請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68908
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 隋中興 | |
dc.contributor.author | Yi-An Chen | en |
dc.contributor.author | 陳奕安 | zh_TW |
dc.date.accessioned | 2021-06-17T02:41:31Z | - |
dc.date.available | 2019-08-25 | |
dc.date.copyright | 2017-08-25 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-16 | |
dc.identifier.citation | Arakawa, A. (2004). The cumulus parameterization problem: Past, present, and future. Journal of Climate, 17(13), 2493-2525.
Bechtold, P., Semane, N., Lopez, P., Chaboureau, J. P., Beljaars, A., & Bormann, N. (2014). Representing equilibrium and nonequilibrium convection in large-scale models. Journal of the Atmospheric Sciences, 71(2), 734-753. Bellenger, H., Yoneyama, K., Katsumata, M., Nishizawa, T., Yasunaga, K., & Shirooka, R. (2015). Observation of moisture tendencies related to shallow convection. Journal of the Atmospheric Sciences, 72(2), 641-659. Benedict, J. J., & Randall, D. A. (2007). Observed characteristics of the MJO relative to maximum rainfall. Journal of the atmospheric sciences, 64(7), 2332-2354. Cai, Q., G. J. Zhang, and T. Zhou, (2013), Impacts of shallow convection on MJO simulation: A moist static energy and moisture budget analysis. J. Climate, 26, 2417–2431. Crueger, T., and B. Stevens ,(2015), The effect of atmospheric radiative heating by clouds on the Madden-Julian Oscillation, J. Adv. Model. Earth Syst., 7, 854–864, Del Genio, A. D., Wu, J., Wolf, A. B., Chen, Y., Yao, M. S., & Kim, D. (2015). Constraints on cumulus parameterization from simulations of observed MJO events. Journal of Climate, 28(16), 6419-6442. Fowler, L. D., Skamarock, W. C., Grell, G. A., Freitas, S. R., & Duda, M. G. (2016). Analyzing the Grell–Freitas Convection Scheme from Hydrostatic to Nonhydrostatic Scales within a Global Model. Monthly Weather Review, 144(6), 2285-2306. Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., ... & Wargan, K. (2017). The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate, 30(14), 5419-5454. Gill, A. (1980). Some simple solutions for heat‐induced tropical circulation. Quarterly Journal of the Royal Meteorological Society, 106(449), 447-462. Guichard, F., Petch, J. C., Redelsperger, J. L., Bechtold, P., Chaboureau, J. P., Cheinet, S., ... & Piriou, J. M. (2004). Modelling the diurnal cycle of deep precipitating convection over land with cloud‐resolving models and single‐column models. Quarterly Journal of the Royal Meteorological Society, 130(604), 3139-3172. Hagos, S., Feng, Z., Landu, K., & Long, C. N. (2014). Advection, moistening, and shallow‐to‐deep convection transitions during the initiation and propagation of Madden‐Julian Oscillation. Journal of Advances in Modeling Earth Systems, 6(3), 938-949. Hannah, W. M., & Maloney, E. D. (2011). The role of moisture–convection feedbacks in simulating the Madden–Julian oscillation. Journal of Climate, 24(11), 2754-2770. Hannah, W. M., & Maloney, E. D. (2014). The moist static energy budget in NCAR CAM5 hindcasts during DYNAMO. Journal of Advances in Modeling Earth Systems, 6(2), 420-440. Hong, S. Y., & Lim, J. O. J. (2006). The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc, 42(2), 129-151. Hubanks, P. A., King, M. D., Platnick, S. T. E. V. E. N., & Pincus, R. O. B. E. R. T. (2008). MODIS atmosphere L3 gridded product algorithm theoretical basis document. ATBD Reference Number: ATBD-MOD-30, 30, 96. Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman, E. F. Stocker, and D. B. Wolff, (2007): The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38–55 IFS DOCUMENTATION – cy40r1, operational implementation, PART IV: PHYSICAL PROCESSES. European Centre for Medium-Range Weather Forecast, Shinfield Park, Reading, RG2 9AX, England (2013);. Jakob, C., & Siebesma, A. P. (2003). A New subcloud model for mass-flux convection schemes: Influence on triggering, updraft properties, and model climate. Monthly weather review, 131(11), 2765-2778. Johnson, R. H., and P. E. Ciesielski, (2013): Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 3157–3179, Kuell, V., Gassmann, A., & Bott, A. (2007). Towards a New hybrid cumulus parametrization scheme for use in non‐hydrostatic weather prediction models. Quarterly Journal of the Royal Meteorological Society, 133(623), 479-490. Kuang, Z., Blossey, P. N., & Bretherton, C. S. (2005). A New approach for 3D cloud‐resolving simulations of large‐scale atmospheric circulation. Geophysical research letters, 32(2). Liebmann, B., and C. A. Smith, (1996): Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277 Madden R. and P. Julian, (1972), Description of global-scale circulation cells in the tropics with a 40-50 day period. J. Atmos. Sci., 29, 1109-1123. Matsuno, T. (1966). Quasi-geostrophic motions in the equatorial area. Journal of the Meteorological Society of Japan. Ser. II, 44(1), 25-43. Pilon, R., Zhang, C., and Dudhia, J. (2016). Roles of deep and shallow convection and microphysics in the MJO simulated by the Model for Prediction Across Scales. Journal of Geophysical Research: Atmospheres, 121:10575–10600. Ruppert, J. H., & Johnson, R. H. (2016). On the cumulus diurnal cycle over the tropical warm pool. Journal of Advances in Modeling Earth Systems, 8(2), 669-690. Skamarock, W. C., Klemp, J. B., Duda, M. G., Fowler, L. D., Park, S. H., & Ringler, T. D. (2012). A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Monthly Weather Review, 140(9), 3090-3105. Tiedtke, M. I. C. H. A. E. L. (1989). A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Monthly Weather Review, 117(8), 1779-1800. Wang, S., Sobel, A. H., Zhang, F., Sun, Y. Q., Yue, Y., & Zhou, L. (2015). Regional simulation of the October and November MJO events observed during the CINDY/DYNAMO field campaign at gray zone resolution. Journal of Climate, 28(6), 2097-2119. Wolding, B. O., Maloney, E. D., & Branson, M. (2016). Vertically resolved weak temperature gradient analysis of the Madden‐Julian Oscillation in SP‐CESM. Journal of Advances in Modeling Earth Systems. Yanai, M., Esbensen, S., & Chu, J. H. (1973). Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. Journal of the Atmospheric Sciences, 30(4), 611-627. Yano, J. I., & Baizig, H. (2012). Single SCA-plume dynamics. Dynamics of Atmospheres and Oceans, 58, 62-94. Zhang, G. J. and X. Song, (2009), Interaction of deep and shallow convection is key to Madden–Julian oscillation simulation. Geophys. Res. Lett., 36, L09708, | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68908 | - |
dc.description.abstract | 此研究以積雲參數法New Tiedtke scheme為核心,探討DYNAMO期間MJO的對流過程模擬。內容分為兩部分,一個是New Tiedtke scheme offline診斷分析,一個是MPAS全球模式模擬。
offline診斷分析中,探討大尺度環境和強迫項如何驅動積雲參數法(New Tiedtke scheme)產生單方向的反應,之後再計算微物理參數法(WSM6),完成模式中跟雲有關的兩個物理參數法。過程中沒有計算大尺度動力和其餘物理參數法(輻射、邊界層),較全球模式簡單。New Tiedtke scheme的淺雲扮演著將邊界層的水氣向上傳送的角色; 深對流雲對整層大氣效應為加熱和變乾,所產生的降雨和觀測一致。後續計算微物理參數法offline,如將積雲參數法對大尺度溫度和水氣的改變加入後,淺雲的濕化讓微物理參數法產生更多降雨,深對流雲的加熱和變乾讓微物理參數法產生較少的降雨。offline診斷中的積雲參數法降雨和微物理參數法降雨的比例約為10:1。 MPAS全球模式模擬,以預設New Tiedtke scheme、New Tiedtke scheme逸入率乘上1.8倍、New Tiedtke scheme改變逸出率,三組實驗進行MJO模擬。2011年10月15日到31日模擬的大致情況為,預設實驗中,在中印度洋對流零散大致以日夜週期一天的時間尺度產生向東傳遞的訊號。增加逸入率實驗,造成環境場較乾時對流更不易發展,能讓對流往濕區集中使組織性更好,增加逸入率對於Kelvin wave的模擬較好。逸出率實驗,積雲參數法的深對流雲上衝流過程中界定次網格雲和次網格環境的差異到達一定小時,將雲內性質逸出改用大尺度動力和微物理參數法操作極端深對流雲區,逸出率類似於部分關閉積雲參數法,此實驗能夠模擬出正確MJO生成時間。開關積雲參數法的差異以處理積雲上衝為例,在積雲參數法中由逸入逸出(E、D)控制質量通量隨高度分布 (∂M/∂Z) 不對時間做微分,故積雲上衝毋需耗時,再關閉積雲參數法時使用大尺度上升運動(W)隨著模式積分具有時間上的連續性。而質量通量型積雲參數法使用逸入逸出率對於積雲發展的相關議題有著基本操作上的難度。 預設、逸入、逸出三組實驗中,積雲參數法和微物理參數法控制熱帶對流雲的角色也跟著改變,兩者之間的配合為文章中深入探討的重點。 | zh_TW |
dc.description.abstract | In this article, using cumulus parameterization New Tiedtke scheme to discuss convection process is main focus. Content is composed of two parts. One is New Tiedtke scheme offline analysis, another is GCM simulation.
The purpose of Offline analysis is to know how cumulus parameterization response according to given large scale forcing. After cumulus parameterization, also calculate microphysics scheme. Difference from GCM is there are no large scale dynamic and other physics scheme in calculating routine such that offline analysis is rather simpler than GCM. In offline analysis, shallow cloud transport water vapor from boundary layer to higher free atmosphere, can moisten atmosphere .To large scale environment, deep cloud response is drying and heating and produced precipitation is well match with TRMM observation. Finishing cumulus scheme, then do microphysics scheme calculation. If adding cumulus scheme response to large scale moisture and temperature field, in shallow cloud region microphysics scheme can produce more rain, in deep cloud region microphysics scheme produce less rain. The ration between cumulus Offline rain and microphysics Offline rain is about 10 to 1. MPAS GCM simulation have three experiments, default New Tiedtke scheme, entrainment multiply 1.8, and modified detrainment. In defalut experiment convection are scatter, in entrainment experiment convection are more organized, and detrainment experiment can simulate MJO accurate initiation. The effect of increased entrainment rate is deep convection cannot develop in dry region, deep convection will aggregate to moist region ,convection become more organized. Detrainment experiment is similar to turning off cumulus parameterization in extreme deep convection region. In cumulus parameterization updraft once the difference between subgrid-scale cloud and subgrid-scale environment is small, detrain and switch to large scale dynamic and microphysics scheme. Using large scale dynamic and microphysics scheme control extreme convection region. This three experiments show cumulus and microphysics scheme both can control tropical convection but operation methods are different, and the interaction between cumulus parameterization scheme and microphysics parameterization scheme are also main topic in this article. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:41:31Z (GMT). No. of bitstreams: 1 ntu-106-R04229006-1.pdf: 9787024 bytes, checksum: 5fc7fb52cecbeedafad4ba202ebb4683 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員審定書 i
中文摘要 ii Abstract iv 目錄 vi 表目錄 viii 圖目錄 ix 第一章 前言 1 第二章 Tiedtke積雲參數法和WSM6雲微物參數法 4 2.1 Tiedtke積雲參數法 4 2.2 WSM6雲微物參數法 6 第三章 使用模式和資料 7 3.1 offline設定及使用資料 7 3.2 MPAS設定及使用資料 8 第四章 結果I DYNAMO sounding array offline analysis 9 4.1 Tiedtke積雲參數法offline 9 4.2 WSM6雲微物參數法offline 10 第五章 結果I I MPAS 模擬 12 5.1預設New Tiedtke scheme 12 5.2逸入率乘上1.8倍實驗 14 5.3逸出率實驗 15 5.4實驗綜合討論 18 第六章 結論 20 參考文獻 22 表 26 圖 28 附錄(New Tiedtke scheme 流程與控制方程) 61 附.1 雲種選擇 61 附.2 上衝流 63 附.3 下衝流 65 附.4 雲底再蒸發與降雨過程 66 附.5 雲底質量通量求取 67 附錄表、附錄Tiedtke scheme流程圖 69 | |
dc.language.iso | zh-TW | |
dc.title | Tiedtke積雲參數法的逸入逸出率對於MPAS模式中DYNAMO時期MJO模擬的影響 | zh_TW |
dc.title | The effect of Tiedtke cumulus parameterization entrainment and detrainment on DYNAMO MJO simulation in MPAS model | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳健銘,許乾忠,王懌琪 | |
dc.subject.keyword | New Tiedtke 積雲參數法,逸入逸出率,積雲參數化和微物理參數化配合,對流組織性,季內振盪, | zh_TW |
dc.subject.keyword | New Tiedtke scheme,entrainment and detrainment,cumulus parameterization and microphysics parameterization interaction,convection organization,MJO, | en |
dc.relation.page | 69 | |
dc.identifier.doi | 10.6342/NTU201703227 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-16 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 9.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。