 2015. 166(5): p. 1163-7.
57. Lawlor, D.A., S. Ebrahim, and G. Davey Smith, Association of birth weight with adult lung function: findings from the British Women's Heart and Health Study and a meta-analysis. Thorax, 2005. 60(10): p. 851-8.
58. Stern, D.A., et al., Poor airway function in early infancy and lung function by age 22 years: a non-selective longitudinal cohort study. Lancet, 2007. 370(9589): p. 758-64.
59. Edwards, C.A., et al., Wheezy bronchitis in childhood: a distinct clinical entity with lifelong significance? Chest, 2003. 124(1): p. 18-24.
60. Marossy, A.E., et al., Childhood chest illness and the rate of decline of adult lung function between ages 35 and 45 years. Am J Respir Crit Care Med, 2007. 175(4): p. 355-9.
61. Phelan, P.D., C.F. Robertson, and A. Olinsky, The Melbourne Asthma Study: 1964-1999. J Allergy Clin Immunol, 2002. 109(2): p. 189-94.
62. Thyagarajan, B., et al., Longitudinal association of body mass index with lung function: the CARDIA study. Respir Res, 2008. 9: p. 31.
63. Wu, H.D. and S.C. Yang, Maximal expiratory flow and volume in Chinese aged 60 years and over. J Formos Med Assoc, 1990. 89(9): p. 749-55.
64. Huang, M.S., et al., Spirometry in life-long non-smoking, healthy Chinese women in Taiwan. Respir Med, 1996. 90(6): p. 343-8.
65. Pan, W.H., et al., Reference spirometric values in healthy Chinese neversmokers in two townships of Taiwan. Chin J Physiol, 1997. 40(3): p. 165-74.
66. Ben Saad, H., et al., The recent multi-ethnic global lung initiative 2012 (GLI2012) reference values don't reflect contemporary adult's North African spirometry. Respir Med, 2013. 107(12): p. 2000-8.
67. Brazzale, D.J., G.L. Hall, and J.J. Pretto, Effects of adopting the new global lung function initiative 2012 reference equations on the interpretation of spirometry. Respiration, 2013. 86(3): p. 183-9.
68. Quanjer, P.H., et al., Implications of adopting the Global Lungs Initiative 2012 all-age reference equations for spirometry. Eur Respir J, 2013. 42(4): p. 1046-54.
69. Eom, S.Y. and H. Kim, Reference values for the pulmonary function of Korean adults using the data of Korea National Health and Nutrition Examination Survey IV (2007-2009). J Korean Med Sci, 2013. 28(3): p. 424-30.
70. Al Ghobain, M.O., et al., Spirometric reference values for healthy nonsmoking Saudi adults. Clin Respir J, 2014. 8(1): p. 72-8.
71. Kubota, M., et al., Reference values for spirometry, including vital capacity, in Japanese adults calculated with the LMS method and compared with previous values. Respir Investig, 2014. 52(4): p. 242-50.
72. Fan, C.T., J.C. Lin, and C.H. Lee, Taiwan Biobank: a project aiming to aid Taiwan's transition into a biomedical island. Pharmacogenomics, 2008. 9(2): p. 235-46.
73. Cole, T.J., The LMS method for constructing normalized growth standards. Eur J Clin Nutr, 1990. 44(1): p. 45-60.
74. Cole, T.J. and P.J. Green, Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med, 1992. 11(10): p. 1305-19.
75. Cole, T.J., et al., Age- and size-related reference ranges: a case study of spirometry through childhood and adulthood. Stat Med, 2009. 28(5): p. 880-98.
76. Rufino, R., et al., Spirometry reference values in the Brazilian population. Braz J Med Biol Res, 2017. 50(3): p. e5700.
77. Koenker, R., and V. d'Orey, Computing Regression Quantiles. Applied Statistics, 1987. 36: p. 383-393.
78. Koenker, R., and G. Bassett, Regression Quantiles. Econometrica, 1978. 46: p. 33-50.
79. Wei, Y., et al., Quantile regression methods for reference growth charts. Stat Med, 2006. 25(8): p. 1369-82.
80. Requia, W.J., et al., Association between vehicular emissions and cardiorespiratory disease risk in Brazil and its variation by spatial clustering of socio-economic factors. Environ Res, 2016. 150: p. 452-60.
81. Koenker, R., and Kevin F. Hallock, Quantile Regression.' Journal of Economic Perspectives. Journal of Economic Perspectives, 2001. 15(4): p. 143-156.
82. Coates, A.L., et al., Reference Equations for Spirometry in the Canadian Population. Ann Am Thorac Soc, 2016. 13(6): p. 833-41.
83. Yichao Wu, Y.L., Variable selection in quantile regression. Statistica Sinica, 2009. 19(2): p. 801-817.
84. Rigby, R.A. and D.M. Stasinopoulos, Smooth centile curves for skew and kurtotic data modelled using the Box-Cox power exponential distribution. Stat Med, 2004. 23(19): p. 3053-76.
85. Indrayan, A., Demystifying LMS and BCPE methods of centile estimation for growth and other health parameters. Indian Pediatr, 2014. 51(1): p. 37-43.
86. Culver, B.H., How should the lower limit of the normal range be defined? Respir Care, 2012. 57(1): p. 136-45; discussion 143-5.
87. Yang, J., et al., Common SNPs explain a large proportion of the heritability for human height. Nat Genet, 2010. 42(7): p. 565-9.
88. Yang, J., et al., GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet, 2011. 88(1): p. 76-82.
89. Kim, N., et al., The effect of applying ethnicity-specific spirometric reference equations to Asian migrant workers in Korea. Ann Occup Environ Med, 2015. 27: p. 14.
90. de-Torres, J.P., et al., Is COPD a Progressive Disease? A Long Term Bode Cohort Observation. PLoS One, 2016. 11(4): p. e0151856.
91. Calverley, P.M., Chronic Obstructive Pulmonary Disease Exacerbations and Lung Function Decline. Mechanism or Marker? Am J Respir Crit Care Med, 2017. 195(3): p. 278-279.
92. Zafari, Z., et al., Individualized prediction of lung-function decline in chronic obstructive pulmonary disease. Cmaj, 2016. 188(14): p. 1004-1011.
93. Kim, S.J., et al., Age-related annual decline of lung function in patients with COPD. Int J Chron Obstruct Pulmon Dis, 2016. 11: p. 51-60.
94. Lindskog, C., et al., The lung-specific proteome defined by integration of transcriptomics and antibody-based profiling. Faseb j, 2014. 28(12): p. 5184-96.
95. Leicher, T., et al., Structural and functional characterization of human potassium channel subunit beta 1 (KCNA1B). Neuropharmacology, 1996. 35(7): p. 787-95.
96. Schultz, D., et al., Localization of two potassium channel beta subunit genes, KCNA1B and KCNA2B. Genomics, 1996. 31(3): p. 389-91.
97. Moudgil, R., E.D. Michelakis, and S.L. Archer, The role of k+ channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension. Microcirculation, 2006. 13(8): p. 615-32.
98. Yuan, X.J., et al., Molecular basis and function of voltage-gated K+ channels in pulmonary arterial smooth muscle cells. Am J Physiol, 1998. 274(4 Pt 1): p. L621-35.
99. Coppock, E.A., J.R. Martens, and M.M. Tamkun, Molecular basis of hypoxia-induced pulmonary vasoconstriction: role of voltage-gated K+ channels. Am J Physiol Lung Cell Mol Physiol, 2001. 281(1): p. L1-12.
100. Coppock, E.A. and M.M. Tamkun, Differential expression of K(V) channel alpha- and beta-subunits in the bovine pulmonary arterial circulation. Am J Physiol Lung Cell Mol Physiol, 2001. 281(6): p. L1350-60.
101. Platoshyn, O., et al., Chronic hypoxia decreases K(V) channel expression and function in pulmonary artery myocytes. Am J Physiol Lung Cell Mol Physiol, 2001. 280(4): p. L801-12.
102. Wang, J., et al., Chronic hypoxia inhibits Kv channel gene expression in rat distal pulmonary artery. Am J Physiol Lung Cell Mol Physiol, 2005. 288(6): p. L1049-58.
103. Li, Y., S.Y. Um, and T.V. McDonald, Voltage-gated potassium channels: regulation by accessory subunits. Neuroscientist, 2006. 12(3): p. 199-210.
104. Whitman, E.M., et al., Endothelin-1 mediates hypoxia-induced inhibition of voltage-gated K+ channel expression in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol, 2008. 294(2): p. L309-18.
105. Dospinescu, C., et al., Hypoxia sensitivity of a voltage-gated potassium current in porcine intrapulmonary vein smooth muscle cells. Am J Physiol Lung Cell Mol Physiol, 2012. 303(5): p. L476-86.
106. Sommer, N., et al., Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. Eur Respir J, 2016. 47(1): p. 288-303.
107. Dunham-Snary, K.J., et al., Hypoxic Pulmonary Vasoconstriction: From Molecular Mechanisms to Medicine. Chest, 2017. 151(1): p. 181-192.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68937-
dc.description.abstract背景:肺功能檢測可以幫助了解目前肺部和氣道的生理狀況,提供許多臨床資料包括疾病診斷、嚴重度、治療成效、手術的可行性及危險性評估,使用肺量計(spirometry)得到之用力呼氣一秒量(forced expiratory volume in one second, FEV1)以及吐氣至最終的總吐氣量(forced vital capacity, FVC)是臨床上常使用的判斷依據,肺功能隨著年紀的成長而增加,在成人初期時達到頂峰,之後又隨著年紀的增加而逐年減少,抽菸以及空氣汙染等等的環境因子會加速肺功能的退化,遺傳因子也同樣影響肺功能逐年遞減的快慢。臨床上判斷肺功能時,需要以預測值為基準比較(%預測值),然而在台灣目前並沒有統一的肺功能預測公式。本研究利用台灣人體生物資料庫(Taiwan Biobank)的追蹤資料,建立台灣人肺功能的常模,以及進行全基因體關聯性研究尋找與成人肺功能下降有關的基因變異。
研究方法:本研究資料來源為台灣人體生物資料庫,主要為結合基因以及醫學資料進行台灣本土的世代追蹤計畫,自2012年正式開始收案,從台灣二十八個據點招募社區三十到七十歲且無癌症診斷的成年人。申請資料包含基因資料、肺功能檢測值、問卷調查之抽菸行為(曾經抽菸、二手菸暴露、抽菸)及疾病診斷(肺氣腫及氣喘)。研究分析分為兩個主要的部份,第一個部分為橫斷性設計,目的是建立並檢測台灣成人的肺功能預測常模,利用目前文獻上使用來建立與年齡變化相關的資料常模的兩個方法(Generalize additive models for location scale and shape and Quantile regression)在其中一部分資料進行模型建立,模型建立後,利用Mean Square Error, Mean Absolute Error, Akaike Information Criterion, Schwarz-Bayes Criterion等模型適配度檢測,在不同方法中進行模型選擇,並與2012年Global Lung Initiative和1997潘教授所建立的常模做比較,模型的驗證則利用極端值的預測以及內部交叉驗證(10-fold cross validation)。研究的第二部分,是使用世代追蹤的資料,計算預測肺功能變化以及實際測量之肺功能下降的差異值,先利用單變數分析進行相關因子的關聯性檢測,品質檢測後,利用基因資料進行全基因體關聯性分析,並於independent cohort 進行驗證。
研究結果:第一部分橫斷性分析,排除資料不全、目前有抽菸習慣並戒菸不滿一年、極端值的個案後,納入進行常模建立有男性8764人和女性19905人,年齡中位數值為男性51.7歲、女性50.8歲,使用Quantile regression所建立的常模在預測極端值的驗證以及交叉內部驗證皆得到較高的準確度,因此常模選用以Quantile regression所建立的公式。慢性肺疾病以及有抽菸習慣的人,其肺功能每年下降的幅度比預期下降顯著的多,但統計上並無差異。全基因體關聯性研究中發現四個SNPs, rs35517282, rs11122803, rs12376178, rs971889以及CFAP77和KCNAB1基因與肺功能的下降相關,CFAP77基因表現於肺部支氣管上皮之ciliated cell,而則KCNAB1基因參與肺部血管壓力的調控。
結論: 這是第一篇利用台灣代表性的資料以及嚴謹的流行病學方法,建立屬於台灣人肺功能常模的研究,我們發現Quantile regression是最合適於常模的建立的方法。在肺功能下降的全基因體關聯性分析中發現四個SNPs以及CFAP77、 KCNAB1基因與成人肺功能下降相關。
zh_TW
dc.description.abstractBackground
Pulmonary function varies by ages. Both genetic and environmental factors influenced the decline of pulmonary function. Researchers interpreted the spirometric indices by percentage of predicted value (% predicted) and the reference value differs from age, sex, height, and ethnic origin. We aim to generate the reference equation of pulmonary function indices and elucidate the SNPs contributing to pulmonary function decline in Taiwanese population.
Materials and methods
Taiwan Biobank is a large-scale population-based representative cohort in Taiwan. Participants were aged 30 to 70-year-old without cancer diagnosis. Participants with first pulmonary function results and smoking status were enrolled as baseline population; those with follow-up pulmonary function results were left for longitudinal analysis. Generalized additive models for location, scale and shape (GAMLSS) and quantile regression were used to generate predictive equations for FVC and FEV1. Model validation processes included extremely phenotype prediction and ten-fold internal cross-validation. Longitudinal analysis was for investigating environmental risk factors associated with pulmonary function decline. Genome-wide association study with additive genetic model were performed for SNP investigation. The found SNPs were replicated in an independent cohort.
Results
After removing smokers and unreliable data, there were 8764 men and 19905 women enrolled at baseline. The equations generated from GAMLSS and quantile regression models showed better fitting, compared to Pan 1997 and GLI 2012 equations. After validation, we chose formulae for pulmonary function reference generated by quantile regression model. We found chronic obstructive pulmonary disease would significantly decrease pulmonary function annually than predicted. Smoking did not significantly accelerate pulmonary function decline. Besides, three novel SNPs, rs35517282, rs11122803 and rs12376178, were validated to be associated with accelerating FVC decline. SNP rs12376178 was located in CFAP77 gene region and CFAP77 expressed selectively in ciliated cell of human bronchial epithelium. SNP, rs971889 was found associated with FEV1 annual decline. SNP, rs971889 located in KCNAB1gene region and plays a role in pulmonary vascular tone regulation.
Conclusions
This is the first study using Taiwanese representative dataset and comprehensive methodology to generate pulmonary function predictive equation. Quantile regression model was the best suitable method. GWAS for pulmonary function decline revealed four novel SNPs, rs35517282, rs11122803, rs12376178, and rs971889, and two novel genes, CFAP77 and KCNAB1 contributing pulmonary function decline.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:43:05Z (GMT). No. of bitstreams: 1
ntu-105-R04849040-1.pdf: 1619037 bytes, checksum: 211780fa8523d8ea0f003fb4ade5c957 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書………………………………………………………………………i
誌謝……………………………………………………………………………………...ii
中文摘要………………………………………………………………………………..iii
Abstract…………………………………………………………………………………..v
目錄…………………………………………………………………………………….vii
Directory of Figures……………………………………………………………………..x
Directory of Tables……………………………………………………………………...xi
1. Introduction ……...………………………………………………………………….1
2. Literature review…………………………………………………………………….3
2.1 Genetic prospective of pulmonary function decline…………………………….3
2.2 Environmental risk factor of pulmonary function decline………………………5
2.3 Predictive equations of pulmonary function for Taiwan population……………7
2.4 Gap of previous studies…………………………………………………………8
3. Study aim and hypothesis……………………………………………………………9
4. Materials and methods……………………………………………………………...10
4.1 Study design…………………………………………………………………...10
4.2 Study subjects………………………………………………………………….10
4.3 Data collection…………………………………………………………………11
4.4 Definition of pulmonary function decline outcomes.....……………………….12
4.5 Statistical methods……………………………………………………………..13
4.5.1 Cross-sectional analysis to generate predictive equation……………....13
4.5.1.1 Model building…………………………………………………13
4.5.1.2 Model selection………………………………………………...15
4.5.1.3 Model validation…………………………………….………….15
4.5.1.4 Internal validation………………………………………………16
4.5.2 Longitudinal analysis to investigate factors associated with pulmonary function decline………………………………..………..……………...17
4.5.2.1 Association study of covariates and pulmonary function decline…………………………………………………………..17
4.5.2.2 Genome-wide association study………………………………..17
4.5.2.3 Replication……………………………………………………...18
5. Results……………………………………………………………………………...19
5.1 Study population…………………………………………….…………………19
5.1.1 Baseline population…………………………………………………….19
5.1.2 Follow-up population…………………………………………………..19
5.2 Predictive equation in pulmonary function…...……………………………….20
5.2.1 Model building and selection…..……………………………………....20
5.2.2 Model validation ……………………………………………….………20
5.2.3 Internal validation………………………………………………………21
5.3 Association study of pulmonary function decline outcomes....……………..…21
5.3.1 Covariates associated with pulmonary function decline.………………21
5.3.2 Quality control of genetic data…………………………………………21
5.3.3 Genome wide association study………………………………………..22
5.3.4 Replication …………………………………………………………….22
6. Discussion ………………………………………………………………………....23
6.1 The predictive equation of pulmonary function measures…………………….23
6.2 Smoking and pulmonary function decline…………………………………….24
6.3 Chronic obstructive pulmonary disease and pulmonary function decline…….25
6.4 Genetic contribution to pulmonary function decline…………………………..26
7. Strength and limitation……………………………………………………………..28
8. Further prospective………………………………………………………………....29
9. Reference…………………………………………………………………………...30
10. Figures……………………………………………………………………………...41
11. Tables………………………………………………………………………………51
dc.language.isoen
dc.subject成人肺功能zh_TW
dc.subject成人肺功能預測公式zh_TW
dc.subject肺功能變化zh_TW
dc.subject單核甘酸多型性zh_TW
dc.subject全基因體關聯性分析zh_TW
dc.subjectAdult pulmonary functionen
dc.subjectPulmonary function predictive equationen
dc.subjectPulmonary function declineen
dc.subjectSingle nucleotide polymorphismen
dc.subjectGenome-wide association studyen
dc.title利用台灣生物資料庫探討成人肺功能下降之全基因體關聯研究zh_TW
dc.titleGenome-Wide Association Study of Pulmonary Function Decline in Taiwan Biobank Dataseten
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee沈志陽(Chen-Yang Shen),陳秀熙(Tony Hsiu-Hsi Chen),曹伯年(Po-Nien Tsao)
dc.subject.keyword成人肺功能,成人肺功能預測公式,肺功能變化,單核甘酸多型性,全基因體關聯性分析,zh_TW
dc.subject.keywordAdult pulmonary function,Pulmonary function predictive equation,Pulmonary function decline,Single nucleotide polymorphism,Genome-wide association study,en
dc.relation.page80
dc.identifier.doi10.6342/NTU201703655
dc.rights.note有償授權
dc.date.accepted2017-08-16
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
1.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved