Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68816
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡素宜(Su-Yi Tsai)
dc.contributor.authorYing-Chen Chenen
dc.contributor.author陳映辰zh_TW
dc.date.accessioned2021-06-17T02:36:49Z-
dc.date.available2020-08-24
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citationArad, M., Maron, B.J., Gorham, J.M., Johnson, W.H., Saul, J.P., Perez-Atayde, A.R., Spirito, P., Wright, G.B., Kanter, R.J., Seidman, C.E., et al. (2005). Glycogen Storage Diseases Presenting as Hypertrophic Cardiomyopathy. New England Journal of Medicine 352, 362-372.
Ball, S., Colleoni, C., Cenci, U., Raj, J.N., and Tirtiaux, C. (2011). The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. Journal of Experimental Botany 62, 1775-1801.
Bayle, J., Lopez, S., Iwaï, K., Dubreuil, P., and De Sepulveda, P. (2006). The E3 ubiquitin ligase HOIL-1 induces the polyubiquitination and degradation of SOCS6 associated proteins. FEBS Letters 580, 2609-2614.
Boisson, B., Laplantine, E., Prando, C., Giliani, S., Israelsson, E., Xu, Z.H., Abhyankar, A., Israel, L., Trevejo-Nunez, G., Bogunovic, D., et al. (2012). Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nature Immunology 13, 1178-+.
Cavanagh, J.B. (1999). Corpora-amylacea and the family of polyglucosan diseases. Brain Research Reviews 29, 265-295.
Cohen, P., Kelsall, I.R., Nanda, S.K., and Zhang, J. (2020). HOIL-1, an atypical E3 ligase that controls MyD88 signalling by forming ester bonds between ubiquitin and components of the Myddosome. Advances in Biological Regulation 75, 100666.
Cong, M., Wang, Y., Yang, Y., Lian, C., Zhuang, X., Li, X., Zhang, P., Liu, Y., Tang, J., Yang, Q., et al. (2020). MTSS1 suppresses mammary tumor-initiating cells by enhancing RBCK1-mediated p65 ubiquitination. Nature Cancer 1, 222-234.
Cong, Y.S., Yao, Y.L., Yang, W.M., Kuzhandaivelu, N., and Seto, E. (1997). The hepatitis B virus X-associated protein, XAP3, is a protein kinase C-binding protein. J Biol Chem 272, 16482-16489.
Denning, C., Borgdorff, V., Crutchley, J., Firth, K.S., George, V., Kalra, S., Kondrashov, A., Hoang, M.D., Mosqueira, D., Patel, A., et al. (2016). Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform. Biochim Biophys Acta 1863, 1728-1748.
Derynck, R., and Miyazono, K. (2008). The TGF-[beta] family, Vol 50 (CSHL Press).
Dobaczewski, M., Chen, W., and Frangogiannis, N.G. (2011). Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol 51, 600-606.
Donley, C., McClelland, K., McKeen, H.D., Nelson, L., Yakkundi, A., Jithesh, P.V., Burrows, J., McClements, L., Valentine, A., Prise, K.M., et al. (2014). Identification of RBCK1 as a novel regulator of FKBPL: implications for tumor growth and response to tamoxifen. Oncogene 33, 3441-3450.
Eisner, D.A., Caldwell, J.L., Kistamás, K., and Trafford, A.W. (2017). Calcium and Excitation-Contraction Coupling in the Heart. Circulation Research 121, 181-195.
Elton, L., Carpentier, I., Verhelst, K., Staal, J., and Beyaert, R. (2015). The multifaceted role of the E3 ubiquitin ligase HOIL-1: beyond linear ubiquitination. Immunological Reviews 266, 208-221.
Eschenhagen, T., and Carrier, L. (2019). Cardiomyopathy phenotypes in human-induced pluripotent stem cell-derived cardiomyocytes-a systematic review. Pflugers Arch 471, 755-768.
Gentry, M.S., Worby, C.A., and Dixon, J.E. (2005). Insights into Lafora disease: Malin is an E3 ubiquitin ligase that ubiquitinates and promotes the degradation of laforin. Proc Natl Acad Sci U S A 102, 8501-8506.
Grifone, R., Laclef, C., Spitz, F., Lopez, S., Demignon, J., Guidotti, J.E., Kawakami, K., Xu, P.X., Kelly, R., Petrof, B.J., et al. (2004). Six1 and Eya1 expression can reprogram adult muscle from the slow-twitch phenotype into the fast-twitch phenotype. Mol Cell Biol 24, 6253-6267.
Gustafsson, N., Zhao, C.Y., Gustafsson, J.A., and Dahlman-Wright, K. (2010). RBCK1 Drives Breast Cancer Cell Proliferation by Promoting Transcription of Estrogen Receptor alpha and Cyclin B1. Cancer Research 70, 1265-1274.
Haas, T.L., Emmerich, C.H., Gerlach, B., Schmukle, A.C., Cordier, S.M., Rieser, E., Feltham, R., Vince, J., Warnken, U., Wenger, T., et al. (2009). Recruitment of the Linear Ubiquitin Chain Assembly Complex Stabilizes the TNF-R1 Signaling Complex and Is Required for TNF-Mediated Gene Induction. Molecular Cell 36, 831-844.
Hedberg-Oldfors, C., and Oldfors, A. (2015). Polyglucosan storage myopathies. Molecular Aspects of Medicine 46, 85-100.
Kilimann, M.W., and Oldfors, A. (2015). Glycogen pathways in disease: new developments in a classical field of medical genetics. J Inherit Metab Dis 38, 483-487.
Kirisako, T., Kamei, K., Murata, S., Kato, M., Fukumoto, H., Kanie, M., Sano, S., Tokunaga, F., Tanaka, K., and Iwai, K. (2006). A ubiquitin ligase complex assembles linear polyubiquitin chains. The EMBO Journal 25, 4877-4887.
Krenn, M., Salzer, E., Simonitsch-Klupp, I., Rath, J., Wagner, M., Haack, T.B., Strom, T.M., Schanzer, A., Kilimann, M.W., Schmidt, R.L.J., et al. (2018). Mutations outside the N-terminal part of RBCK1 may cause polyglucosan body myopathy with immunological dysfunction: expanding the genotype-phenotype spectrum. Journal of Neurology 265, 394-401.
Lan, F., Lee, A.S., Liang, P., Sanchez-Freire, V., Nguyen, P.K., Wang, L., Han, L., Yen, M., Wang, Y., Sun, N., et al. (2013). Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell 12, 101-113.
Landgraf, K., Bollig, F., Trowe, M.O., Besenbeck, B., Ebert, C., Kruspe, D., Kispert, A., Hanel, F., and Englert, C. (2010). Sipl1 and Rbck1 Are Novel Eya1-Binding Proteins with a Role in Craniofacial Development. Molecular and Cellular Biology 30, 5764-5775.
Lehnart, S.E., Maier, L.S., and Hasenfuss, G. (2009). Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart. Heart Fail Rev 14, 213-224.
Lian, X., Hsiao, C., Wilson, G., Zhu, K., Hazeltine, L.B., Azarin, S.M., Raval, K.K., Zhang, J., Kamp, T.J., and Palecek, S.P. (2012). Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proceedings of the National Academy of Sciences 109, 10759-10760.
Lian, X., Zhang, J., Azarin, S.M., Zhu, K., Hazeltine, L.B., Bao, X., Hsiao, C., Kamp, T.J., and Palecek, S.P. (2013). Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc 8, 162-175.
Liu, M.-L., Zang, F., and Zhang, S.-J. (2019). RBCK1 contributes to chemoresistance and stemness in colorectal cancer (CRC). Biomedicine Pharmacotherapy 118, 109250.
Luo, M., and Anderson, M.E. (2013). Mechanisms of Altered Ca<sup>2+</sup> Handling in Heart Failure. Circulation Research 113, 690-708.
Mullenders, J., Fabius, A.W., Madiredjo, M., Bernards, R., and Beijersbergen, R.L. (2009). A large scale shRNA barcode screen identifies the circadian clock component ARNTL as putative regulator of the p53 tumor suppressor pathway. PLoS One 4, e4798.
Nakamura, M., Tokunaga, F., Sakata, S.-i., and Iwai, K. (2006). Mutual regulation of conventional protein kinase C and a ubiquitin ligase complex. Biochemical and Biophysical Research Communications 351, 340-347.
Nilsson, J., Schoser, B., Laforet, P., Kalev, O., Lindberg, C., Romero, N.B., Lopez, M.D., Akman, H.O., Wahbi, K., Iglseder, S., et al. (2013). Polyglucosan Body Myopathy Caused by Defective Ubiquitin Ligase RBCK1. Annals of Neurology 74, 914-919.
Oldfors, A. (2015). Muscle disorders of glycogen metabolism associated with GYG1 and RBCK1 deficiency. Neuromuscular Disorders 25, S185-S185.
Oldfors, A., and DiMauro, S. (2013). New insights in the field of muscle glycogenoses. Curr Opin Neurol 26, 544-553.
Peltzer, N., Darding, M., Montinaro, A., Draber, P., Draberova, H., Kupka, S., Rieser, E., Fisher, A., Hutchinson, C., Taraborrelli, L., et al. (2018). LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature 557, 112-+.
Periasamy, M., Bhupathy, P., and Babu, G.J. (2007). Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovascular Research 77, 265-273.
Phadke, R., Hedberg-Oldfors, C., Scalco, R.S., Lowe, D.M., Ashworth, M., Novelli, M., Vara, R., Merwick, A., Amer, H., Sofat, R., et al. (2020). RBCK1-related disease: A rare multisystem disorder with polyglucosan storage, auto-inflammation, recurrent infections, skeletal, and cardiac myopathy-Four additional patients and a review of the current literature. J Inherit Metab Dis.
Queisser, M., Dada, L., Deiss-Yehiely, N., Angulo, M., Zhou, G., Kouri, F., Knab, L., Liu, J., Stegh, A., DeCamp, M., et al. (2014). HOIL-1L Functions as the PKC zeta Ubiquitin Ligase to Promote Lung Tumor Growth. American journal of respiratory and critical care medicine 190.
Rana, R., Coulter, S., Kinyamu, H., and Goldstein, J.A. (2013). RBCK1, an E3 Ubiquitin Ligase, Interacts with and Ubiquinates the Human Pregnane X Receptor. Drug Metabolism and Disposition 41, 398-405.
ROBITAILLE, Y., CARPENTER, S., KARPATI, G., and DIMAURO, S. (1980). A DISTINCT FORM OF ADULT POLYGLUCOSAN BODY DISEASE WITH MASSIVE INVOLVEMENT OF CENTRAL AND PERIPHERAL NEURONAL PROCESSES AND ASTROCYTES: A REPORT OF FOUR CASES AND A REVIEW OF THE OCCURRENCE OF POLYGLUCOSAN BODIES IN OTHER CONDITIONS SUCH AS LAFORA'S DISEASE AND NORMAL AGEING. Brain 103, 315-336.
Schneider, R., and Pfitzer, P. (1973). [Number of nuclei in isolated human myocardial cells]. Virchows Arch B Cell Pathol 12, 238-258.
Sheppard, N.G., Heldring, N., and Dahlman-Wright, K. (2012). Estrogen receptor-α, RBCK1, and protein kinase C β 1 cooperate to regulate estrogen receptor-α gene expression. 49, 277.
Sullivan, M.A., Nitschke, F., Chown, E.E., DiGiovanni, L.F., Chown, M., Perri, A.M., Mitra, S., Zhao, X., Ackerley, C.A., Israelian, L., et al. (2018). Deficiency of the E3 Ubiquitin Ligase RBCK1 Causes Diffuse Brain Polyglucosan Accumulation and Neurodegeneration. bioRxiv, 277392.
Sullivan, M.A., Nitschke, S., Steup, M., Minassian, B.A., and Nitschke, F. (2017). Pathogenesis of Lafora Disease: Transition of Soluble Glycogen to Insoluble Polyglucosan. Int J Mol Sci 18.
Sun, N., Yazawa, M., Liu, J., Han, L., Sanchez-Freire, V., Abilez, O.J., Navarrete, E.G., Hu, S., Wang, L., Lee, A., et al. (2012). Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med 4, 130ra147.
Tatematsu, K., Tokunaga, C., Nakagawa, N., Tanizawa, K., Kuroda, S., and Kikkawa, U. (1998). Transcriptional activity of RBCK1 protein (RBCC protein interacting with PKC 1): Requirement of RING-finger and B-Box motifs and regulation by protein kinases. Biochemical and Biophysical Research Communications 247, 392-396.
Tatematsu, K., Yoshimoto, N., Koyanagi, T., Tokunaga, C., Tachibana, T., Yoneda, Y., Yoshida, M., Okajima, T., Tanizawa, K., and Kuroda, S. (2005). Nuclear-cytoplasmic shuttling of a RING-IBR protein RBCK1 and its functional interaction with nuclear body proteins. Journal of Biological Chemistry 280, 22937-22944.
Tian, Y., Zhang, Y., Zhong, B., Wang, Y.Y., Diao, F.C., Wang, R.P., Zhang, M., Chen, D.Y., Zhai, Z.H., and Shu, H.B. (2007). RBCK1 negatively regulates tumor necrosis factor- and interleukin-1-triggered NF-kappa B activation by targeting TAB2/3 for degradation. Journal of Biological Chemistry 282, 16776-16782.
Tokunaga, C., Kuroda, S., Tatematsu, K., Nakagawa, N., Ono, Y., and Kikkawa, U. (1998). Molecular cloning and characterization of a novel protein kinase C-interacting protein with structural motifs related to RBCC family proteins. Biochem Biophys Res Commun 244, 353-359.
Tokunaga, F., Sakata, S.-i., Saeki, Y., Satomi, Y., Kirisako, T., Kamei, K., Nakagawa, T., Kato, M., Murata, S., Yamaoka, S., et al. (2009). Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nature Cell Biology 11, 123-132.
Tsai, S.Y., Ghazizadeh, Z., Wang, H.J., Amin, S., Ortega, F.A., Badieyan, Z.S., Hsu, Z.T., Gordillo, M., Kumar, R., Christini, D.J., et al. (2020). A human embryonic stem cell reporter line for monitoring chemical-induced cardiotoxicity. Cardiovasc Res 116, 658-670.
Vallentin, A., and Mochly-Rosen, D. (2007). RBCK1, a protein kinase C beta I (PKC beta I)-interacting protein, regulates PKC beta-dependent function. Journal of Biological Chemistry 282, 1650-1657.
Wang, K., Kim, C., Bradfield, J., Guo, Y.F., Toskala, E., Otieno, F.G., Hou, C.P., Thomas, K., Cardinale, C., Lyon, G.J., et al. (2013). Whole-genome DNA/RNA sequencing identifies truncating mutations in RBCK1 in a novel Mendelian disease with neuromuscular and cardiac involvement. Genome Medicine 5.
Yamanaka, K., Ishikawa, H., Megumi, Y., Tokunaga, F., Kanie, M., Rouault, T.A., Morishima, I., Minato, N., Ishimori, K., and Iwai, K. (2003). Identification of the ubiquitin–protein ligase that recognizes oxidized IRP2. Nature Cell Biology 5, 336-340.
Yano, M., Ikeda, Y., and Matsuzaki, M. (2005). Altered intracellular Ca2+ handling in heart failure. The Journal of clinical investigation 115, 556-564.
Young, F.G. (1957). Claude Bernard and the discovery of glycogen; a century of retrospect. Br Med J 1, 1431-1437.
Yu, S.F., Dai, J., Ma, M., Xu, T.X., Kong, Y., Cui, C.L., Chi, Z.H., Si, L., Tang, H., Yang, L., et al. (2019). RBCK1 promotes p53 degradation via ubiquitination in renal cell carcinoma. Cell Death Disease 10.
Zenke-Kawasaki, Y., Dohi, Y., Katoh, Y., Ikura, T., Ikura, M., Asahara, T., Tokunaga, F., Iwai, K., and Igarashi, K. (2007). Heme Induces Ubiquitination and Degradation of the Transcription Factor Bach1. Molecular and Cellular Biology 27, 6962-6971.
Zhang, M., Tian, Y., Wang, R.P., Gao, D., Zhang, Y., Diao, F.C., Chen, D.Y., Zhai, Z.H., and Shu, H.B. (2008). Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3. Cell Research 18, 1096-1104.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68816-
dc.description.abstract葡糖多聚醣體肌肉病變症(polyglucosan body myopathy, PGBM)是一種肝糖代謝異常所引起的罕見疾病,在骨骼肌與心肌病理切片中可發現有大量的葡萄多聚醣體(PGBs)堆積,此異常堆積體是由不正常結構的肝醣所聚合而成且其不能被α-澱粉酶(α-Amylase)酵素分解。病人會患有早發性的肌肉無力與擴張性心肌病變(dilated cardiomyopathy)。研究發現RBCK1的雙等位基因(biallelic)突變可為引發此肌肉病變症的主因之一。RBCK1的功能主要有二,第一它能進入細胞核做為轉錄因子調控下游基因,二其帶有RING-between-RING domain可被當作E3泛素連接酶 (E3 ligase)來泛素化受體使其被降解。然而這兩種截然不同的功能使得在研究RBCK1變異所引起的疾病上增加了難度,再加上是罕見疾病的原因,病人的樣本難以取得,使其致病機制之研究更加的困難。為了解決此一問題,本研究利乃用人類胚胎幹細胞作為研究模型,以CRISPR/Cas9的技術重現RBCK1變異病人的基因型。初步結果顯示,RBCK1缺陷的胚胎幹細胞能成功分化成心肌細胞且利用Periodic Acid-Schiff diastase染色(PAS-D)及穿透式電子顯微鏡來證實葡萄多聚醣堆積在RBCK1缺陷的心肌細胞。此外,心肌細胞雖然未影響肌節(sarcomere)結構,但在分化晚期的心肌細胞大小有變大趨勢,且在心肌病變指標基因NPPA、NPPB與TGFβ之表現也有明顯上升。除了在這個疾病模型上顯示出如病人心肌病的病徵外,本研究也首次發現RBCK1缺陷會明顯地影響到心肌細胞內鈣離子的調控與粒線體行有氧呼吸的能力(mitochondrial oxidative capacity)。而在機制的分析上,我發現了RBCK1缺陷並不會影響肝醣生成(glycogenesis)與肝糖降解(glycogen degradation)的相關酵素,藉此縮小葡萄多聚醣體堆積在後續研究可朝肝醣代謝的其他蛋白深入。綜合以上結果,讓我們能更全面了解RBCK1缺陷所造成的諸多心肌功能缺失,提供了治療此心肌病變的新方向,並且在未來能利用此疾病模型進一步的分析RBCK1在肝醣代謝中所扮演的角色。zh_TW
dc.description.abstractPolyglucosan body myopathy (PGBM), a glycogen metabolism disorder, is characterized by accumulation of polyglucosan bodies in both skeletal and cardiac muscle. The polyglucosan body comprised of glycogen with abnormal configurations resists to α-amylase digestion. Patients with this disease displayed early-onset of muscle weakness and rapidly progressive dilated cardiomyopathy. Previous studies have shown that biallelic loss-of-function mutation in RBCC protein interacting with PKC1 (RBCK1) gene results in PGBM. RBCK1 has been suggested to carry out two cellular functions 1) as a transcription factor mediated by C-terminal of RBCK1, and 2) as an E3 ligase facilitated by the RING-between-RING domain. However, the molecular detail of how RBCK1 caused polyglucosan accumulation, leading to cardiomyopathy, is still unknown. PGBM is a rare disease so it is difficult to collect samples from patients for pathological mechanism study. Alternatively, I ablated RBCK1 in human embryonic stem cells (hESCs) by CRISPR/Cas9 to examine the effects of mutated RBCK1. In preliminary data, I found that RBCK1-deficient hESCs were able to differentiate into cardiomyocytes (CMs) with accumulation of polyglucosan bodies as revealed by both Periodic Acid-Schiff diastase (PAS-D) staining and transmission electron microscopy (TEM). Although the RBCKex5/ex5 KO hESC-derived CMs displayed well-organized sarcomere structure, at differentiation day 50 these RBCK1 knockout cells displayed both dilated and hypertrophic cardiomyopathy-like morphology as indicated by larger cell size, and the high expression of cardiomyopathy markers, NPPA, NPPB, and TGFβ. In addition, it was the first to discovered that RBCK1 deficiency caused severe aberrancy in the calcium handling and abnormal mitochondrial oxidative capacity. Moreover, the effects of RBCK1 deficiency were unaffected glycogenesis and glycogen degradation-related enzymes. Taken together I successfully established a cell-based disease model for pathological mechanism study that can be used for developing intervention strategies against RBCK1 deficiency-induced cardiomyopathy.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:36:49Z (GMT). No. of bitstreams: 1
U0001-1708202008154000.pdf: 5224824 bytes, checksum: 5acdf769aed520746a9f923783a740a2 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
Contents v
List of Figures viii
List of Tables ix
Introduction 1
Materials and Methods 5
2.1 MYH6:mCherry hESC culture 5
2.2 CRISPR/Cas9 targeting strategy 5
2.3 Directed cardiac differentiation and culture. 5
2.4 Immunofluorescence staining 6
2.5 Periodic Acid-Schiff diastase stain (PAS-D) 7
2.6 Cell cycle assay 7
2.7 Western blot 7
2.8 Real-time reverse transcription PCR (qRT-PCR) 8
2.9 Transmission electron microscopy (TEM) 8
2.10 Calcium imaging 9
2.11 Seahorse assay (OCR, Oxygen Consumption Rate and ECAR, Extracellular Acidification Rate) 9
2.12 FACS sorting 10
2.13 Statistical analysis 11
Results 12
3.1 Ablation of RBCK1 in hESCs 12
3.2 RBCK1 ex5/ex5 knockout hESCs express all the tested pluripotent markers and show no PGB accumulation. 13
3.3 RBCK1 deficiency has no effect on the cardiac differentiation and cardiac lineage specification 13
3.4 PGBs accumulation is found in RBCKex5/ex5 KO hESC-CMs 14
3.5 RBCK1-deficient CMs have no structure defect in the sarcomere, but have enlarged cardiomyocytes 14
3.6 RBCK1-deficient hESC-CMs exhibit cardiomyopathic features, with high expression of pathological markers, TGF-β, NPPA and NPPB, and with higher percentages of multi-nucleation. 15
3.7 RBCK1 deficiency CMs display abnormal mitochondrial oxidative capacity and generate less ATP, while these cells exhibit normal glycolytic function. 16
3.8 RBCK1 deficiency leads to impaired calcium handling 17
3.9 RBCK1 is highly expressed in CMs but not in hESCs 18
3.10 Glycogenesis and glycogen degradation-related enzymes are unaffected by RBCK1 deficiency 18
Discussion and Conclusion 20
Figures 25
Figure 1. Ablation of RBCK1 in human embryonic stem cells (hESCs). 25
Figure 2. No accumulation of polyglucosan bodies (PGBs) in both RBCK1 ablation hESCs, which has no effect cell cycle of hESCs and hESCs pluripotency. 28
Figure 3. RBCK1 deficiency caused by CRISPR/Cas9 techniques does not affect cardiac differentiation of hESCs. 29
Figure 4. Accumulation of polyglucosan bodies (PGBs) in RBCKex5/ex5 KO CMs. 31
Figure 5. RBCKex5/ex5 KO CMs display well-organized sarcomere structure. 32
Figure 6. Enlarged cell size in later stage of RBCK1-deficient hESC-CMs. 34
Figure 7. Phenotyping cardiomyopathy in RBCK1-deficient hESC-CMs. 35
Figure 8. No effect on glycolytic function of RBCK1-deficient hESC-CMs (day 30) via analysis of the extracellular acidification rate (ECAR). 36
Figure 9. The effect of RBCK1 deficiency on mitochondrial respiratory capacity of day 30 hESC-CMs. 37
Figure 10. RBCKex5/ex5 KO CMs showed abnormal calcium handling properties. 40
Figure 11. The expression of RBCK1 in WT hESC-CM lineages is significantly higher than WT hESC lineages. 41
Figure 12. The enzymes involved in glycogenesis are unaffected in RBCKex5/ex5 KO hESC-CMs. 42
Figure 13. The enzymes involved in glycogen degradation are unaffected in RBCKex5/ex5 KO hESC-CMs. 43
Figure S1. Cell genotyping showing high sgRNA targeting efficiency on exon5 of RBCK1 but zero on exon1. 45
Figure S2. The mRNA expressions of some ion channels or calcium handling-genes in RBCKex5/ex5 KO hESC-CMs are increased. 46
Tables 48
Table 1. sgRNA Primers 48
Table 2. RBCK1 PCR primers for genotyping 48
Table 3. Primers for qPCR 49
Table 3. Primers for qPCR (cont.) 50
Table 4. Primary antibody 51
Table 5. Secondary antibody 52
References 53
dc.language.isoen
dc.subjectRBCK1基因zh_TW
dc.subject人類胚胎幹細胞zh_TW
dc.subject葡糖多聚醣體肌肉病變症zh_TW
dc.subject擴張性心肌病zh_TW
dc.subject疾病模型zh_TW
dc.subject分化心肌細胞zh_TW
dc.subject鈣離子調控zh_TW
dc.subject肝糖代謝zh_TW
dc.subjectCalcium Handlingen
dc.subjectDilated Cardiomyopathyen
dc.subjectRBCK1 Geneen
dc.subjectHuman Embryonic Stem Cellen
dc.subjectDisease Modelen
dc.subjectDifferentiated Cardiomyocyteen
dc.subjectPolyglucosan Body Myopathyen
dc.subjectGlycogen Metabolismen
dc.title利用人類胚胎幹細胞分化的心肌細胞研究由RBCK1缺陷所引發的心肌病變之分子機制zh_TW
dc.titleStudy of molecular mechanism underlying RBCK1 deficiency-induced cardiomyopathy using hESC-derived cardiomyocytesen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李士傑(Shyh-Jye Lee),楊鎧鍵(Kai-Chien Yang),黃祥博(Hsiang-Po Huang)
dc.subject.keyword葡糖多聚醣體肌肉病變症,擴張性心肌病,RBCK1基因,人類胚胎幹細胞,疾病模型,分化心肌細胞,鈣離子調控,肝糖代謝,zh_TW
dc.subject.keywordPolyglucosan Body Myopathy,Dilated Cardiomyopathy,RBCK1 Gene,Human Embryonic Stem Cell,Disease Model,Differentiated Cardiomyocyte,Calcium Handling,Glycogen Metabolism,en
dc.relation.page57
dc.identifier.doi10.6342/NTU202003670
dc.rights.note有償授權
dc.date.accepted2020-08-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
U0001-1708202008154000.pdf
  未授權公開取用
5.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved