請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68910
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃楓婷 | |
dc.contributor.author | Yi Lin | en |
dc.contributor.author | 林易 | zh_TW |
dc.date.accessioned | 2021-06-17T02:41:37Z | - |
dc.date.available | 2022-08-25 | |
dc.date.copyright | 2017-08-25 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-16 | |
dc.identifier.citation | Anand, P., Kunnumakkara, A. B., Sundaram, C., Harikumar, K. B., Tharakan, S. T., Lai, O. S., . . . Aggarwal, B. B. (2008). Cancer is a preventable disease that requires major lifestyle changes. Pharm Res, 25(9), 2097-2116. doi: 10.1007/s11095-008-9661-9
Aydin, S., Kuloglu, T., Ozercan, M. R., Albayrak, S., Aydin, S., Bakal, U., . . . Balgetir, F. (2016). Irisin immunohistochemistry in gastrointestinal system cancers. Biotech Histochem, 91(4), 242-250. doi: 10.3109/10520295.2015.1136988 Baur, D. M., Klotsche, J., Hamnvik, O. P., Sievers, C., Pieper, L., Wittchen, H. U., . . . Mantzoros, C. S. (2011). Type 2 diabetes mellitus and medications for type 2 diabetes mellitus are associated with risk for and mortality from cancer in a German primary care cohort. Metabolism, 60(10), 1363-1371. doi: 10.1016/j.metabol.2010.09.012 Bostrom, P., Wu, J., Jedrychowski, M. P., Korde, A., Ye, L., Lo, J. C., . . . Spiegelman, B. M. (2012). A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481(7382), 463-468. doi: 10.1038/nature10777 Cao, L., Choi, E. Y., Liu, X., Martin, A., Wang, C., Xu, X., & During, M. J. (2011). White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab, 14(3), 324-338. doi: 10.1016/j.cmet.2011.06.020 Choi, B. H., Kim, C. G., Bae, Y. S., Lim, Y., Lee, Y. H., & Shin, S. Y. (2008). p21 Waf1/Cip1 expression by curcumin in U-87MG human glioma cells: role of early growth response-1 expression. Cancer Res, 68(5), 1369-1377. doi: 10.1158/0008-5472.CAN-07-5222 Choi, Y. K., Kim, M. K., Bae, K. H., Seo, H. A., Jeong, J. Y., Lee, W. K., . . . Park, K. G. (2013). Serum irisin levels in new-onset type 2 diabetes. Diabetes Res Clin Pract, 100(1), 96-101. doi: 10.1016/j.diabres.2013.01.007 Friedenreich, C. M., & Orenstein, M. R. (2002). Physical activity and cancer prevention: etiologic evidence and biological mechanisms. J Nutr, 132(11 Suppl), 3456S-3464S. Gannon, N. P., Vaughan, R. A., Garcia-Smith, R., Bisoffi, M., & Trujillo, K. A. (2015). Effects of the exercise-inducible myokine irisin on malignant and non-malignant breast epithelial cell behavior in vitro. Int J Cancer, 136(4), E197-202. doi: 10.1002/ijc.29142 Hu, F. B., Manson, J. E., Stampfer, M. J., Colditz, G., Liu, S., Solomon, C. G., & Willett, W. C. (2001). Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med, 345(11), 790-797. doi: 10.1056/NEJMoa010492 Jedrychowski, M. P., Wrann, C. D., Paulo, J. A., Gerber, K. K., Szpyt, J., Robinson, M. M., . . . Spiegelman, B. M. (2015). Detection and Quantitation of Circulating Human Irisin by Tandem Mass Spectrometry. Cell Metab, 22(4), 734-740. doi: 10.1016/j.cmet.2015.08.001 Kessler, K. M. (2000). Primary prevention of coronary heart disease in women through diet and lifestyle. N Engl J Med, 343(24), 1814; author reply 1814-1815. Knols, R., Aaronson, N. K., Uebelhart, D., Fransen, J., & Aufdemkampe, G. (2005). Physical exercise in cancer patients during and after medical treatment: a systematic review of randomized and controlled clinical trials. J Clin Oncol, 23(16), 3830-3842. doi: 10.1200/JCO.2005.02.148 Kushi, L. H., Byers, T., Doyle, C., Bandera, E. V., McCullough, M., McTiernan, A., . . . Physical Activity Guidelines Advisory, C. (2006). American Cancer Society Guidelines on Nutrition and Physical Activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J Clin, 56(5), 254-281; quiz 313-254. Loffler, D., Muller, U., Scheuermann, K., Friebe, D., Gesing, J., Bielitz, J., . . . Korner, A. (2015). Serum irisin levels are regulated by acute strenuous exercise. J Clin Endocrinol Metab, 100(4), 1289-1299. doi: 10.1210/jc.2014-2932 Meyerhardt, J. A., Giovannucci, E. L., Holmes, M. D., Chan, A. T., Chan, J. A., Colditz, G. A., & Fuchs, C. S. (2006). Physical activity and survival after colorectal cancer diagnosis. J Clin Oncol, 24(22), 3527-3534. doi: 10.1200/JCO.2006.06.0855 Moon, H. S., & Mantzoros, C. S. (2014). Regulation of cell proliferation and malignant potential by irisin in endometrial, colon, thyroid and esophageal cancer cell lines. Metabolism, 63(2), 188-193. doi: 10.1016/j.metabol.2013.10.005 Ornish, D., Weidner, G., Fair, W. R., Marlin, R., Pettengill, E. B., Raisin, C. J., . . . Carroll, P. R. (2005). Intensive lifestyle changes may affect the progression of prostate cancer. J Urol, 174(3), 1065-1069; discussion 1069-1070. doi: 10.1097/01.ju.0000169487.49018.73 Provatopoulou, X., Georgiou, G. P., Kalogera, E., Kalles, V., Matiatou, M. A., Papapanagiotou, I., . . . Gounaris, A. (2015). Serum irisin levels are lower in patients with breast cancer: association with disease diagnosis and tumor characteristics. BMC Cancer, 15, 898. doi: 10.1186/s12885-015-1898-1 Rudd, P. M., & Dwek, R. A. (1997). Glycosylation: heterogeneity and the 3D structure of proteins. Crit Rev Biochem Mol Biol, 32(1), 1-100. doi: 10.3109/10409239709085144 Ruden, E., Reardon, D. A., Coan, A. D., Herndon, J. E., 2nd, Hornsby, W. E., West, M., . . . Jones, L. W. (2011). Exercise behavior, functional capacity, and survival in adults with malignant recurrent glioma. J Clin Oncol, 29(21), 2918-2923. doi: 10.1200/JCO.2011.34.9852 Seale, P., Conroe, H. M., Estall, J., Kajimura, S., Frontini, A., Ishibashi, J., . . . Spiegelman, B. M. (2011). Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest, 121(1), 96-105. doi: 10.1172/JCI44271 Stoner, L., Rowlands, D., Morrison, A., Credeur, D., Hamlin, M., Gaffney, K., . . . Matheson, A. (2016). Efficacy of Exercise Intervention for Weight Loss in Overweight and Obese Adolescents: Meta-Analysis and Implications. Sports Med. doi: 10.1007/s40279-016-0537-6 Tao, W., & Lagergren, J. (2013). Clinical management of obese patients with cancer. Nat Rev Clin Oncol, 10(9), 519-533. doi: 10.1038/nrclinonc.2013.120 Tekin, S., Erden, Y., S, S., al, & Yilmaz, B. (2015). Is Irisin an Anticarcinogenic Peptide? Med-Science, 4(2), 2172-2180. Wormald, M. R., Petrescu, A. J., Pao, Y. L., Glithero, A., Elliott, T., & Dwek, R. A. (2002). Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chem Rev, 102(2), 371-386. Xie, C., Zhang, Y., Tran, T. D., Wang, H., Li, S., George, E. V., . . . Yang, L. J. (2015). Irisin Controls Growth, Intracellular Ca2+ Signals, and Mitochondrial Thermogenesis in Cardiomyoblasts. PLoS One, 10(8), e0136816. doi: 10.1371/journal.pone.0136816 Zhang, Y., Li, R., Meng, Y., Li, S., Donelan, W., Zhao, Y., . . . Tang, D. (2014). Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes, 63(2), 514-525. doi: 10.2337/db13-1106 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68910 | - |
dc.description.abstract | 中文摘要
運動能幫助預防與減緩許多疾病,像是肥胖、心血管疾病、第二型糖尿病甚至是癌症。然而,對於運動產生諸多益處的生理機制尚未闡明。近年研究發現,運動促使肌肉細胞高量表現膜蛋白FNDC5,隨後,FNDC5的中間部分片段會被截切且釋放到血液循環中,此片段被命名為irisin。Irisin最後作用於白色脂肪細胞促使其進行browning,造成能量型態轉變並增加能量消耗。此外,也有研究發現irisin對於乳癌細胞株與前列腺癌細胞株的增生有抑制的效果,因此,irisin對於癌細胞的抑制效果值得更深入的探討。 在我們先前的研究中發現,以大腸桿菌系統表現的irisin對人類神經膠質瘤細胞株U-87 MG 的細胞增生與侵襲有抑制的效果。此外,有研究指出irisin上帶有的醣基化修飾對於其browning的功能有重要的影響。因此,我們想進一步了解,irisin上的醣基化是否對於抑制U-87 MG也有重要的影響。我們利用昆蟲細胞表現系統表現irisin並探討其對U-87 MG的影響。實驗分成三個部分,首先,我們利用Sf21昆蟲細胞株來表現irisin。在以桿狀病毒感染72小時後,irisin會被外泌至培養液中,接著經由Ni-NTA系統的純化,獲得高純度的irisin。Irisin再經由西方墨點法以FNDC5抗體確認並以質譜儀鑑定,最後並以能截切醣基的酵素加以確認醣基化的存在。第二階段,我們探討irisin對於U-87 MG的影響,發現irisin能抑制細胞增生與侵襲但不影響細胞遷移的能力。第三階段以Sf21表現之irisin與E.coli表現之irisin對於U-87 MG的影響進行比較,發現以Sf21表現之irisin能更早抑制細胞增生,而兩者在細胞遷移與侵襲的影響則沒有明顯的差異,另外,我們也發現,在Sf21表現之irisin上的醣基化比例會影響其抑制細胞增生的效果。綜合以上結果,我們了解到以昆蟲細胞表現之irisin對於U-87 MG的細胞增生與侵襲有抑制效果且其上的醣基化對於抑制細胞增生有影響。 | zh_TW |
dc.description.abstract | Abstract
Exercise help prevent many diseases including obesity, cardiovascular disease and type II diabetes mellitus etc. Besides, it can improve the survival of cancer patients. However, the mechanism of how exercise benefits our health is still unclear. Recently, researchers have found that after exercise, muscle cells elevate the expression of FNDC5, one transmembrane protein. Next, the internal fragment of FNDC5 will be proteolytically cleaved and secreted into circulation and this fragment was named irisin. Irisin will target to white adipocytes and induce white adipocytes browning, which leads to change in energy status and increase in energy expenditure. Moreover, it is reported that irisin has suppressive effects on cell proliferation in breast and prostate cancer cells. Therefore, irisin has attracted more attention on its function to repress cancer cells. In our previous studies, irisin purified from E. coli had inhibitory effects on cell proliferation and invasion in the glioblastoma cell line, U-87 MG. Moreover, glycosylation on irisin was found pivotal for the browning function of irisin. Thus, we wonder if glycosylation on irisin is also vital for suppressive effects on cancer cells as well. Therefore, we used an insect cell expression system to express irisin to further study its effect on U-87 MG cells. There are three parts in this thesis. First, Sf21 insect cells were used to produce recombinant human irisin. After infection of Sf21 cells with baculovirus for 72 hours, irisin was secreted into medium. Afterward, the Ni-NTA purification system was conducted to purify irisin and the identity of irisin was verified by western blotting with -FNDC5 antibody and Mass spectrometry. Furthermore, glycosylation was also confirmed by digestion with glycosidase. Second, the effects of irisin on U-87 MG cells were evaluated by cell proliferation, migration and invasion assays. After irisin treatment, the cell proliferation and invasion were decreased while cell migration remained unaffected. Third, irisin produced in Sf21 cells and E.coli were both used to treat U-87 MG cells. Cell proliferation was suppressed earlier of treatment with irisin from Sf21 cells than treatment with irisin from E.coli. Nevertheless, cell migration and invasion had no difference after cells treated with irisin from these two expression system. Besides, lower glycosylation ratio on irisin from Sf21 cells might lose the repressive effect on cell proliferation of U-87 MG cells. In conclusion, irisin produced in insect cells could inhibit cell proliferation and invasion of U-87 MG cells. Furthermore, the glycosylation on irisin had effect on inhibiting cell proliferation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:41:37Z (GMT). No. of bitstreams: 1 ntu-106-R03b22008-1.pdf: 2834587 bytes, checksum: 15975d88199d7b6ed2c79473d9f5ba56 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | Table of contents
謝辭 i 中文摘要 ii Abstract iii Table of contents v Chapter 1 Introduction 1 1.1 Irisin is an exercise-induced myokine 2 1.2 N-glycosylation modification of irisin 3 1.3 The effects of recombinant irisin on cancer cells 4 1.4 Research purpose 6 Chapter 2 Materials and Methods 8 2.1 Preparation of the recombinant irisin protein from Sf21 cells 8 2.1.1 Construction of irisin gene with pFastBac1-gp67-IRES-EGFP vector 8 2.1.2 Transformation and production of recombinant bacmid 9 2.1.3 Production and amplification of the recombinant baculovirus by transfecting Sf21 cells 10 2.1.4 Expression and purification of the recombinant irisin protein by infecting Sf21 cells with the P2 baculovirus 11 2.1.5 Desalting and concentration 13 2.2 Protein analysis 14 2.2.1 Gel electrophoresis 14 2.2.2 CBR staining 14 2.2.3 Western blotting 14 2.2.4 Confirmation of glycosylation on recombinant irisin with PNGase F 15 2.3 Cell culture 15 2.3.1 U-87 MG (human glioblastoma cell line) 15 2.3.2 Sf21 cells (ovarian cells from Spodoptera frugiperda) 16 2.4 Cell behavior analysis of U-87 MG 17 2.4.1 Cell proliferation assay 17 2.4.2 Cell migration assay 18 2.4.3 Cell invasion assay 18 2.4.4 Cell cycle analysis 19 Chapter 3 Results 21 3.1 Preparation of the recombinant irisin protein from insect cells 21 3.1.1 Construction and production of bacmid containing the irisin gene 21 3.1.2 Transfection of Sf21 cells with recombinant bacmid and production of recombinant baculovirus 22 3.1.3 Expression and purification of irisin by Sf21 cells 23 3.2 The effects of recombinant irisin on U-87 MG cells 25 3.2.1 The effects of irisin on cell proliferation of U-87 MG cells 25 3.2.2 The effects of irisin on cell cycle of U-87 MG cells 25 3.2.3 The protein level of p21Cip1 of U-87 MG treated with irisin from two expression system 26 3.2.4 The effects of irisin on cell migration of U-87 MG cells 27 3.2.5 The effects of irisin on cell invasion of U-87 MG cells 28 3.3 Comparison of the effects of irisin expressed from prokaryotic or eukaryotic system on U-87 MG cells 28 3.3.1 The effects of irisin from two expression system on cell proliferation 28 3.3.2 The effects of irisin from two expression system on cell migration 30 3.3.3 The effects of irisin from two expression system on cell invasion of U-87 MG 31 Chapter 4 Discussion 32 4.1 The glycosylation is different in mammalian cells and insect cells 32 4.2 The effects of irisin from two expression system on U-87 MG cells 33 4.3 The effects of glycosylation on cell proliferation 34 Chapter 5 Summary and future prospects 35 Chapter 6 Reference list 36 Figures 39 Figure 1. Construction of the pFastBac1-gp67-irisin-IRES-EGFP plasmid 40 Figure 2. Production of the P1 and P2 baculovirus that can infect cells for protein expression 42 Figure 3. Expression and purification of irisin from Sf21 cells 44 Figure 4. Cell proliferation of Sf21 irisin-treated U-87 MG cells 47 Figure 5. Cell cycle analysis after Sf21 irisin treatment 49 Figure 6. The protein level of p21Cip1 of U-87 MG treated with irisin from different species 50 Figure 7. The effects of irisin on cell migration of U-87 MG cells 52 Figure 8. The effects of irisin on cell invasion of U-87 MG cells 54 Figure 9. The effects of irisin from different species on cell proliferation 56 Figure 10. Irisin with different glycosylation pattern had no effect on cell migration 58 Figure 11. Irisin with different glycosylation pattern had similar inhibitory effect on cell invasion 60 Appendix 61 Oral presentation Q & A 62 | |
dc.language.iso | en | |
dc.title | 以Sf21細胞建立與表現Irisin並探討其對人類神經膠質瘤細胞株U-87 MG之影響 | zh_TW |
dc.title | Construction and Expression of Irisin from Sf21 Cells and Study its Effect on Human Glioblastoma Cell Line, U-87 MG | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 周綠蘋,黃兆祺,廖憶純,陳彥榮 | |
dc.subject.keyword | Irisin,昆蟲細胞表現系統,醣基化,細胞增生,細胞侵襲, | zh_TW |
dc.subject.keyword | Irisin,insect cell expression system,glycosylation,cell proliferation,cell invasion, | en |
dc.relation.page | 64 | |
dc.identifier.doi | 10.6342/NTU201702989 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-16 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 2.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。