Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68774
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林正芳(Cheng-Fang Lin)
dc.contributor.authorChang-Jui Chenen
dc.contributor.author陳昶瑞zh_TW
dc.date.accessioned2021-06-17T02:34:43Z-
dc.date.available2027-08-15
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-17
dc.identifier.citationAbdelgadir, A., Chen, X., Liu, J., Xie, X., Zhang, J., Zhang, K.,& Liu, N. (2014). Characteristics, process parameters, and inner components of anaerobic bioreactors. BioMed research international.
Alatriste-Mondragón, F., Samar, P., Cox, H. H., Ahring, B. K., & Iranpour, R. (2006). Anaerobic codigestion of municipal, farm, and industrial organic wastes: a survey of recent literature. Water Environment Research, 78(6), 607-636.
Almeida, C. M., Silvério, S., Silva, C., Paulino, A., Nascimento, S., & Revez, C. A. (2013). Optimization and validation of FTIR method with tetrachloroethylene for determination of oils and grease in water matrices. Journal of the Brazilian Chemical Society, 24(9), 1403-1413.
Angelidaki, I., Ellegaard, L., & Ahring, B. K. (1999). A comprehensive model of anaerobic bioconversion of complex substrates to biogas. Biotechnology and bioengineering, 63(3), 363-372.
Annuk, H., & Moran, A. P. (2009). Microbial biofilm-related polysaccharides in biofouling and corrosion.
Association, A. P. H., Association, A. W. W., Federation, W. P. C., & Federation, W. E. (2012). Standard methods for the examination of water and wastewater (Vol. 2): American Public Health Association(APHA).
Avella, A., Görner, T., & de Donato, P. (2010). The pitfalls of protein quantification in wastewater treatment studies. Science of the total environment, 408(20), 4906-4909.
American Pharmacists Association, & APhA, M. T. M. (2016). Central.
Badawy, A.-B., Morgan, C., & Turner, J. (2008). Application of the Phenomenex EZ: faast™ amino acid analysis kit for rapid gas-chromatographic determination of concentrations of plasma tryptophan and its brain uptake competitors. Amino acids, 34(4), 587-596.
Badawy, A. A.-B. (2012). The EZ: Faast family of amino acid analysis kits: application of the GC-FID kit for rapid determination of plasma tryptophan and other amino acids. Amino Acid Analysis: Methods and Protocols, 153-164.
Black, L. T., Spyres, G. G., & Brekke, O. L. (1967). Determination of oil contents of dry-milled corn fractions by gas-liquid chromatography. Cereal Chem, 44(2), 152-159.
Breure, A., Mooijman, K., & Andel, J. v. (1986). Protein degradation in anaerobic digestion: influence of volatile fatty acids and carbohydrates on hydrolysis and acidogenic fermentation of gelatin. Applied microbiology and biotechnology, 24(5), 426-431.
Brohi, R. O. Z. Z., Khuhawar, M. Y., & Khuhawar, T. M. J. (2016). GC-FID determination of nucleobases guanine, adenine, cytosine, and thymine from DNA by precolumn derivatization with isobutyl chloroformate. Journal of Analytical Science and Technology, 7(1), 10.
Brown, R. E., Jarvis, K. L., & Hyland, K. J. (1989). Protein measurement using bicinchoninic acid: elimination of interfering substances. Analytical biochemistry, 180(1), 136-139.
Brunton, N., Gormley, T., & Murray, B. (2007). Use of the alditol acetate derivatisation for the analysis of reducing sugars in potato tubers. Food Chemistry, 104(1), 398-402.
Bucci, R., Girelli, A. M., Tafani, S., & Tarola, A. M. (2015). Oils and grease determination by FT-IR and n-hexane as extraction solvent. Journal of Analytical Chemistry, 70(3), 316-319.
Buysse, J. A. N., & Merckx, R. (1993). An Improved Colorimetric Method to Quantify Sugar Content of Plant Tissue. Journal of Experimental Botany, 44(10), 1627-1629. doi:10.1093/jxb/44.10.1627
BWDB, G. (2012). Grounwater Quality Report. WSP-2012.
Carlsson, N. G., Karlsson, H., & Sandberg, A. S. (1992). Determination of oligosaccharides in foods, diets, and intestinal contents by high-temperature gas chromatography and gas chromatography/mass spectrometry. Journal of agricultural and food chemistry, 40(12), 2404-2412.
Chen, Y. R., & Hashimoto, A. G. (1978). Kinetics of methane fermentation. In Biotechnol. Bioeng. Symp (Vol. 8, pp. 269-282).
Cheong, D. Y., & Hansen, C. L. (2006). Acidogenesis characteristics of natural, mixed anaerobes converting carbohydrate-rich synthetic wastewater to hydrogen. Process biochemistry, 41(8), 1736-1745.
Chipasa, K., & Mędrzycka, K. (2006). Behavior of lipids in biological wastewater treatment processes. Journal of industrial microbiology and biotechnology, 33(8), 635-645.
Chutipongtanate, S., Watcharatanyatip, K., Homvises, T., Jaturongkakul, K., & Thongboonkerd, V. (2012). Systematic comparisons of various spectrophotometric and colorimetric methods to measure concentrations of protein, peptide and amino acid: detectable limits, linear dynamic ranges, interferences, practicality and unit costs. Talanta, 98, 123-129.
Cirne, D., Paloumet, X., Björnsson, L., Alves, M., & Mattiasson, B. (2007). Anaerobic digestion of lipid-rich waste—effects of lipid concentration. Renewable energy, 32(6), 965-975.
Coultate, T. P. (2009). Food: the chemistry of its components. Royal Society of Chemistry.
Daghbouche, Y., Garrigues, S., Morales-Rubio, A., & de la Guardia, M. (1997). Evaluation of extraction alternatives for Fourier transform infrared spectrometric determination of oil and greases in water. Analytica chimica acta, 345(1-3), 161-171.
Dawson, J. M., & Heatlie, P. L. (1984). Lowry method of protein quantification: evidence for photosensitivity. Analytical biochemistry, 140(2), 391-393.
Dignac, M.-F., Ginestet, P., Rybacki, D., Bruchet, A., Urbain, V., & Scribe, P. (2000). Fate of wastewater organic pollution during activated sludge treatment: nature of residual organic matter. Water Research, 34(17), 4185-4194.
Dinopoulou, G., Rudd, T., & Lester, J. N. (1988). Anaerobic acidogenesis of a complex wastewater: I. The influence of operational parameters on reactor performance. Biotechnology and bioengineering, 31(9), 958-968.
Dinopoulou, G., Sterritt, R. M., & Lester, J. N. (1988). Anaerobic acidogenesis of a complex wastewater: II. Kinetics of growth, inhibition, and product formation. Biotechnology and bioengineering, 31(9), 969-978.
Elbeshbishy, E., & Nakhla, G. (2012). Batch anaerobic co-digestion of proteins and carbohydrates. Bioresource technology, 116, 170-178.
Füzfai, Z., Boldizsár, I., & Molnar-Perl, I. (2008). Characteristic fragmentation patterns of the trimethylsilyl and trimethylsilyl–oxime derivatives of various saccharides as obtained by gas chromatography coupled to ion-trap mass spectrometry. Journal of Chromatography A, 1177(1), 183-189.
Fang, H., & Chung, D. W.-C. (1999). Anaerobic treatment of proteinaceous wastewater under mesophilic and thermophilic conditions. Water Science and Technology, 40(1), 77-84.
Fang, H. H., & Yu, H. (2000). Effect of HRT on mesophilic acidogenesis of dairy wastewater. Journal of environmental engineering, 126(12), 1145-1148.
Farmaki, E., Kaloudis, T., Dimitrou, K., Thanasoulias, N., Kousouris, L., & Tzoumerkas, F. (2007). Validation of a FT-IR method for the determination of oils and grease in water using tetrachloroethylene as the extraction solvent. Desalination, 210(1-3), 52-60.
Fei, Q., Chang, H. N., Shang, L., Kim, N., & Kang, J. (2011). The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresource Technology, 102(3), 2695-2701.
Fox, A., Morgan, S. L., & Gilbart, J. (1989). Preparation of alditol acetates and their analysis by gas chromatography (GC) and mass spectrometry (MS). Analysis of Carbohydrates by GLC and MS, 87-117.
Galant, A., Kaufman, R., & Wilson, J. (2015). Glucose: detection and analysis. Food Chemistry, 188, 149-160.
Hartmann, H., Angelidaki, I., & Ahring, B. K. (2002). Co-digestion of the organic fraction of municipal waste with other waste types. In Biomethanization of the organic fraction of municipal solid wastes (pp. 181-200). IWA Publishing.
Haberhauer-Troyer, C., Álvarez-Llamas, G., Zitting, E., Rodrıguez-González, P., Rosenberg, E., & Sanz-Medel, A. (2003). Comparison of different chloroformates for the derivatisation of seleno amino acids for gas chromatographic analysis. Journal of Chromatography A, 1015(1), 1-10.
Hall, M. B. (2013). Efficacy of reducing sugar and phenol–sulfuric acid assays for analysis of soluble carbohydrates in feedstuffs. Animal Feed Science and Technology, 185(1), 94-100.
Hamann, C. S., Myers, D. P., Rittle, K. J., Wirth, E. F., & Moe, O. A. (1991). Quantitative determination of the amino acid composition of a protein using gas chromatography-mass spectrometry. J. Chem. Educ, 68(5), 438.
Hatanaka, C., & Kobara, Y. (1980). Determination of Glucose by a Modification of Somogyi-Nelson Method. Agricultural and Biological Chemistry, 44(12), 2943-2949. doi:10.1271/bbb1961.44.2943
Henrichs, S. M., & Williams, P. M. (1985). Dissolved and particulate amino acids and carbohydrates in the sea surface microlayer. Marine Chemistry, 17(2), 141-163.
Henze, M., & Harremoës, P. (1983). Anaerobic treatment of wastewater in fixed film reactors–a literature review. Water science and technology, 15(8-9), 1-101.
Hua, H.Y., Liang, Q.-l., Chen, J., WANG, Y.-m., LI, P., & LUO, G.-a. (2011). Development of a derivatization–free GC–FID method for evaluation of free fatty acid levels in plasma of diabetic nephro-pathy patients. Chem. Res, 27(4), 578-583.
Huang, M.H., Li, Y.-m., & Gu, G.-w. (2010). Chemical composition of organic matters in domestic wastewater. Desalination, 262(1), 36-42.
Hušek, P. (1998). Chloroformates in gas chromatography as general purpose derivatizing agents. Journal of Chromatography B: Biomedical Sciences and Applications, 717(1), 57-91.
Isidorov, V. A., & Szczepaniak, L. (2009). Gas chromatographic retention indices of biologically and environmentally important organic compounds on capillary columns with low-polar stationary phases. Journal of Chromatography A, 1216(51), 8998-9007.
Jimenez, J., Vedrenne, F., Denis, C., Mottet, A., Déléris, S., Steyer, J.-P., & Cacho Rivero, J. A. (2013). A statistical comparison of protein and carbohydrate characterisation methodology applied on sewage sludge samples. Water Research, 47(5), 1751-1762.
Kamizake, N. K., Gonçalves, M. M., Zaia, C. T., & Zaia, D. A. (2003). Determination of total proteins in cow milk powder samples: a comparative study between the Kjeldahl method and spectrophotometric methods. Journal of Food composition and analysis, 16(4), 507-516.
Kaspar, H., Dettmer, K., Gronwald, W., & Oefner, P. J. (2008). Automated GC–MS analysis of free amino acids in biological fluids. Journal of Chromatography B, 870(2), 222-232.
Kim, I., Kim, S. H., Shin, H.S., & Jung, J. Y. (2010). Anaerobic lipid degradation through acidification and methanization. Journal of microbiology and biotechnology, 20(1), 179-186.
Kirazov, L. P., Venkov, L. G., & Kirazov, E. P. (1993). Comparison of the Lowry and the Bradford protein assays as applied for protein estimation of membrane-containing fractions. Analytical biochemistry, 208(1), 44-48.
Kuang, Y. (2002). Enhancing anaerobic degradation of lipids in wastewater by addition of co-substrate (Doctoral dissertation, Murdoch University).
Landine, R. C., Brown, G. J., Steeves, A. L., Bough, W. A., Bybee, E. C., & Burke, E. D. (1988). Anaerobic treatment of dairy wastewater. In Proceedings of the Industrial Waste Conference, Purdue University (USA).
Latimer, G. W. (2012). Official methods of analysis of AOAC International (No. 543/L357). AOAC international.
Le, C., & Stuckey, D. C. (2016). Colorimetric measurement of carbohydrates in biological wastewater treatment systems: A critical evaluation. Water Research, 94, 280-287.
Li, G., Wu, D., Xie, W., Sha, Y., Lin, H., & Liu, B. (2013). Analysis of amino acids in tobacco by derivatization and dispersive liquid–liquid microextraction based on solidification of floating organic droplet method. Journal of Chromatography A, 1296, 243-247.
Liu, D. H., & Lipták, B. G. (2000). Wastewater treatment.
Liu, M., Zhang, X., & Tan, T. (2016). The effect of amino acids on lipid production and nutrient removal by Rhodotorula glutinis cultivation in starch wastewater. Bioresource Technology, 218, 712-717.
Loewus, F. A. (1952). Improvement in anthrone method for determination of carbohydrates. Analytical Chemistry, 24(1), 219-219.
Majidano, S., Khuhawar, M., Zounr, R., Channar, A., Jahangir, T., & Mughal, M. (2015). Determination of amino acids in jams, fruits and pharmaceutical preparations by gas chromatography using trifluoroacetylacetone and ethylchloroformate as derivatizing reagents. Analytical Methods, 7(7), 3148-3156.
Masse, L., Masse, D., & Kennedy, K. (2003). Effect of hydrolysis pretreatment on fat degradation during anaerobic digestion of slaughterhouse wastewater. Process Biochemistry, 38(9), 1365-1372.
McCarthy, M., Hedges, J., & Benner, R. (1996). Major biochemical composition of dissolved high molecular weight organic matter in seawater. Marine Chemistry, 55(3-4), 281-297.
McCance, R. A., & Widdowson, E. M. (1960). The Composition of Foods, Medical Research Council Special Report Series No. 297.
Medeiros, P. M., & Simoneit, B. R. (2007). Analysis of sugars in environmental samples by gas chromatography–mass spectrometry. Journal of Chromatography A, 1141(2), 271-278.
Mendes, A. A., Pereira, E. B., & de Castro, H. F. (2006). Effect of the enzymatic hydrolysis pretreatment of lipids-rich wastewater on the anaerobic biodigestion. Biochemical Engineering Journal, 32(3), 185-190.
Meng, Z., Wen, D., Sun, D., Gao, F., Li, W., Liao, Y., & Liu, H. (2007). Rapid determination of C12–C26 non‐derivatized fatty acids in human serum by fast gas chromatography. Journal of separation science, 30(10), 1537-1543.
Miron, Y., Zeeman, G., Van Lier, J. B., & Lettinga, G. (2000). The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water research, 34(5), 1705-1713.
Molnár-Perl, I. (1999). Simultaneous quantitation of acids and sugars by chromatography: gas or high-performance liquid chromatography? Journal of Chromatography A, 845(1), 181-195.
Nelson, N. (1944). A photometric adaptation of the Somogyi method for the determination of glucose. Journal of biological chemistry, 153(2), 375-380.
Neves, L., Pereira, M., Mota, M., & Alves, M. (2009). Detection and quantification of long chain fatty acids in liquid and solid samples and its relevance to understand anaerobic digestion of lipids. Bioresource Technology, 100(1), 91-96.
Ng, K. K., Shi, X., Ong, S. L., Lin, C. F., & Ng, H. Y. (2016). An innovative of aerobic bio-entrapped salt marsh sediment membrane reactor for the treatment of high-saline pharmaceutical wastewater. Chemical Engineering Journal, 295, 317-325.
Ng, K. K., Wu, C. J., Yang, H. L., Panchangam, S. C., Lin, Y. C., Hong, P. K. A., ... & Lin, C. F. (2012). Effect of ultrasound on membrane filtration and cleaning operations. Separation Science and Technology, 48(2), 215-222.
Olson, B. J., & Markwell, J. (2007). Assays for determination of protein concentration. Current protocols in protein science, 3.4. 1-3.4. 29.
Petruy, R. (1999). Anaerobic treatment of protein, lipid and carbohydrate containing wastewaters using the EGSB technology:
Pisal, A. (2009). Determination of oil and grease in water with a mid-infrared spectrometer. PerkinElmer, Inc, 940, 1-4.
Protocol, M. (1987). Montreal protocol on substances that deplete the ozone layer. Washington, DC: US Government Printing Office, 26.
Ramsay, I. R., & Pullammanappallil, P. C. (2001). Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation, 12(4), 247-256.
Raunkjær, K., Hvitved-Jacobsen, T., & Nielsen, P. H. (1994). Measurement of pools of protein, carbohydrate and lipid in domestic wastewater. Water Research, 28(2), 251-262.
Redmile-Gordon, M., Armenise, E., White, R., Hirsch, P., & Goulding, K. (2013). A comparison of two colorimetric assays, based upon Lowry and Bradford techniques, to estimate total protein in soil extracts. Soil Biology and Biochemistry, 67, 166-173.
Repeta, D. J., Quan, T. M., Aluwihare, L. I., & Accardi, A. (2002). Chemical characterization of high molecular weight dissolved organic matter in fresh and marine waters. Geochimica et Cosmochimica Acta, 66(6), 955-962.
Roberts, P., & Jones, D. L. (2008). Critical evaluation of methods for determining total protein in soil solution. Soil Biology and Biochemistry, 40(6), 1485-1495.
Romero, M. T., & Ferrer, N. (1999). Determination of oil and grease by solid phase extraction and infrared spectroscopy. Analytica chimica acta, 395(1), 77-84.
Ruiz-Matute, A. I., Hernandez-Hernandez, O., Rodríguez-Sánchez, S., Sanz, M. L., & Martínez-Castro, I. (2011). Derivatization of carbohydrates for GC and GC–MS analyses. Journal of Chromatography B, 879(17), 1226-1240.
Ruiz-Matute, A. I., Soria, A. C., Martínez-Castro, I., & Sanz, M. L. (2007). A new methodology based on GC− MS to detect honey adulteration with commercial syrups. Journal of agricultural and food chemistry, 55(18), 7264-7269.
Salimon, J., Omar, T. A., & Salih, N. (2013). An accurate and reliable method for identification and quantification of fatty acids and trans fatty acids in food fats samples using gas chromatography. Arabian Journal of Chemistry.
Sforza, S., Tedeschi, T., & Wierenga, P. (2015). Proteins: Chemistry, Characterization, and Quality Encyclopedia of Food and Health (pp. 575-575): Academic Press.
Siegert, I., & Banks, C. (2005). The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry, 40(11), 3412-3418.
Silva, B. M., Casal, S., Andrade, P. B., Seabra, R. M., Oliveira, M. B., & Ferreira, M. A. (2003). Development and evaluation of a GC/FID method for the analysis of free amino acids in quince fruit and jam. Analytical Sciences, 19(9), 1285-1290.
Song, J., Park, J., Jung, J., Lee, C., Gim, S. Y., Ka, H., ... & Lee, J. (2015). Analysis of Trans Fat in Edible Oils with Cooking Process. Toxicological research, 31(3), 307.
Sophonsiri, C., & Morgenroth, E. (2004). Chemical composition associated with different particle size fractions in municipal, industrial, and agricultural wastewaters. Chemosphere, 55(5), 691-703.
Soria, A., Sanz, M., & Villamiel, M. (2009). Determination of minor carbohydrates in carrot (Daucus carota L.) by GC–MS. Food Chemistry, 114(2), 758-762.
Tanaka, S., Ichikawa, T., & Matsuo, T. (1991). Removal of organic constituents in municipal sewage using anaerobic fluidized sludge blanket and anaerobic filter. Water Science and Technology, 23(7-9), 1301-1310.
Troyano, E., Olano, A., Fernández-Díaz, M., Sanz, J., & Martínez-Castro, I. (1991). Gas chromatographic analysis of free monosaccharides in milk. Chromatographia, 32(7), 379-382.
Vancompernolle, B., Croes, K., & Angenon, G. (2016). Optimization of a gas chromatography–mass spectrometry method with methyl chloroformate derivatization for quantification of amino acids in plant tissue. Journal of Chromatography B, 1017, 241-249.
Vidal, G., Carvalho, A., Mendez, R., & Lema, J. (2000). Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters. Bioresource Technology, 74(3), 231-239.
Waldhier, M. C., Dettmer, K., Gruber, M. A., & Oefner, P. J. (2010). Comparison of derivatization and chromatographic methods for GC–MS analysis of amino acid enantiomers in physiological samples. Journal of Chromatography B, 878(15), 1103-1112.
Wang, H., Fotidis, I. A., & Angelidaki, I. (2016). Ammonia–LCFA synergetic co-inhibition effect in manure-based continuous biomethanation process. Bioresource Technology, 209, 282-289.
Woolley, D. J., Lawes, G. S., & Cruz-Castillo, J. G. (1991). THE GROWTH AND COMPETITIVE ABILITY OF ACTINIDIA DELICIOSA ‘HAYWARD’FRUIT: CARBOHYDRATE AVAILABILITY AND RESPONSE TO THE CYTOKININ-ACTIVE COMPOUND CPPU. In II International Symposium on Kiwifruit 297 (pp. 467-474).
World Health Organization. (2016). The Selection and Use of Essential Medicines: Report of the WHO Expert Committee, 2015 (including the 19th WHO Model List of Essential Medicines and the 5th WHO Model List of Essential Medicines for Children) (No. 994). World Health Organization.Wu, B., & Zhou, W. (2010). Investigation of soluble microbial products in anaerobic wastewater treatment effluents. Journal of chemical technology and biotechnology, 85(12), 1597-1603.
Wang, H., Pampati, N., McCormick, W. M., & Bhattacharyya, L. (2016). Protein Nitrogen Determination by Kjeldahl Digestion and Ion Chromatography. Journal of pharmaceutical sciences, 105(6), 1851-1857.
Yurchenko, S., Sats, A., Poikalainen, V., & Karus, A. (2016). Method for determination of fatty acids in bovine colostrum using GC-FID. Food Chemistry, 212, 117-122.
Zampolli, M., Basaglia, G., Dondi, F., Sternberg, R., Szopa, C., & Pietrogrande, M. (2007). Gas chromatography–mass spectrometry analysis of amino acid enantiomers as methyl chloroformate derivatives: application to space analysis. Journal of Chromatography A, 1150(1), 162-172.
Zhang, H., Wang, Z., & Liu, O. (2015). Development and validation of a GC–FID method for quantitative analysis of oleic acid and related fatty acids. Journal of Pharmaceutical Analysis, 5(4), 223-230.
謝仁捷 (2014)。厭氧生物固定化程序處理都市污水。國立台灣大學工學院環境工程研究所碩士論文
田俊彥 (2016)。厭氧固定生物技術處理低強度合成污水:水力停留時間與進流濃度之影響。國立台灣大學工學院環境工程研究所碩士論文
吳佩勳 (2017)。厭氧固定生物處理低強度污水之研究。國立台灣大學工學院環工程究所博士論文
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68774-
dc.description.abstract厭氧生物處理在低水力停留時間操作條件下,會降低處理效率與甲烷產氣量,且三成分中的脂質與蛋白質存在轉換率與甲烷產率不佳等問題;因此厭氧降解上勢必對三成分進行深入研究,並建立定量定性分析方法。
研究探討內容包括總量檢測分析與細部組成分析。總量檢測分析上,醣類使用「蔥酮法」與「還原糖法」;蛋白質使用「莫瑞法」與「凱氏定氮法」;脂質使用「紅外線分析法」與「重量萃取法」,探討試驗比較後適合應用污水的分析方法。細部組成分析方面,使用氣相層析儀(GC)分析單糖組成並建立應用污水之分析方法。
醣類總量檢測上,蔥酮法定量極限(LOQ)與偵測極限(LOD)分別為3.75 mg/L與1.25 mg/L,還原糖法分別為3.60 mg/L與1.21 mg/L;若使用葡萄糖檢量線定量,兩方法總量檢測試驗8種單糖皆呈現不準確性,但兩方法主要差別在於蔥酮法對多糖檢測後之測值準確度高,且對污水添加回收率明顯優於還原糖法;單糖組成分析方面,GC-BID定量定性結果顯示8種單糖定量極限(LOQ)至少500 µg/L以下,偵測極限(LOD)至少200 µg/L以下,並能準確定量定性污水中單糖組成。蛋白質總量檢測方面,莫瑞法定量極限(LOQ)與偵測極限(LOD)分別為2.78 mg/L與0.93 mg/L,凱氏定氮法則是在試驗過程中無法符合品管要求,顯示凱氏定氮法之分析極限範圍明顯高於10 mg/L。脂質總量檢測方面,紅外線分析之定量極限(LOQ)與偵測極限(LOD)分別為2.18 mg/L與0.73 mg/L;然而重量萃取法查核試驗呈現低回收率,導致污水測值嚴重低估。
整體而言,總量檢測試驗討論,醣類、蛋白質與脂質適合的分析方法為「蔥酮法」、「莫瑞法」與「紅外線分析法」;適合之總量檢測方法若應用在都市污水三成分分析上,檢測水樣無論在初沉前與初沉後,脂質占污水中有機物比重最高,蛋白質次之,醣類最低。根據此結果,推論厭氧處理應用在都市污水的研究上,會因為脂質濃度過高以及低水力停留時間等操作條件,而影響最終有機物降解與產甲烷效能。
zh_TW
dc.description.abstractWith regards to domestic wastewater, anaerobic biological treatment processes in lower hydraulic retention time (HRT) could reduce the production of methane gas and the removal rate. Furthermore, the lipids and proteins have a poor conversion rate and methane yield, so the decomposition of carbohydrates, proteins and lipids in anaerobic treatment can be discussed in-depth, and quantitative and qualitative methods can be researched.
The research discusses the analysis including the total quantification and quantitation. In the analysis of total quantification, the methods that are appropriate for the application in domestic wastewater are discussed. The Anthrone method and reducing sugar method can be used on carbohydrates; the Lowry method and Kjeldahl method can be used on proteins; and the infrared spectrometric method and gravimetric extraction method can be used on lipids. During the qualitative analysis, a gas chromatograph (GC) was used to analyze the composition of monosaccharides and establish an analytical method for the application in domestic wastewater.
The results of the carbohydrates analysis, LOD and LOQ in Anthrone method and reducing sugar method were 1.25 and 3.74, 1.21 and 3.63 mg/L, respectively. However, the results showed that the reactivity of all types of carbohydrates in terms of the calibration curve of glucose represented the different degree of absorbance resulting in underestimating their values, and the differences between both methods are that reducing sugar method has a lower recovery rate of polysaccharide than the Anthrone method, and the recovery rate of reducing sugar method was lower than Anthrone method. As for the GC method, it showed a great precision for the quantification of the individual monosaccharides, an assay of each monosaccharide was observed on LOD and LOQ at least 200 and 500 µg/L, respectively. The results of the proteins analysis, LOD and LOQ in the Lowry method were 0.93 and 2.78 mg/L, respectively. The Kjeldahl method didn’t meet the quality criterion during the study at 10 mg/L assay, so the range limit was significantly higher than 10 mg/L. The results of lipids analysis, LOD and LOQ using the Infrared spectrometric method were 0.73 and 2.18 mg/L, respectively. However, the recovery rate of the Gravimetric extraction method showed was much lower, demonstrating a significant underestimation.
In conclusion, as for the comparison of the Quantification methods, the Anthrone method, Lowry method and Infrared Spectrometric method are appropriate for carbohydrates, proteins and lipids analysis in domestic wastewater. A case study was performed using the appropriate methods for domestic wastewater from different areas, showing the highest proportion of organic matters (OMs) was lipids, followed by proteins. According to these results, it could be inferred that using anaerobic treatment in domestic wastewater could affect the degradation of organic matter and methane production due to high lipids and proteins following the lower hydraulic retention time (HRT).
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:34:43Z (GMT). No. of bitstreams: 1
ntu-106-R04541130-1.pdf: 2878232 bytes, checksum: ea700cf33b9788d08659a69af61ddd4b (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 I
摘要 III
ABSTRACT V
目錄 VII
圖目錄 IX
表目錄 XI
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的與項目 3
第二章 文獻回顧 5
2.1實際都市污水有機物組成 5
2.1.1 都市污水中醣類 10
2.1.2 都市污水中蛋白質 12
2.1.3 都市污水中脂質 13
2.2厭氧生物處理 16
2.2.1厭氧生物處理基本原理 16
2.2.2 厭氧生物處理都市污水的限制 18
2.3醣類、蛋白質與脂質在厭氧生物處理之研究 20
2.4 醣類、蛋白質與脂質分析方法 24
2.4.1 醣類 24
2.4.2 蛋白質 27
2.4.3 脂質 31
第三章 實驗方法與材料 35
3.1實驗內容與架構 35
3.2主要有機物分析方法 37
3.2.1總醣量檢驗分析 37
3.2.2 總蛋白質檢驗分析 38
3.2.3 總脂質檢驗分析 39
3.2.4 細部組成分析 39
3.3實驗材料與設備 41
3.3.1 實驗藥品 41
3.2.2 實驗器材與設備 44
3.4實驗步驟與方法 46
3.4.1檢量線試驗 46
3.4.2查核試驗 47
3.4.3品管試驗 47
3.4.4保存試驗 48
3.4.5添加試驗 48
第四章、結果與討論 49
4.1都市污水醣類檢測 49
4.1.1 檢測試驗 49
4.1.2 檢測方法評估 70
4.2 都市污水蛋白質檢測 72
4.2.1檢測試驗 72
4.2.2檢測方法評估 78
4.3 都市污水脂質檢測 79
4.3.1檢測試驗 79
4.3.2檢測方法評估 86
4.4實際都市污水成分分析 87
第五章 結論與建議 95
5.1 結論 95
5.2 建議 97
參考文獻 99
附錄 111
dc.language.isozh-TW
dc.title都市污水中醣類、蛋白質與脂質定量定性分析研究zh_TW
dc.titleQuantification and Qualification of Carbohydrates, Proteins and Lipids in Domestic Wastewateren
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee康佩群(Andy Hong),吳忠信(Chung-Hsin Wu)
dc.subject.keyword厭氧生物處理,都市污水,醣類,蛋白質,脂質,氣相層析儀,zh_TW
dc.subject.keywordAnaerobic treatment,Domestic wastewater,Carbohydrate,Protein,Lipid,Gas chromatography,en
dc.relation.page114
dc.identifier.doi10.6342/NTU201702896
dc.rights.note有償授權
dc.date.accepted2017-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
2.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved