Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68922
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳國慶
dc.contributor.authorTseng-An Changen
dc.contributor.author張岑安zh_TW
dc.date.accessioned2021-06-17T02:42:15Z-
dc.date.available2022-08-25
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-16
dc.identifier.citation1. Davison, J., Low Cost, Novel Methods for Fabricating All-Solid-State Lithium Ion Batteries. 2012.
2. Tatsumisago, M., M. Nagao, and A. Hayashi, Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. Journal of Asian Ceramic Societies, 2013. 1(1): p. 17-25.
3. 蘇稘翃, 穿戴式產品之可撓式全固態薄膜鋰電池. Journal of Taiwan Energy, 2015. 2(3): p. 279-292.
4. Climbing, E., in https://www.elevatedclimbing.com/products/18650-panasonic-battery.
5. Akolkar, R., Mathematical model of the dendritic growth during lithium electrodeposition. Journal of Power Sources, 2013. 232: p. 23-28.
6. Akolkar, R., Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. Journal of Power Sources, 2014. 246: p. 84-89.
7. Spotnitz, R. and J. Franklin, Abuse behavior of high-power, lithium-ion cells. Journal of Power Sources, 2003. 113(1): p. 81-100.
8. Kim, J.G., et al., A review of lithium and non-lithium based solid state batteries. Journal of Power Sources, 2015. 282: p. 299-322.
9. Patil, A., et al., Issue and challenges facing rechargeable thin film lithium batteries. Materials Research Bulletin. 43(8–9): p. 1913-1942.
10. Danilov, D., R.A.H. Niessen, and P.H.L. Notten, Modeling All-Solid-State Li-Ion Batteries. Journal of The Electrochemical Society, 2011. 158(3): p. A215-A222.
11. Palacin, M.R., Recent advances in rechargeable battery materials: a chemist's perspective. Chemical Society Reviews, 2009. 38(9): p. 2565-2575.
12. Yu, X., et al., A Stable Thin‐Film Lithium Electrolyte: Lithium Phosphorus Oxynitride. Journal of The Electrochemical Society, 1997. 144(2): p. 524-532.
13. Bates, J.B., Thin film battery and electrolyte therefor. 2004, Google Patents.
14. Fabre, S.D., et al., Charge/Discharge Simulation of an All-Solid-State Thin-Film Battery Using a One-Dimensional Model. Journal of The Electrochemical Society, 2011. 159(2): p. A104-A115.
15. Pereira, T., et al., The performance of thin-film Li-ion batteries under flexural deflection. Journal of Micromechanics and Microengineering, 2006. 16(12): p. 2714.
16. Wei, Y., Performance of flat polymer Li2ion battery under mechanical deflections. China Academic Journal Electronic Publishing House, 2007.
17. Koo, M., et al., Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems. Nano Letters, 2012. 12(9): p. 4810-4816.
18. Ultrahigh Performance Cu2ZnSnS4 Thin Film and Its Application in Microscale Thin Film Lithium-Ion Battery: Comparison with SnO2. ACS Applied Materials & Interfaces, 2016.
19. Oudenhoven, J.F.M., L. Baggetto, and P.H.L. Notten, All-Solid-State Lithium-Ion Microbatteries: A Review of Various Three-Dimensional Concepts. Advanced Energy Materials, 2011. 1(1): p. 10-33.
20. Herbert, E.G., et al., Mechanical characterization of LiPON films using nanoindentation. Thin Solid Films, 2011. 520(1): p. 413-418.
21. Van der Ven, A. and G. Ceder, Lithium Diffusion in Layered Li x CoO2. Electrochemical and Solid-State Letters, 2000. 3(7): p. 301-304.
22. Stoldt, C.R. and S.H. Lee. All-solid-state lithium metal batteries for next generation energy storage. in 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). 2013.
23. Grillon, N., et al., Failure Mechanisms Analysis of All-Solid-State Thin Film Microbatteries from an Extended Electrochemical Reliability Study. Journal of The Electrochemical Society, 2015. 162(14): p. A2847-A2853.
24. Newman, J. and W. Tiedemann, Porous-electrode theory with battery applications. AIChE Journal, 1975. 21(1): p. 25-41.
25. Becker-Steinberger, K., et al., A Mathematical Model for All Solid-State Lithium Ion Batteries. Meeting Abstracts, 2009. MA2009-02(8): p. 704-704.
26. Martin, S.W. and C.A. Angell, Dc and ac conductivity in wide composition range Li2O-P2O5 glasses. Journal of Non-Crystalline Solids, 1986. 83(1): p. 185-207.
27. Danilov, D. and P.H.L. Notten, Mathematical modelling of ionic transport in the electrolyte of Li-ion batteries. Electrochimica Acta, 2008. 53(17): p. 5569-5578.
28. Aizawa, Y., et al., In situ electron holography of electric potentials inside a solid-state electrolyte: Effect of electric-field leakage. Ultramicroscopy, 2017. 178: p. 20-26.
29. Allen J. Bard, L.R.F., ELECTROCHEMICAL METHODS Fundamentals and Applications. 2001.
30. Ramadass, P., et al., Mathematical modeling of the capacity fade of Li-ion cells. Journal of Power Sources, 2003. 123(2): p. 230-240.
31. Kuwata, N., et al., Lithium diffusion coefficient in amorphous lithium phosphate thin films measured by secondary ion mass spectroscopy with isotope exchange methods. Solid State Ionics, 2016. 294: p. 59-66.
32. Munoz, F., et al., Increased electrical conductivity of LiPON glasses produced by ammonolysis. Solid State Ionics, 2008. 179(15-16): p. 574-579.
33. Pramanik, S. and S. Anwar, Electrochemical model based charge optimization for lithium-ion batteries. Journal of Power Sources, 2016. 313: p. 164-177.
34. Hockicko, P., P. Bury, and F. Munoz, Electrical and dielectric properties of LiPON glasses. 2012: p. 488-492.
35. Larfaillou, S., et al., Comprehensive characterization of all-solid-state thin films commercial microbatteries by Electrochemical Impedance Spectroscopy. Journal of Power Sources, 2016. 319: p. 139-146.
36. Dubarry, M., A. Devie, and B.Y. Liaw, Cell-balancing currents in parallel strings of a battery system. Journal of Power Sources, 2016. 321: p. 36-46.
37. 劉季清, 三星正式說明:三大原因造成 Galaxy Note 7 事故!, in 自由時報. 2017.
38. Gasco, F. and P. Feraboli, Manufacturability of composite laminates with integrated thin film Li-ion batteries. Journal of Composite Materials, 2014. 48(8): p. 899-910.
39. Schultz, R., Lithium: Measurement of Young's Modulus and Yield Strength 2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68922-
dc.description.abstract目前穿戴式電子裝置的發展日新月異,從智慧手環、智慧眼鏡、智慧手錶到穿戴式醫療照護產品等,各種產品雨後春筍般的出現,英國調查機構更指出,2014年全球穿戴式科技裝置產值達31億美元,而在2018年將成長到341億美元[3]。
而目前發展最為蓬勃的穿戴式產品便是智慧手錶,但其發展卻嚴重地受到電池能量密度的限制,因此,在短時間內傳統電池能量密度無法大幅提升的情況下,具有高能密度優勢的固態電池應為未來穿戴式裝置的一盞明燈;且由於穿戴式裝置會非常的靠近人體,因此裝置本身必須非常安全,而固態電池具有可撓曲、不漏液、不爆炸起火,幾何設計簡單等優勢,非常適合應用於穿戴式電子裝置,未來有很大機會取代傳統液態電解液電池,成為穿戴式裝置之電力源。有鑒於其發展潛力,Apple公司收購了發展固態電池的Infinite Power Solution,Dyson公司也收購了同樣發展固態電池的Sakti3.
為了幫助固態電池設計者,在本篇論文中,我們建構了一個屬於固態電池之電化學物理模型,借此探討不同材料與幾何構形對電性表現可能帶來的影響。而模擬結果與意法半導體已商業化之固態電池(EFL700A39)有很好的吻合性。在此基礎上,我們對EFL700A39進行彎折實驗,以此探討固態電池在彎折時,對電池表現所產生的影響。
在實驗過程中,我們發現電池在彎折時,隨著彎曲程度的增加,電池的放電量會逐漸下降,並伴隨著電壓下降的情形發生,且在此之後電池便會失能,而我們藉由電化學模型分析電池在彎折時內部的變化,發現應是在彎折過程中導致電極與電解質破裂而導致電性的衰退。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-17T02:42:15Z (GMT). No. of bitstreams: 1
ntu-106-R04543070-1.pdf: 5531808 bytes, checksum: 7f29c00785f2dcce613e48c5dad983e2 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents摘要 i
§ 目錄 § iv
§ 第一章 緒論 § 1
1-1. 背景 1
1-2. 研究動機 4
§ 第二章 固態電池 § 9
2-1. 結構 9
2-2. 材料 11
2-3. 市面上之固態電池 19
2-4. 現今發展 21
§ 第三章 電化學模型回顧 § 23
3-1. 全固態鋰電池之數學模型 (2010) 25
3-2. 全固態鋰電池之模型 (2011) 32
3-3. 利用一維模型模擬全固態鋰薄膜電池之充放電行為(2012) 44
§ 第四章 模型理論架構 § 50
4-1. 統御方程: 50
4-1-1. 電解質 50
4-1-2. 電極 55
4-2. 邊界條件 57
4-2-1. 電場 57
4-2-2. 濃度場 59
4-3. 初始條件 60
4-3-1. 鋰原子初始濃度 60
4-3-2. 鋰離子初始濃度 61
4-4. 充電模型 61
4-4-1. 定電流 61
4-4-2. 定電壓 62
4-5. 模型參數與模擬結果 64
4-5-1. 電池介紹 64
4-5-2. 開路電位 65
4-6. 模擬結果 67
4-6-1. 鋰原子之濃度分布 69
4-6-2. 鋰離子之濃度分布 71
4-6-3. 電解質內之電位分佈 72
4-6-4. 交界面上之阻抗 73
§第五章 電化學參數對電性之影響§ 77
5-1. 物質傳輸 77
5-2. 電荷傳輸 80
5-3. 幾何設計 81
5-4. 交界面性質 86
§ 第六章 彎折實驗 § 89
6-1. 實驗目的 89
6-2. 實驗方法 95
6-3. 實驗結果 104
6-3-1. 不同曲率下之充放電 105
6-3-2. 彎折前後電池電性之可回復性 108
6-4. 模型分析 109
6-5. 模型擬合結果 112
§ 第七章 結論與未來展望 § 115
7-1. 物理模型 115
7-2. 彎折實驗 116
參考文獻 117
dc.language.isozh-TW
dc.subject電化學模型zh_TW
dc.subject全固態鋰電池zh_TW
dc.subject可撓式電池zh_TW
dc.subject穿戴式電子裝置zh_TW
dc.subjectAll-solid–state Lithium Batteryen
dc.subjectwearable electric deviceen
dc.subjectElectrochemical modelen
dc.subjectBendable batteryen
dc.title全固態鋰電池之彎折分析zh_TW
dc.titleBending Analysis of All-solid–state Lithium Batteryen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭志禹,林楊善,林祺皓
dc.subject.keyword全固態鋰電池,可撓式電池,電化學模型,穿戴式電子裝置,zh_TW
dc.subject.keywordAll-solid–state Lithium Battery,Bendable battery,Electrochemical model,wearable electric device,en
dc.relation.page119
dc.identifier.doi10.6342/NTU201702990
dc.rights.note有償授權
dc.date.accepted2017-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
5.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved