請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6892完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 靳宗洛(Tsung-Luo Jinn) | |
| dc.contributor.author | Chien-Hsun Huang | en |
| dc.contributor.author | 黃建勛 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:20:30Z | - |
| dc.date.available | 2012-05-14 | |
| dc.date.available | 2021-05-17T09:20:30Z | - |
| dc.date.copyright | 2012-05-14 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-03-26 | |
| dc.identifier.citation | Abdel-Ghany, S.E., Burkhead, J.L., Gogolin, K.A., Andres-Colas, N., Bodecker, J.R., Puig, S., Penarrubia, L., and Pilon, M. (2005). AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7. FEBS Lett. 579: 2307-2312.
Abdel-Ghany S.E., Pilon M. (2008). MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem. 283:15932-15945. Alscher, R.G., Erturk, N., and Heath, L.S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53: 1331-1341. Ascone, I., Longo, A., Dexpert, H., Ciriolo, M.R., Rotilio, G., and Desideri, A. (1993). An X-ray absorption study of the reconstitution process of bovine Cu,Zn superoxide dismutase by Cu(I)-glutathione complex. FEBS Lett. 322: 165-167. Bannister J.V., Parker M.W. (1985). The presence of a copper/zinc superoxide dismutase in the bacterium Photobacterium leiognathi: a likely case of gene transfer from eukaryotes to prokaryotes. PNAS. 82: 149–152. Bannister W.H., Bannister J.V., Barra D., Bond J., Bossa F. (1991). Evolutionary aspects of superoxide dismutase: the copper/zinc enzyme. Free Radic Res Commun. 1:349-361. Beem K.M., Rich W.E., Rajagopalan K.V. (1974). Total reconstitution of copper-zinc superoxide dismutase. J Biol Chem. 249: 7298-7305. Beyer, W., Imlay, J., and Fridovich, I. (1991). Superoxide dismutases. Prog. Nucleic Acid Res. Mol. Biol. 40: 221-253. Borchelt, D.R., Lee, M.K., Slunt, H.S., Guarnieri, M., Xu, Z.S., Wong, P.C., Brown, R.H., Jr., Price, D.L., Sisodia, S.S., and Cleveland, D.W. (1994). Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc. Natl. Acad. Sci. U S A 91: 8292-8296. Bordo D., Djinović K., Bolognesi M. (1994) Conserved patterns in the Cu,Zn superoxide dismutase family. J. Mol. Biol. 238: 366-386. Bowler, C., Montagu, M.V., and Inze, D. (1992). Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 83-116. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. Brown, N.M., Torres, A.S., Doan, P.E., and O'Halloran, T.V. (2004). Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu,Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 101: 5518-5523. Bueno, P., Varela, J., Gimeenez-Gallego, G., and del Rio, L.A. (1995). Peroxisomal copper, zinc superoxide dismutase: characterization of the isoenzyme from watermelon cotyledons. Plant Physiol. 108: 1151-1160. Burkhead J.L., Reynolds K.A., Abdel-Ghany S.E., Cohu C.M., Pilon M. (2009). Copper homeostasis. New Phytol. Jun. 182:799-816. Carroll, M.C., Girouard, J.B., Ulloa, J.L., Subramaniam, J.R., Wong, P.C., Valentine, J.S., and Culotta, V.C. (2004). Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone. Proc. Natl. Acad. Sci. USA 101: 5964-5969. Carroll, M.C., Outten, C.E., Proescher, J.B., Rosenfeld, L., Watson, W.H., Whitson, L.J., Hart, P.J., Jensen, L.T., and Cizewski Culotta, V. (2006). The effects of glutaredoxin and copper activation pathways on the disulfide and stability of Cu,Zn superoxide dismutase. J. Biol. Chem. 281: 28648-28656. Casareno, R.L., Waggoner, D., and Gitlin, J.D. (1998). The copper chaperone CCS directly interacts with copper/zinc superoxide dismutase. J. Biol. Chem. 273: 23625-23628. Cheng, N.H., Liu, J.Z., Brock, A., Nelson, R.S., and Hirschi, K.D. (2006). AtGRXcp, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage. J. Biol. Chem. 281: 26280-26288. Choi H., Hong J., Ha J., Kang J., Kim S.Y. (2000). ABFs, a family of ABA‐responsive element binding factors. J Biol Chem. 275: 1723–1730. Chu, C.C., Lee, W.C., Guo, W.Y., Pan, S.M., Chen, L.J., Li, H.M., and Jinn, T.L. (2005). A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis. Plant Physiol. 139: 425-436. Cohu, C.M., Abdel-Ghany, S.E., Gogolin Reynolds, K.A., Onofrio, A.M., Bodecker, J.R., Kimbrel, J.A., Niyogi, K.K., and Pilon, M. (2009). Copper delivery by the copper chaperone for chloroplast and cytosolic copper/zinc-superoxide dismutases: regulation and unexpected phenotypes in an Arabidopsis mutant. Mol. Plant 2: 1336-1350. Colicelli, J., Birchmeier, C., Michaeli, T., O'Neill, K., Riggs, M., and Wigler, M. (1989). Isolation and characterization of a mammalian gene encoding a high-affinity cAMP phosphodiesterase. Proc. Natl. Acad. Sci. USA 86: 3599-3603. Corson, L.B., Strain, J.J., Culotta, V.C., and Cleveland, D.W. (1998). Chaperone-facilitated copper binding is a property common to several classes of familial amyotrophic lateral sclerosis-linked superoxide dismutase mutants. Proc. Natl. Acad. Sci. USA 95: 6361-6366. Crapo J.D., Oury T., Rabouille C., Slot J.W., Chang L.Y. (1992). Copper,zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proc. Natl. Acad. Sci. USA. 89:10405-10409 Culotta, V.C., Klomp, L.W., Strain, J., Casareno, R.L., Krems, B., and Gitlin, J.D. (1997). The copper chaperone for superoxide dismutase. J. Biol. Chem. 272: 23469-23472. Dhaunsi G.S., Gulati S., Singh A.K., Orak J.K., Asayama K., Singh I. (1992). Demonstration of Cu-Zn superoxide dismutase in rat liver peroxisomes. Biochemical and immunochemical evidence. J Biol Chem. 267: 6870-6873. Dugas D.V., Bartel B. (2008). Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Mol Biol. 67: 403-417. Forman, H.J., and Fridovich, I. (1973). On the stability of bovine superoxide dismutase. The effects of metals. J. Biol. Chem. 248: 2645-2649. Furukawa, Y., Torres, A.S., and O'Halloran, T.V. (2004). Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J. 23: 2872-2881. Fridovich I. (1986). Biological effects of the superoxide radical. Arch Biochem Biophys. 247: 1-11. Guan L., Scandalios J.G. (1998). Two structurally similar maize cytosolic superoxide dismutase genes, Sod4 and Sod4A, respond differentially to abscisic acid and high osmoticum. Plant Physiol. 117: 217–224. Gutteridge J.M., Halliwell B. (1989). Iron toxicity and oxygen radicals. Baillieres Clin Haematol. 2:195-256. Halliwell, B., and Gutteridge, J.M.C. (1999). Free Radicals in Biology and Medicine. 3rd ed. (Oxford: Clarendon Press). Hancock, K.R., Phillips, L.D., White, D.W., and Ealing, P.M. (1997). pPE1000: a versatile vector for the expression of epitope-tagged foreign proteins in transgenic plants. Biotechniques 22: 861-865. Jackson, C., Dench, J., Moore, A.L., Halliwell, B., Foyer, C.H., and Hall, D.O. (1978). Subcellular localisation and identification of superoxide dismutase in the leaves of higher plants. Eur. J. Biochem. 91: 339-344. Jensen, L.T., and Culotta, V.C. (2005). Activation of CuZn superoxide dismutases from Caenorhabditis elegans does not require the copper chaperone CCS. J. Biol. Chem. 280: 41373-1379. Kanematsu, S., and Asada, K. (1989). CuZn-superoxide dismutase in rice: occurrence of an active, monomeric enzyme and two types of isozyme in leaf and non-photosynthetic tissues. Plant Cell Physiol. 30: 381-391. Kanematsu, S., and Asada, K. (1990). Characteristic Amino Acid Sequences of Chloroplast and Cytosol Isozymes of CuZn-Superoxide Dismutase in Spinach, Rice and Horsetail. Plant Cell Physiol. 31: 99-112. Kliebenstein, D.J., Monde, R.A., and Last, R.L. (1998). Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol. 118: 637-650. Kropat J., Tottey S., Birkenbihl R.P., Depège N., Huijser P., Merchant S. (2005). A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element. Proc Natl Acad Sci. 102: 18730-18735. Lamb, A.L., Torres, A.S., O'Halloran, T.V., and Rosenzweig, A.C. (2001). Heterodimeric structure of superoxide dismutase in complex with its metallochaperone. Nat. Struct. Biol. 8: 751-755. Lee, Y.J., Kim, D.H., Kim, Y.W., and Hwang, I. (2001). Identification of a signal that distinguishes between the chloroplast outer envelope membrane and the endomembrane system in vivo. Plant Cell 13: 2175-2190. Leitch, J.M., Jensen, L.T., Bouldin, S.D., Outten, C.E., Hart, P.J., and Culotta, V.C. (2009a). Activation of Cu,Zn-superoxide dismutase in the absence of oxygen and the copper chaperone CCS. J. Biol. Chem. 284: 21863-21871. Leitch, J.M., Yick, P.J., and Culotta, V.C. (2009b). The right to choose: multiple pathways for activating copper,zinc superoxide dismutase. J. Biol. Chem. 284: 24679-24683. Leunissen J.A.M., de Jong W.W. (1986). Copper/zinc superoxide dismutase: how likely is gene transfer from ponyfish to Photobacter leiognathi? J. of Mole. Evol. 23: 250–258. Lepock, J.R., Arnold, L.D., Petkau, A., and Kelly, K. (1981). Interaction of superoxide dismutase with phospholipid liposomes. An uptake, spin label and calorimetric study. Biochim. Biophys. Acta 649: 45-57. Lockwood T.D. (2003). Redox pacing of proteome turnover: influences of glutathione and ketonemia. Arch. Biochem. Biophys. 417: 183-193. Martin J.P., Fridovich I. (1981). Evidence for a natural gene transfer from the ponyfish to its bioluminescent bacterial symbiont Photobacter leiognathi. The close relationship between bacteriocuprein and the copper‐zinc superoxide dismutase of teleost fishes. J. Biol. Chem. 256: 6080–6089. Marres C.A., Van Loon A.P., Oudshoorn P., Van Steeg H., Grivell L.A., Slater E.C. (1985). Nucleotide sequence analysis of the nuclear gene coding for manganese superoxide dismutase of yeast mitochondria, a gene previously assumed to code for the Rieske iron-sulphur protein. Eur J Biochem. 147:153-161 McCord, J.M., and Fridovich, I. (1969). Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244: 6049-6055. Myouga F., Hosoda C., Umezawa T., Iizumi H., Kuromori T., Motohashi R., Shono Y., Nagata N., Ikeuchi M., Shinozaki K. (2008). A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. Plant Cell. 20:3148-3162 Pasternak, M., Lim, B., Wirtz, M., Hell, R., Cobbett, C.S., and Meyer, A.J. (2008). Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. Plant J. 53: 999-1012. Rae, T.D.,Schmidt, P. J., Pufahl, R.A., Culotta. V. C., and O’Halloran, T. V. (1999). Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide sismutase. Science. 284: 805-808 Rouhier, N. (2010). Plant glutaredoxins: pivotal players in redox biology and iron-sulphur centre assembly. New Phytol. 186: 365-372. Sánchez-Fernández R., Avalos J., Cerdá-Olmedo E. (1997). Inhibition of gibberellin biosynthesis by nitrate in Gibberella fujikuroi. FEBS Lett. 413:35-39 Sandalio L.M., Del Río L.A. (1988). Intraorganellar distribution of superoxide dismutase in plant peroxisomes (glyoxysomes and leaf peroxisomes). Plant Physiol. 88:1215-1218. Santos M., Gousseau H., Lister C., Foyer C., Creissen G., Mullineaux P. (1996). Cytosolic ascorbate peroxidase from Arabidopsis thaliana L. is encoded by a small multigene family. Planta. 198: 64–69. Schmidt, P. J., Rae, T. D., Pufahl, R. A., Hamma, T., Strain, J., O’ Halloran, T. V., and Culotta, V. C. (1999) Multiple protein domains contribute to the action of the copper chaperone for superoxide dismutase. J. Biol. Chem. 274: 23719–23725 Shcolnick S., Keren N. (2006). Metal homeostasis in cyanobacteria and chloroplasts. Balancing benefits and risks to the photosynthetic apparatus. Plant Physiol. 141:805-810. Smith, M.W., and Doolittle, R.F. (1992) A comparison of evolutionary rates of the two major kinds of superoxide dismutase. J. Mol. Evol. 34: 175-84 Subramaniam, J.R., Lyons, W.E., Liu, J., Bartnikas, T.B., Rothstein, J., Price, D.L., Cleveland, D.W., Gitlin, J.D., and Wong, P.C. (2002). Mutant SOD1 causes motor neuron disease independent of copper chaperone-mediated copper loading. Nat. Neurosci. 5: 301-307. Sunkar R., Kapoor A., Zhu J.K. (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell. 18: 2051-2065. Steinman H.M. (1982). Copper‐zinc superoxide dismutase from Caulobacter crescentus CB15. A novel bacteriocuprein form of the enzyme. J. Biol. Chem. 257:10283–10293. Steinman H.M. (1985). Bacteriocuprein superoxide dismutases in pseudomonads. J. of Bacte. 162: 1255–1260. Takahashi, M.A., and Asada, K. (1983). Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids. Arch. Biochem. Biophys. 226: 558-566. Valentine J.S., Gralla E.B. (1997). Delivering copper inside yeast and human cells. Science. 278: 817-818. Wallace, M.A., Liou, L.L., Martins, J., Clement, M.H., Bailey, S., Longo, V.D., Valentine, J.S., and Gralla, E.B. (2004). Superoxide inhibits 4Fe-4S cluster enzymes involved in amino acid biosynthesis. Cross-compartment protection by CuZn-superoxide dismutase. J. Biol. Chem. 279: 32055-32062. Wang, J., Slunt, H., Gonzales, V., Fromholt, D., Coonfield, M., Copeland, N.G., Jenkins, N.A., and Borchelt, D.R. (2003). Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. Hum. Mol. Genet. 12: 2753-2764. Weigel M., Varotto C., Pesaresi P., Finazzi G., Rappaport F., Salamini F., Leister D. (2003). Plastocyanin is indispensable for photosynthetic electron flow in Arabidopsis thaliana. J Biol Chem. 278: 31286-31289. Weisiger R.A., Fridovich I. (1973). Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization. J Biol Chem. 248:4793-4796. Wong, P.C., Waggoner, D., Subramaniam, J.R., Tessarollo, L., Bartnikas, T.B., Culotta, V.C., Price, D.L., Rothstein, J., and Gitlin, J.D. (2000). Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 97: 2886-2891. Xiang, C., Werner, B.L., Christensen, E.M., and Oliver, D.J. (2001). The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol. 126: 564-574. Xing, S., Rosso, M.G., and Zachgo, S. (2005). ROXY1, a member of the plant glutaredoxin family, is required for petal development in Arabidopsis thaliana. Development 132: 1555-1565. Yamasaki H., Abdel-Ghany S.E., Cohu C.M., Kobayashi Y., Shikanai T., Pilon M. (2007). Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem. 282: 16369-16378. Yamasaki H., Hayashi M., Fukazawa M., Kobayashi Y., Shikanai T. (2009). SQUAMOSA Promoter Binding Protein-Like7 Is a Central Regulator for Copper Homeostasis in Arabidopsis. Plant Cell. 21: 347-361. Yang, P., Fu, H., Walker, J., Papa, C.M., Smalle, J., Ju, Y.M., and Vierstra, R.D. (2004). Purification of the Arabidopsis 26 S proteasome: biochemical and molecular analyses revealed the presence of multiple isoforms. J. Biol. Chem. 279: 6401-6413. Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2: 1565-1572. Zelkó R., Süvegh K. (2002). Influence of storage conditions on the physical aging of amorphous polyvinylpyrrolidone. Acta Pharm Hung. 72:123-126. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6892 | - |
| dc.description.abstract | 超氧歧化酶(Superoxide Dismutase;SOD),可將超氧分子轉變為過氧化氫及氧分子,具有解除氧化逆境的功能。對於銅鋅超氧歧化酶(CuZnSOD;CSD)的活化機制,目前已知有兩條路徑,一者是藉由銅鑲嵌輔助蛋白(Copper Chaperone of SOD1;CCS)的幫助,達到銅離子鑲嵌與形成內生性雙硫鍵的活化型態;另一者則是在人類及老鼠中發現,在沒有CCS情況下,CuZnSOD仍然具有少量的活性,只是其活化途徑與機制仍未明朗。本論文,將阿拉伯芥三個不同的CuZnSOD基因表現於酵母菌及阿拉伯芥原生質體中,我們證實阿拉伯芥不同CuZnSOD的活化具有不同的偏好:CSD1位在細胞質中,可藉由兩條活化機制達成活化,在無CCS的情況下,仍保有~36%的活性,類似人類的CuZnSOD;CSD2位在葉綠體中,只能經由CCS來達成活化,與酵母菌的CuZnSOD類似;CSD3位在過氧化體中,只經由非CCS的路徑來達成活化,類似線蟲的CuZnSOD。我們證實在AtCCS-knockout突變株中,此殘存的CuZnSOD活性量就足以提供正常生理功能之所需。最後,我們也證實了還原態的榖胱甘肽(Glutathione;GSH)參與在非CCS的活化CuZnSOD的路徑上,並且需有一未知功能的因子共同合作才能完成。我們綜合前人之研究及本實驗之證據,提出兩種不需經由CCS而達成活化的可能作用機制,以及提出CuZnSOD蛋白質之C端具有與未知因子交互作用,而達成促進活化的功用。綜上而言,我們的研究提出植物體之複雜精密的抗氧化途徑,是在其他物種中從所未見的,而其詳細的機制,則仍有待後續的研究加以釐清。 | zh_TW |
| dc.description.abstract | Superoxide dismutases (SODs) are enzymes that protect cells from oxidative damage. The major pathway for CuZnSOD activation involves the function of a Copper Chaperone for SOD (CCS), whereas an additional, minor CCS-independent pathway that has been observed in mammals. Through overexpression of three Arabidopsis CuZnSOD genes (CSDs) in yeast and Arabidopsis protoplasts, we demonstrate the existence of a CCS-independent activation pathway in Arabidopsis thaliana. Interestingly, the three Arabidopsis CSDs show strongly different preference for the two activation pathways: the main activation pathway for CSD1 in the cytoplasm involved a CCS-dependent and -independent pathway, which was similar to that for human CSD. Activation of CSD2 in chloroplasts depended totally on CCS similar to yeast (Saccharomyces cerevisiae) CSD. Peroxisome-localized CSD3 via a CCS-independent pathway was similar to nematode (Caenorhabditis elegans) CSD in retaining activity in the absence of CCS. The residual SOD activity detected in AtCCS knockout plants is sufficient for seed germination and root growth, confirming that this alternative pathway is physiologically functional. Through a series of glutathione manipulation experiments, we further confirmed that glutathione plays a role in CCS-independnet pathway but must cooperate with an unknown factor for SOD activation. According to previous publications and our finding, two models of the CCS-independent mechanism are proposed. We also suggest that the CSD protein conformation at C-terminal is important in providing a docking site for unknown factor to interact with. Our findings reveal a complex system underlying CSD activation which ensures a highly specific and sophisticated regulation of antioxidant pathways in plants and has not been reported in other organisms. However, the clear and definite mechanism needs further investigation. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:20:30Z (GMT). No. of bitstreams: 1 ntu-101-F93b42012-1.pdf: 2109825 bytes, checksum: ee90508d75887a8cac9f4fbb3edd3ea3 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Abstract in Chinese ……………………………………………………………………………I
Abstract in English ……………………………………………………………………………II Abbreviation ………………………………………………………………………………………IV Introduction ………………………………………………………………………………………1 Superoxide Dismutases: Classification and Localization ………………………………………1 Evolution of Different Types of SODs ………………………………………………………2 Regulation of SODs Expressions by Their Promoter Sequences …………………………....4 Copper-Zinc SOD …………………………………………………………………………....5 Arabidopsis CuZnSODs are regulated by Copper-regulated miR398 …………………...….6 SOD Activation Requires a Metallocheprone ………………………………………………....7 Previous Studies on the Function of CCS ………………………………………………....7 Discovery of Arabidopsis CCS ………………………………………………………...….8 CCS-Independent Activation of CuZnSOD ……………………………………………...….8 Aims of the Dissertation …………………………………………………………………...…10 Material and methods ...................................................................................................................11 Plants, Yeast Strains, Media and Growth Conditions ……………………………………...11 Protein Extraction, In-gel SOD Activity Assay and Immunoblotting ……………………...11 RNA Extraction, RT-PCR and Gene Cloning ………………………………………………...12 Constructs ……………………………………………………………………………………...12 Treatments for Seed Germination Rate ……………………………………………………...13 Monitoring Superoxide Anion Level by Nitroblue Tetrazolium ……………………………14 Treatments for Root Length Evaluation ………………………………………………………14 Lysine-Independent Aerobic Growth ………………………………………………………15 Protoplast Preparation and Transfection ………………………………………………………15 Glutathione Treatment and Quantification ………………………………………………....16 Apo-CSD1 Protein Preparation and In Vitro Treatments ………………………………………17 Antibodies ………………………………………………………………………………………18 Statistical Analysis ……………………………………………………………………………18 Accession Number ……………………………………………………………………………18 Results ............................................................................................................................................19 CSD Retains Partial Activity in the Absence of AtCCS in Arabidopsis ………………………19 Activity Signals of CSD1 and CSD2 Are Partially Overlapped ……………………………19 CSD1 and CSD3 Show CCS-Independent Activities in Yeast …………………………………20 CSD2 Activation in Chloroplasts Requires CCS But Not in the Cytoplasm …………............22 CCS-Independent CSD1 Activation Occurs in the Cytoplasm but Not in Chloroplasts ………22 Activities of Both Peroxisomal and Cytoplasm-directed CSD3 Can Not Be Detected ………23 Effect of Glutathione upon CCS-Independent CSD1 Activity in Yeast ………………………23 Effect of Glutathione upon CCS-Independent CSD Activities in Arabidopsis Flowers ………24 Effect of Glutathione upon CCS-Independent CSD Activities in Arabidopsis Flower Protein Extract ………………………………………………………………………………………25 Altering Glutathione Concentration by Drugs or Glutaredoxin Expression Affect CCS-Independent CSD Activities in Arabidopsis Protoplasts ……………………………26 Activation of Apo-CSD1 by Cu and GSH is Greatly Enhanced When Atccs Cellular Extracts Is Added in Vitro ……………………………………………………………………………27 Superoxide Anion Level and Seed Germination Rate of WT, Atccs and Atcsd1 ……………29 Root Length of Atccs and Atcsd1 under Oxidative Stress Treatments and Different Glutathione Concentrations …………………………………………………………………………………30 CSD1 Variants Show Differing Activity Levels in Yeast ………………………………………32 Discussion ....................................................................................................................................34 Different Activation Preferences of CSD1 and CSD2 Are Due to an Inhibitory Effect of CCS-Independent Activation in Chloroplasts ……………………………………………34 The Inhibition of CCS-Independent Activation in Chloroplasts Could Ensure a Proper Operation of the Photosynthesis System ……………………………………………………………35 CSD3 Might be Activated Primarily by the CCS-Independent Pathway ………………………36 Different Preferences for CCS-Dependent and -Independent Activation Might Benefit Life in Its Habitat ………………………………………………………………………………………37 CCS-Independent CSD Activities Are Physiologically Functional and Sufficient to Support Growth of Plant Cells ………………………………………………………………………38 CSD1 variants activated by CCS-independent way show different activation efficiency …40 GSH Is Involved in CCS-Independent Activation Pathway with the Involvement of an Essential Factor Remain to be Discovered ……………………………………………………………41 Models of How the Unknown Factor Involves In the CCS-Independent Pathway ……………42 C-Terminal of CSD Protein May Determines Its Activation by CCS or the Unknown Factor …………………………………………………………………………………………………43 Perspective ………………………………………………………………………………………45 Figures and Table ............................................................................................................................49 Appendix ………………………………………………………………………………………81 References ....................................................................................................................................85 | |
| dc.language.iso | zh-TW | |
| dc.subject | 銅鋅超氧歧化酶 | zh_TW |
| dc.subject | 活化機制 | zh_TW |
| dc.title | 不同阿拉伯芥銅鋅超氧歧化酶對其活化機制偏好之研究 | zh_TW |
| dc.title | Copper Chaperone-Dependent and -Independent Activation of Three Copper-Zinc Superoxide Dismutase Homologs Localized in Different Cellular Compartments in Arabidopsis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林秋榮(Chu-Yung Lin),林讚標(Tsan-Piao Lin),鄭石通(Shih-Tong Jeng),張孟基(Men-Chi Chang),楊健志(Chien-Chih Yang) | |
| dc.subject.keyword | 銅鋅超氧歧化酶,活化機制, | zh_TW |
| dc.subject.keyword | CuZnSOD CCS-independent activation, | en |
| dc.relation.page | 96 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-03-28 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf | 2.06 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
