請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68922完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳國慶 | |
| dc.contributor.author | Tseng-An Chang | en |
| dc.contributor.author | 張岑安 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:42:15Z | - |
| dc.date.available | 2022-08-25 | |
| dc.date.copyright | 2017-08-25 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-16 | |
| dc.identifier.citation | 1. Davison, J., Low Cost, Novel Methods for Fabricating All-Solid-State Lithium Ion Batteries. 2012.
2. Tatsumisago, M., M. Nagao, and A. Hayashi, Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. Journal of Asian Ceramic Societies, 2013. 1(1): p. 17-25. 3. 蘇稘翃, 穿戴式產品之可撓式全固態薄膜鋰電池. Journal of Taiwan Energy, 2015. 2(3): p. 279-292. 4. Climbing, E., in https://www.elevatedclimbing.com/products/18650-panasonic-battery. 5. Akolkar, R., Mathematical model of the dendritic growth during lithium electrodeposition. Journal of Power Sources, 2013. 232: p. 23-28. 6. Akolkar, R., Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. Journal of Power Sources, 2014. 246: p. 84-89. 7. Spotnitz, R. and J. Franklin, Abuse behavior of high-power, lithium-ion cells. Journal of Power Sources, 2003. 113(1): p. 81-100. 8. Kim, J.G., et al., A review of lithium and non-lithium based solid state batteries. Journal of Power Sources, 2015. 282: p. 299-322. 9. Patil, A., et al., Issue and challenges facing rechargeable thin film lithium batteries. Materials Research Bulletin. 43(8–9): p. 1913-1942. 10. Danilov, D., R.A.H. Niessen, and P.H.L. Notten, Modeling All-Solid-State Li-Ion Batteries. Journal of The Electrochemical Society, 2011. 158(3): p. A215-A222. 11. Palacin, M.R., Recent advances in rechargeable battery materials: a chemist's perspective. Chemical Society Reviews, 2009. 38(9): p. 2565-2575. 12. Yu, X., et al., A Stable Thin‐Film Lithium Electrolyte: Lithium Phosphorus Oxynitride. Journal of The Electrochemical Society, 1997. 144(2): p. 524-532. 13. Bates, J.B., Thin film battery and electrolyte therefor. 2004, Google Patents. 14. Fabre, S.D., et al., Charge/Discharge Simulation of an All-Solid-State Thin-Film Battery Using a One-Dimensional Model. Journal of The Electrochemical Society, 2011. 159(2): p. A104-A115. 15. Pereira, T., et al., The performance of thin-film Li-ion batteries under flexural deflection. Journal of Micromechanics and Microengineering, 2006. 16(12): p. 2714. 16. Wei, Y., Performance of flat polymer Li2ion battery under mechanical deflections. China Academic Journal Electronic Publishing House, 2007. 17. Koo, M., et al., Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems. Nano Letters, 2012. 12(9): p. 4810-4816. 18. Ultrahigh Performance Cu2ZnSnS4 Thin Film and Its Application in Microscale Thin Film Lithium-Ion Battery: Comparison with SnO2. ACS Applied Materials & Interfaces, 2016. 19. Oudenhoven, J.F.M., L. Baggetto, and P.H.L. Notten, All-Solid-State Lithium-Ion Microbatteries: A Review of Various Three-Dimensional Concepts. Advanced Energy Materials, 2011. 1(1): p. 10-33. 20. Herbert, E.G., et al., Mechanical characterization of LiPON films using nanoindentation. Thin Solid Films, 2011. 520(1): p. 413-418. 21. Van der Ven, A. and G. Ceder, Lithium Diffusion in Layered Li x CoO2. Electrochemical and Solid-State Letters, 2000. 3(7): p. 301-304. 22. Stoldt, C.R. and S.H. Lee. All-solid-state lithium metal batteries for next generation energy storage. in 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). 2013. 23. Grillon, N., et al., Failure Mechanisms Analysis of All-Solid-State Thin Film Microbatteries from an Extended Electrochemical Reliability Study. Journal of The Electrochemical Society, 2015. 162(14): p. A2847-A2853. 24. Newman, J. and W. Tiedemann, Porous-electrode theory with battery applications. AIChE Journal, 1975. 21(1): p. 25-41. 25. Becker-Steinberger, K., et al., A Mathematical Model for All Solid-State Lithium Ion Batteries. Meeting Abstracts, 2009. MA2009-02(8): p. 704-704. 26. Martin, S.W. and C.A. Angell, Dc and ac conductivity in wide composition range Li2O-P2O5 glasses. Journal of Non-Crystalline Solids, 1986. 83(1): p. 185-207. 27. Danilov, D. and P.H.L. Notten, Mathematical modelling of ionic transport in the electrolyte of Li-ion batteries. Electrochimica Acta, 2008. 53(17): p. 5569-5578. 28. Aizawa, Y., et al., In situ electron holography of electric potentials inside a solid-state electrolyte: Effect of electric-field leakage. Ultramicroscopy, 2017. 178: p. 20-26. 29. Allen J. Bard, L.R.F., ELECTROCHEMICAL METHODS Fundamentals and Applications. 2001. 30. Ramadass, P., et al., Mathematical modeling of the capacity fade of Li-ion cells. Journal of Power Sources, 2003. 123(2): p. 230-240. 31. Kuwata, N., et al., Lithium diffusion coefficient in amorphous lithium phosphate thin films measured by secondary ion mass spectroscopy with isotope exchange methods. Solid State Ionics, 2016. 294: p. 59-66. 32. Munoz, F., et al., Increased electrical conductivity of LiPON glasses produced by ammonolysis. Solid State Ionics, 2008. 179(15-16): p. 574-579. 33. Pramanik, S. and S. Anwar, Electrochemical model based charge optimization for lithium-ion batteries. Journal of Power Sources, 2016. 313: p. 164-177. 34. Hockicko, P., P. Bury, and F. Munoz, Electrical and dielectric properties of LiPON glasses. 2012: p. 488-492. 35. Larfaillou, S., et al., Comprehensive characterization of all-solid-state thin films commercial microbatteries by Electrochemical Impedance Spectroscopy. Journal of Power Sources, 2016. 319: p. 139-146. 36. Dubarry, M., A. Devie, and B.Y. Liaw, Cell-balancing currents in parallel strings of a battery system. Journal of Power Sources, 2016. 321: p. 36-46. 37. 劉季清, 三星正式說明:三大原因造成 Galaxy Note 7 事故!, in 自由時報. 2017. 38. Gasco, F. and P. Feraboli, Manufacturability of composite laminates with integrated thin film Li-ion batteries. Journal of Composite Materials, 2014. 48(8): p. 899-910. 39. Schultz, R., Lithium: Measurement of Young's Modulus and Yield Strength 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68922 | - |
| dc.description.abstract | 目前穿戴式電子裝置的發展日新月異,從智慧手環、智慧眼鏡、智慧手錶到穿戴式醫療照護產品等,各種產品雨後春筍般的出現,英國調查機構更指出,2014年全球穿戴式科技裝置產值達31億美元,而在2018年將成長到341億美元[3]。
而目前發展最為蓬勃的穿戴式產品便是智慧手錶,但其發展卻嚴重地受到電池能量密度的限制,因此,在短時間內傳統電池能量密度無法大幅提升的情況下,具有高能密度優勢的固態電池應為未來穿戴式裝置的一盞明燈;且由於穿戴式裝置會非常的靠近人體,因此裝置本身必須非常安全,而固態電池具有可撓曲、不漏液、不爆炸起火,幾何設計簡單等優勢,非常適合應用於穿戴式電子裝置,未來有很大機會取代傳統液態電解液電池,成為穿戴式裝置之電力源。有鑒於其發展潛力,Apple公司收購了發展固態電池的Infinite Power Solution,Dyson公司也收購了同樣發展固態電池的Sakti3. 為了幫助固態電池設計者,在本篇論文中,我們建構了一個屬於固態電池之電化學物理模型,借此探討不同材料與幾何構形對電性表現可能帶來的影響。而模擬結果與意法半導體已商業化之固態電池(EFL700A39)有很好的吻合性。在此基礎上,我們對EFL700A39進行彎折實驗,以此探討固態電池在彎折時,對電池表現所產生的影響。 在實驗過程中,我們發現電池在彎折時,隨著彎曲程度的增加,電池的放電量會逐漸下降,並伴隨著電壓下降的情形發生,且在此之後電池便會失能,而我們藉由電化學模型分析電池在彎折時內部的變化,發現應是在彎折過程中導致電極與電解質破裂而導致電性的衰退。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:42:15Z (GMT). No. of bitstreams: 1 ntu-106-R04543070-1.pdf: 5531808 bytes, checksum: 7f29c00785f2dcce613e48c5dad983e2 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 摘要 i
§ 目錄 § iv § 第一章 緒論 § 1 1-1. 背景 1 1-2. 研究動機 4 § 第二章 固態電池 § 9 2-1. 結構 9 2-2. 材料 11 2-3. 市面上之固態電池 19 2-4. 現今發展 21 § 第三章 電化學模型回顧 § 23 3-1. 全固態鋰電池之數學模型 (2010) 25 3-2. 全固態鋰電池之模型 (2011) 32 3-3. 利用一維模型模擬全固態鋰薄膜電池之充放電行為(2012) 44 § 第四章 模型理論架構 § 50 4-1. 統御方程: 50 4-1-1. 電解質 50 4-1-2. 電極 55 4-2. 邊界條件 57 4-2-1. 電場 57 4-2-2. 濃度場 59 4-3. 初始條件 60 4-3-1. 鋰原子初始濃度 60 4-3-2. 鋰離子初始濃度 61 4-4. 充電模型 61 4-4-1. 定電流 61 4-4-2. 定電壓 62 4-5. 模型參數與模擬結果 64 4-5-1. 電池介紹 64 4-5-2. 開路電位 65 4-6. 模擬結果 67 4-6-1. 鋰原子之濃度分布 69 4-6-2. 鋰離子之濃度分布 71 4-6-3. 電解質內之電位分佈 72 4-6-4. 交界面上之阻抗 73 §第五章 電化學參數對電性之影響§ 77 5-1. 物質傳輸 77 5-2. 電荷傳輸 80 5-3. 幾何設計 81 5-4. 交界面性質 86 § 第六章 彎折實驗 § 89 6-1. 實驗目的 89 6-2. 實驗方法 95 6-3. 實驗結果 104 6-3-1. 不同曲率下之充放電 105 6-3-2. 彎折前後電池電性之可回復性 108 6-4. 模型分析 109 6-5. 模型擬合結果 112 § 第七章 結論與未來展望 § 115 7-1. 物理模型 115 7-2. 彎折實驗 116 參考文獻 117 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電化學模型 | zh_TW |
| dc.subject | 全固態鋰電池 | zh_TW |
| dc.subject | 可撓式電池 | zh_TW |
| dc.subject | 穿戴式電子裝置 | zh_TW |
| dc.subject | All-solid–state Lithium Battery | en |
| dc.subject | wearable electric device | en |
| dc.subject | Electrochemical model | en |
| dc.subject | Bendable battery | en |
| dc.title | 全固態鋰電池之彎折分析 | zh_TW |
| dc.title | Bending Analysis of All-solid–state Lithium Battery | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭志禹,林楊善,林祺皓 | |
| dc.subject.keyword | 全固態鋰電池,可撓式電池,電化學模型,穿戴式電子裝置, | zh_TW |
| dc.subject.keyword | All-solid–state Lithium Battery,Bendable battery,Electrochemical model,wearable electric device, | en |
| dc.relation.page | 119 | |
| dc.identifier.doi | 10.6342/NTU201702990 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 5.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
