請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68791完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳章甫(Chang-Fu Wu) | |
| dc.contributor.author | Tzu-Ting Tsai | en |
| dc.contributor.author | 蔡慈庭 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:35:33Z | - |
| dc.date.available | 2022-08-23 | |
| dc.date.copyright | 2017-08-23 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-17 | |
| dc.identifier.citation | Agrawal H, Welch WA, Miller JW, Cocker DR. 2008. Emission measurements from a crude oil tanker at sea. Environmental Science & Technology 42:7098-7103.
Ames BN, Sims P, Grover PL. 1972. Epoxides of carcinogenic polycyclic hydrocarbons are frameshift mutagens. Science 176:47-49. Atkinson R, Arey J. 1994. Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: Formation of atmospheric mutagens. Environmental Health Perspectives 102.Suppl 4 117. Bates M, Bruno P, Caputi M, Caselli M, de Gennaro G, Tutino M. 2008. Analysis of polycyclic aromatic hydrocarbons (pahs) in airborne particles by direct sample introduction thermal desorption gc/ms. Atmospheric Environment 42:6144-6151. Bi X, Sheng G, Peng Pa, Chen Y, Zhang Z, Fu J. 2003. Distribution of particulate- and vapor-phase n-alkanes and polycyclic aromatic hydrocarbons in urban atmosphere of guangzhou, china. Atmospheric Environment 37:289–298. Callen MS, Iturmendi A, Lopez JM. 2014. Source apportionment of atmospheric pm2.5-bound polycyclic aromatic hydrocarbons by a pmf receptor model. Assessment of potential risk for human health. Environ Pollut 195:167-177. Caricchia AM, Chiavarini S, Pezza M. 1999. Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of naples (italy). Atmospheric Environment 33:3731-3738. Chen YC, Chiang HC, Hsu CY, Yang TT, Lin TY, Chen MJ, et al. 2016. Ambient pm2.5-bound polycyclic aromatic hydrocarbons (pahs) in changhua county, central taiwan: Seasonal variation, source apportionment and cancer risk assessment. Environ Pollut 218:372-382. Chrysikou LP, Samara CA. 2009. Seasonal variation of the size distribution of urban particulate matter and associated organic pollutants in the ambient air. Atmospheric Environment 43:4557-4569. De Nicola F, Murena F, Costagliola MA, Alfani A, Baldantoni D, Prati MV, et al. 2013. A multi-approach monitoring of particulate matter, metals and pahs in an urban street canyon. Environ Sci Pollut Res Int 20:4969-4979. del Rosario Sienra M, Rosazza NG, Préndez M. 2005. Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in urban atmospheric respirable particulate matter. Atmospheric Research 75:267-281. Ding LC, Ke F, Wang DKW, Dann T, Austin CC. 2009. A new direct thermal desorption-gc/ms method: Organic speciation of ambient particulate matter collected in golden, bc. Atmospheric Environment 43:4894-4902. DIRECTIVE, THIS HA. 2005. Directive 2004/107/ec of the european parliament and of the council of 15 december 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. DRI. 2005. Pre-firing and acceptance testing of quartz-fiber filters for aerosol and carbonaceous material sampling. . DRI STANDARD OPERATING PROCEDURE Revision 5. Dunbara JC, Lina C-I, Verguchta I, Wonga J, Durant JL. 2001. Estimating the contributions of mobile sources of pah to urban air using real-time pah monitoring. The Science of the Total Environment 279 1-19. EPA U. 1995. Toxicological profile for polycyclic aromatic hydrocarbons. . Agency for Toxic Substances and Disease Registry, Atlanta, Ge, USA 19. Fang GC, Wu YS, Chen JC, Chang CN, Ho TT. 2006. Characteristic of polycyclic aromatic hydrocarbon concentrations and source identification for fine and coarse particulates at taichung harbor near taiwan strait during 2004-2005. Sci Total Environ 366:729-738. Gianelle V, Colombi C, Caserini S, Ozgen S, Galante S, Marongiu A, et al. 2013. Benzo(a)pyrene air concentrations and emission inventory in lombardy region, italy. Atmospheric Pollution Research 4:257-266. Gil-Molto J, Varea M, Galindo N, Crespo J. 2009. Application of an automatic thermal desorption-gas chromatography-mass spectrometry system for the analysis of polycyclic aromatic hydrocarbons in airborne particulate matter. J Chromatogr A 1216:1285-1289. Golly B, Brulfert G, Berlioux G, Jaffrezo JL, Besombes JL. 2015. Large chemical characterisation of pm10 emitted from graphite material production: Application in source apportionment. Sci Total Environ 538:634-643. Grandesso E, Perez Ballesta P, Kowalewski K. 2013. Thermal desorption gc-ms as a tool to provide pah certified standard reference material on particulate matter quartz filters. Talanta 105:101-108. Han X, Zhou N, Cui Z, Ma M, Li L, Cai M, et al. 2011. Association between urinary polycyclic aromatic hydrocarbon metabolites and sperm DNA damage: A population study in chongqing, china. Environ Health Perspect 119:652-657. Hays MD, Smith ND, Kinsey J, Dong Y, Kariher P. 2003. Polycyclic aromatic hydrocarbon size distributions in aerosols from appliances of residential wood combustion as determined by direct thermal desorption—gc/ms. Journal of Aerosol Science 34:1061-1084. Herrington JS, Hays MD, George BJ, Baldauf RW. 2012. The effects of operating conditions on semivolatile organic compounds emitted from light-duty, gasoline-powered motor vehicles. Atmospheric Environment 54:53-59. Ho C-C, Chan C-C, Cho C-W, Lin H-I, Lee J-H, Wu C-F. 2015. Land use regression modeling with vertical distribution measurements for fine particulate matter and elements in an urban area. Atmospheric Environment 104:256-263. Ho SS, Yu JZ, Chow JC, Zielinska B, Watson JG, Sit EH, et al. 2008. Evaluation of an in-injection port thermal desorption-gas chromatography/mass spectrometry method for analysis of non-polar organic compounds in ambient aerosol samples. J Chromatogr A 1200:217-227. Ho SSH, Yu JZ. 2004. In-injection port thermal desorption and subsequent gas chromatography–mass spectrometric analysis of polycyclic aromatic hydrocarbons and n-alkanes in atmospheric aerosol samples. Journal of Chromatography A 1059:121-129. Hoyer PB. 2001. Reproductive toxicology: Current and future directions. Biochemical pharmacology 62:1557-1564. IARC. 2010. Iarc monographs on the evaluation of carcinogenic risks to humans. IARC. 2017. Agents classified by the iarc monographs. 1-119. J.Schauer J, F.Rogge∗ W, M.Hildemann L, A.Mazurek M. 1996. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmospheric Environment 30(22), 3837-3855. Jang E, Alam MS, Harrison RM. 2013. Source apportionment of polycyclic aromatic hydrocarbons in urban air using positive matrix factorization and spatial distribution analysis. Atmospheric Environment 79:271-285. Jung KH, Bernabe K, Moors K, Yan B, Chillrud SN, Whyatt R, et al. 2011. Effects of floor level and building type on residential levels of outdoor and indoor polycyclic aromatic hydrocarbons, black carbon, and particulate matter in new york city. Atmosphere (Basel) 2:96-109. Kalaiarasan M, Balasubramanian R, Cheong KWD, Tham KW. 2009. Particulate-bound polycyclic aromatic hydrocarbons in naturally ventilated multi-storey residential buildings of singapore: Vertical distribution and potential health risks. Building and Environment 44:418-425. Katsoyiannis A, Sweetman AJ, Jones KC. 2011. Pah molecular diagnostic ratios applied to atmospheric sources: A critical evaluation using two decades of source inventory and air concentration data from the uk. Environ Sci Technol 45:8897-8906. Khan MF, Latif MT, Lim CH, Amil N, Jaafar SA, Dominick D, et al. 2015. Seasonal effect and source apportionment of polycyclic aromatic hydrocarbons in pm2.5. Atmospheric Environment 106:178-190. Kong S, Ji Y, Li Z, Lu B, Bai Z. 2013. Emission and profile characteristic of polycyclic aromatic hydrocarbons in pm2.5 and pm10 from stationary sources based on dilution sampling. Atmospheric Environment 77:155-165. Larssen S, R. J. C. F. Sluyter, and Constantin Helmis 1999. Criteria for euroairnet: The eea air quality monitoring and information network. European Environment Agency,. Li A, Jang J-K, Scheff PA. 2003. Application of epa cmb8.2 model for source apportionment of sediment pahs in lake calumet,chicago. Environ Sci Technol 37: 2958–2965. Li C-T, Mi H-H, Lee W-J, You W-C, Wang Y-F. 1999. Pah emission from the industrial boilers. Journal of Hazardous Materials:1-11. Li CK, Kamens RM. 1993. The use of polycyclic aromatic-hydrocarbons as source signatures in receptor modeling. Atmos Environ a-Gen 27:523-532. Liao CM, Chio CP, Chen WY, Ju YR, Li WH, Cheng YH, et al. 2011. Lung cancer risk in relation to traffic-related nano/ultrafine particle-bound pahs exposure: A preliminary probabilistic assessment. J Hazard Mater 190:150-158. Lin MD, Rau JY, Tseng HH, Wey MY, Chu CW, Lin YH, et al. 2008. Characterizing pah emission concentrations in ambient air during a large-scale joss paper open-burning event. J Hazard Mater 156:223-229. Mancilla Y, Mendoza A, Fraser MP, Herckes P. 2016. Organic composition and source apportionment of fine aerosol at monterrey, mexico, based on organic markers. Atmospheric Chemistry and Physics 16:953-970. Manoli E, Voutsa D, Samara C. 2002. Chemical characterization and source identification/apportionment of fine and coarse air particles in thessaloniki, greece. Atmospheric Environment 36:949-961. Manoli E, Kouras A, Samara C. 2004. Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern greece. Chemosphere 56:867–878. Masiol M, Hofer A, Squizzato S, Piazza R, Rampazzo G, Pavoni B. 2012. Carcinogenic and mutagenic risk associated to airborne particle-phase polycyclic aromatic hydrocarbons: A source apportionment. Atmospheric Environment 60:375-382. Miguel AH, Eiguren-Fernandez A, Jaques PA, Froines JR, Grant BL, Mayo PR, et al. 2004. Seasonal variation of the particle size distribution of polycyclic aromatic hydrocarbons and of major aerosol species in claremont, california. Atmospheric Environment 38:3241-3251. Moeinaddini M, Esmaili Sari A, Riyahi bakhtiari A, Chan AY, Taghavi SM, Hawker D, et al. 2014. Source apportionment of pahs and n-alkanes in respirable particles in tehran, iran by wind sector and vertical profile. Environ Sci Pollut Res Int 21:7757-7772. Mostert MMR, Ayoko GA, Kokot S. 2010. Application of chemometrics to analysis of soil pollutants. TrAC Trends in Analytical Chemistry 29:430-445. Nisbet IC, LaGoy PK. 1992. Toxic equivalency factors (tefs) for polycyclic aromatic hydrocarbons (pahs). Regul Toxicol Pharmacol 16:290-300. Okudaa T, Kumatab H, Zakariac MP, Naraokad H, Ishiwatarid R, Takadaa H. 2002. Source identification of malaysian atmospheric polycyclic aromatic hydrocarbons nearby forest fires using molecular and isotopic compositions. Atmospheric Environment 36:611–618. Oros DR, Simoneit BRT. 2000. Identification and emission rates of molecular tracers in coal smoke particulate matter. Fuel 79:515-536. Perera FP, Tang D, Wang S, Vishnevetsky J, Zhang B, Diaz D, et al. 2012. Prenatal polycyclic aromatic hydrocarbon (pah) exposure and child behavior at age 6-7 years. Environ Health Perspect 120:921-926. Perrone MG, Carbone C, Faedo D, Ferrero L, Maggioni A, Sangiorgi G, et al. 2014. Exhaust emissions of polycyclic aromatic hydrocarbons, n-alkanes and phenols from vehicles coming within different european classes. Atmospheric Environment 82:391-400. Pierce RC, Katz M. 1975. Dependency of polynuclear aromatic hydrocarbon content on size distribution of atmospheric aerosols. Environmental Science & Technology 9.4:347-353. Pistikopoulos P, P., Masclet aGM. 1990. A receptor model adapted to reactive species: Polycyclic aromatic hydrocarbons; evaluation of source contributions in an open urban site—i. Particle compounds. Pitts JN, Jr., Van Cauwenberghe KA, Grosjean D, Schmid JP, Fitz DR, Belser WL, et al. 1978. Atmospheric reactions of polycyclic aromatic hydrocarbons: Facile formation of mutagenic nitro derivatives. Science 202:515-519. Polissar AV, Hopke PK, Paatero P, Malm WC, Sisler JF. 1998. Atmospheric aerosol over alaska: 2. Elemental composition and sources. Journal of Geophysical Research: Atmospheres 103:19045-19057. Pongpiachan S. 2013. Diurnal variation, vertical distribution and source apportionment of carcinogenic polycyclic aromatic hydrocarbons (pahs) in chiang-mai, thailand. Asian Pacific Journal of Cancer Prevention 14:1851-1863. Pope CA, Dockery DW. 2006. Health effects of fine particulate air pollution: Lines that connect. Journal of the Air & Waste Management Association 56:709-742. Ravindra K, Sokhi R, Vangrieken R. 2008. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment 42:2895-2921. Ravindra K, Atul K. Mittal, and René Van Grieken. 2001. Health risk assessment of urban suspended particulate matter with special reference to polycyclic aromatic hydrocarbons: A review. Reviews on environmental health. Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simonelt BRT. 1991. Sources of fine organic aerosol .1. Charbroilers and meat cooking operations. Environmental Science & Technology 25:1112-1125. Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT. 1993a. Sources of fine organic aerosol .3. Road dust, tire debris, and organometallic brake lining dust - roads as sources and sinks. Environmental Science & Technology 27:1892-1904. Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT. 1993b. Sources of fine organic aerosol .5. Natural-gas home appliances. Environmental Science & Technology 27:2736-2744. Rohr AC, Wyzga RE. 2012. Attributing health effects to individual particulate matter constituents. Atmospheric Environment 62:130-152. Slezakova K, Castro D, Pereira MC, Morais S, Delerue-Matos C, Alvim-Ferraz MC. 2010. Influence of traffic emissions on the carcinogenic polycyclic aromatic hydrocarbons in outdoor breathable particles. Journal of the Air & Waste Management Association 60:393-401. Sylvestre A, Mizzi A, Mathiot S, Masson F, Jaffrezo JL, Dron J, et al. 2017. Comprehensive chemical characterization of industrial pm2.5 from steel industry activities. Atmospheric Environment 152:180-190. Tao S, Wang Y, Wu S, Liu S, Dou H, Liu Y, et al. 2007. Vertical distribution of polycyclic aromatic hydrocarbons in atmospheric boundary layer of beijing in winter. Atmospheric Environment 41:9594-9602. Teranishi K, Hamada K, Hiromu W. 1975. Quantitative relationship between carcinogenecity and mutagenicity of polyaromatic hydrocarbons in salmonnella typhimurium mutants. Mutation Research/Environmental Mutagenesis and Related Subjects 31:97-102. Terzi E, Samara C. 2004. Gas-particle partitioning of polycyclic aromatic hydrocarbons in urban, adjacent coastal, and continental background sites of western greece. Van Drooge BL, Nikolova I, Ballesta PP. 2009. Thermal desorption gas chromatography-mass spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from ambient air particulate matter. J Chromatogr A 1216:4030-4039. Venkataramant C, Friedlander SK. 1994. Size distributions of polycyclic aromatic hydrocarbons and elemental carbon. 2. Ambient measurements and effects of atmospheric processes. Wang R, Yousaf B, Sun R, Zhang H, Zhang J, Liu G. 2016. Emission characterization and delta(13)c values of parent pahs and nitro-pahs in size-segregated particulate matters from coal-fired power plants. J Hazard Mater 318:487-496. Watson JG, Cooper JA, Huntzicker JJ. 1984. The effective variance weighting for least-squares calculations applied to the mass balance receptor model. Atmospheric Environment 18:1347-1355. Watson JG, Robinson NF, Lewis C, Coulter T. 1997. Chemical mass balance receptor model-version 8 (cmb8) user's manual, document no. 1808.1d1, desert research institute, reno, nv. Watson JG. 1998. Northern front range air quality study final report. WHO. 2000. World health organization. Air quality guidelines for europe. second ed. WHO, Regional Office for Europe (Copenhagen), Copenhagen. Wu CD, Lung SC. 2012. Applying gis and fine-resolution digital terrain models to assess three-dimensional population distribution under traffic impacts. J Expo Sci Environ Epidemiol 22:126-134. Xia Z, Duan X, Tao S, Qiu W, Liu D, Wang Y, et al. 2013. Pollution level, inhalation exposure and lung cancer risk of ambient atmospheric polycyclic aromatic hydrocarbons (pahs) in taiyuan, china. Environ Pollut 173:150-156. Yang H-H, Tsai C-H, Chao M-R, Su Y-L, Chien S-M. 2006. Source identification and size distribution of atmospheric polycyclic aromatic hydrocarbons during rice straw burning period. Atmospheric Environment 40:1266-1274. Yang HH, Chiang CF, Lee WJ, Hwang KP, Wu EMY. 1999. Size distribution and dry deposition of road dust pahs Environment International 25.5 585-597. Yang T-T, Hsu C-Y, Chen Y-C, Young L-H, Huang C-H, Ku C-H. 2017. Characteristics, sources, and health risks of atmospheric pm2.5-bound polycyclic aromatic hydrocarbons in hsinchu, taiwan. Aerosol and Air Quality Research 17:563-573. Zou Y, Wang L, Christensen ER. 2015. Problems in the fingerprints based polycyclic aromatic hydrocarbons source apportionment analysis and a practical solution. Environ Pollut 205:394-402. 周宜蓁. '利用熱脫附氣相層析質譜法分析空氣微粒中多環芳香烴並探討與特定污染源之相關性.' 臺灣大學環境衛生研究所學位論文 (2017): 1-71. 米孝萱. '移動性污染源排放多環芳香烴化合物之特徵.' 環境工程學系. 國立成功大學, 台南市 (1998): 280. 楊錫賢. 大氣環境中多環芳香烴化合物與金屬元素之特徵. Diss. 博士論文, 國立成功大學環境工程學系, 1998. 賴順安. '鋼鐵廠煙道排放多環芳香烴化合物及金屬元素之特徵.' 碩士論文, 國立成功大學環境工程研究所 (1999).. 劉旭崇. '二行程, 四行程化油器與四行程噴射引擎機車多環芳香烴化合物排放特徵研究之研究.' (2004). 鍾鎔同. '寺廟內空氣中 PAHs 及碳成分特性探討.' 屏東科技大學環境工程與科學系所學位論文 (2008): 1-116. 羅紹齊. '餐飲業細懸浮微粒排放與化學成份分析.' 朝陽科技大學環境工程與管理系學位論文 (2014): 1-134. 陳冠宇. '巴士站及寺廟懸浮微粒之粒徑分布與成分特性之研究.' 臺灣大學職業醫學與工業衛生研究所學位論文 (2010): 1-111. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68791 | - |
| dc.description.abstract | 人類暴露於多環芳香烴(PAHs)可能會對健康造成不良影響(如肺癌,DNA損傷,生殖毒理學和兒童發育影響等問題),其中多數研究顯示微粒相中細懸浮微粒內含有較多多環芳香烴物質,且細懸浮微粒容易穿透肺泡並損害人的健康。本研究執行的目的為利用24小時連續採集之樣本,量化細懸浮微粒(PM2.5)中多環芳香烴在不同垂直高度下的濃度差異,並推估吸入性暴露的潛在健康風險及評估大台北都會區多環芳香烴排放的汙染源貢獻。
本研究於2016年6月14日至2017年5月4日以台北都會區中的5棟建築高樓做為採樣點,於各大樓的低中高樓層同時進行空氣樣本採集,並將採集到的樣本通過方法優化過後的熱脫附氣相層析質譜儀(Thermal desorption gas chromatograph/mass spectrometer, TD-GC/MS)分析出31種PAHs物質,最後利用化學質量平衡模型(Chemical Mass Balance model, CMB model)解析出汙染源的貢獻狀況。 本研究中細懸浮微粒結合多環芳香烴的平均濃度(減去Naphthalene)為1.123 ± 0.869 (範圍為0.231至 5.551) ng/m3,最主要的濃度貢獻物質為Benzo[b+k+j]fluoranthene 和Benzo[ghi]perylene,其佔總PAH含量的19.73%和11.78%。而當量致癌濃度(ΣBaPeq)為0.075 ± 0.068 ng/m3,其遠低於世界衛生組織建立之最大風險允許水平(1ng/m3),而測得之平均濃度和當量致癌濃度值均呈有隨著樓層高度下降的趨勢。 污染來源貢獻的結果顯示主要貢獻為交通相關的來源,其佔了54%;其次是燒香(13.3%),接著是道路灰塵(12.9%)、工業活動(10.92%)和烹飪行為(8.26%)。關於汙染源的垂直趨勢,汽車尾氣排放、柴油機尾氣排放、煞車行為加熱產生之微粒和道路揚塵貢獻濃度皆隨高度增加而降低。燒香及工業活動顯示沒有高度梯度趨勢,而烹飪行為造成的貢獻顯示出受到建築周圍環境影響的趨勢。這個結果有助於更好地界定PM2.5環境中的PAH趨勢和來源貢獻,並提供了台北都會區的暴露狀況信息,以利之後制定更有效的公共衛生保護政策。 | zh_TW |
| dc.description.abstract | Human exposure to polycyclic aromatic hydrocarbons (PAHs) may cause adverse health effects (e.g., lung cancer, DNA damage, reproductive toxicology and the child developmental effects), especially in fine particulate phase. The objectives of this study were using 24-hour continuous sampling results to (1) quantify PAHs concentration levels in PM2.5 (particles with an aerodynamic diameter less than 2.5μm) at various heights, (2) estimate the potential health risks associated with inhalation exposure, and (3) evaluate the contributions of compositions from emission sources in Taipei metropolis. The sampling campaigns were conducted at five buildings in Taipei metropolis from June 14 in 2016 to May 4 in 2017. Each set of sampling sites (low-, mid-, and high-level floors) was monitored simultaneously. A total of 31 PAHs were identified and quantified by an optimized analytical method of thermal desorption (TD) integrated to a gas chromatograph–mass spectrometer (GC/MS). Finally, Chemical Mass Balance (CMB) model was used for the source apportionments of pollutants.
The average concentrations of PM2.5-bound PAHs (except Nap) were 1.123 ± 0.869 (ranged from 0.231 to 5.551) ng/m3. The predominant PAHs were Benzo[b]fluoranthene group and Benzo[ghi]perylene, constituting 19.73% and 11.78% of the total PAH contents. The average benzo[a]pyrene-equivalent toxicity (ΣBaPeq) was 0.075 ± 0.068 ng/m3, lower than the maximum permissible risk level of 1 ng/m3 (WHO). Moreover, both the average concentrations and ΣBaPeq values showed a decreased gradient from low-floor to high-floor. With regard to the results of source contributions, the major source was dominated by vehicle emission sources, accounting for 54.5%, followed by incense-burning activities (13.30%), road dust (12.94%), industrial activities (10.92%) and cooking (8.26%). About the vertical trend, the average source contributions from gasoline-powered vehicle exhaust, diesel-powered vehicle exhaust, brake lining particle and road dust decreased with heights. The incense burning and industrial activities did not show the difference by heights. However, the source of cooking reveled the trend which was influenced by the sampling environments. The results served to better define the trend of PM2.5 bound PAH and its source contributions in Taipei metropolis for developing a more effective policies to protect public health. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:35:33Z (GMT). No. of bitstreams: 1 ntu-106-R04841020-1.pdf: 1688681 bytes, checksum: 4be23af27567af9bc485d6f837f0d513 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 1. Introduction 1
2. Methods 9 2.1 Introduction of sampling sites 9 2.2 Sampling strategies 12 2.3 Chemical analysis 13 2.3.1 Standard reference material 13 2.3.2 Analytical equipment and program 13 2.4 Quality Assurance and Quality Control (QA/QC) 15 2.5 Source apportionment 18 2.5.1 Data pretreatment 18 2.5.2 Determination of emission profile 19 2.5.2 Atmospheric transmission process 21 2.6 Carcinogenic potencies and health risk analysis 22 3.1 Modification of the analytical operative parameters 23 3.2 Concentrations of PM2.5-bound PAHs 24 3.3 Carcinogenic potencies and health risk analysis 25 3.4 Source apportionment results 26 3.5 Study limitations 31 4. Conclusions 32 5. References 51 6. Appendix 58 Appendix A Certified Mass Fractions and Mass Concentrations of Components in SRM 2260 58 Appendix B The internal standard product:PAH-Mix 9 deuterated 59 Appendix C Schematic overview of the calibration curv 60 Appendix D Standard performance measures of the US EPA CMB 8.2 model 65 Appendix E Parameters and result of source apportionment from CMB model 66 | |
| dc.language.iso | zh-TW | |
| dc.subject | 化學質量平衡受體模式 | zh_TW |
| dc.subject | 多環芳香烴 | zh_TW |
| dc.subject | 細懸浮微粒 | zh_TW |
| dc.subject | 熱脫附 | zh_TW |
| dc.subject | 氣相層析質譜儀 | zh_TW |
| dc.subject | polycyclic aromatic hydrocarbons | en |
| dc.subject | CMB receptor modeling. | en |
| dc.subject | GC/MS | en |
| dc.subject | thermal desorption | en |
| dc.subject | PM2.5 | en |
| dc.title | 台北都會區細懸浮微粒結合多環芳香烴的空間分佈與污染源解析 | zh_TW |
| dc.title | Spatial Distribution and Source Apportionment of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Taipei metropolis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡詩偉(Shih-Wei Tsai),陳志傑(Chih-Chieh Chen) | |
| dc.subject.keyword | 多環芳香烴,細懸浮微粒,熱脫附,氣相層析質譜儀,化學質量平衡受體模式, | zh_TW |
| dc.subject.keyword | polycyclic aromatic hydrocarbons,PM2.5,thermal desorption,GC/MS,CMB receptor modeling., | en |
| dc.relation.page | 70 | |
| dc.identifier.doi | 10.6342/NTU201703742 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-17 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 職業醫學與工業衛生研究所 | zh_TW |
| 顯示於系所單位: | 職業醫學與工業衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 1.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
