請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68768
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳明汝(Ming-Ju Chen) | |
dc.contributor.author | Chien-Jang Huang | en |
dc.contributor.author | 黃千讓 | zh_TW |
dc.date.accessioned | 2021-06-17T02:34:25Z | - |
dc.date.available | 2021-08-24 | |
dc.date.copyright | 2017-08-24 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-17 | |
dc.identifier.citation | References
Brosius J., Dull, T. J., Sleeter, D. D. and Noller, H. F. 1981. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J. Mol. Biol. 148, 107–127. doi:10.1016/0022-2836(81)90508-8 Cerning, J. 1990. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev. 87, 113–130. doi:10.1111/j.1574-6968.1990.tb04883.x Cerning, J. 1995. Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Lait 75, 463–472. doi:10.1051/lait:19954-536 Chao, S., Tomii, Y., Watanabe, K. and Tsai, Y. 2008. Diversity of lactic acid bacteria in fermented brines used to make stinky tofu. Int. J. Food Microbiol. 123, 134–141. doi:10.1016/j.ijfoodmicro.2007.12.010 Charteris, W, Kelly, P., Morelli, L. and Collins. J. 1998. Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J. Appl. Microbiol. 84, 759–768. doi:10.1046/j.1365-2672.1998.00407.x De Vuyst, L. and Degeest, B. 1999. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23, 153–177. doi:10.1111/j.1574-6976.1999.tb00395.x Dimic, G. 2006. Characteristics of the Leuconostoc mesenteroides subsp. mesenteroides strains from fresh vegetables. Acta Periodica Technologica. 37, 3–11. doi: 10.2298/APT0637003D Dupont, I., Roy, D. and Lapointe, G. 2000. Comparison of exopolysaccharide production by strains of Lactobacillus rhamnosus and Lactobacillus paracasei grown in chemically defined medium and milk. J. Ind. Microbiol. Biot. 24, 251-255. doi:10.1038/sj.jim.2900810 FAO/WHO. 2001. 'Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria'. Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791. doi:10.2307/2408678 Gala, E., Landi, S., Solieri, L., Nocetti, M., Pulvirenti, A. and Giudici, P. 2008. Diversity of lactic acid bacteria population in ripened Parmigiano Reggiano cheese. Int. J. Food Microbiol. 125, 347–351. doi:10.1016/j.ijfoodmicro.2008.04.008 Gamar-Nourani, L., Blondeau, K. and Simonet, J. M. 1998. Influence of culture conditions on exopolysaccharide production by Lactobacillus rhamnosus strain C83. J. Appl. Microbiol. 85, 664–672. doi:10.1111/j.1365-2672.1998.00574.x Gassem, M., Schmidt, K. and Frank, J. 1997. Exopolysaccharide production from whey lactose by fermentation with Lactobacillus delbrueckii ssp. bulgaricus. J. Food. Sci. 62, 171–207. doi:10.1111/j.1365-2621.1997.tb04393.x Hill, C., Guarner, F., Reid, G., Gibson, G., Merenstein, D., Pot, B., Morelli, L., Canani, R., Flint, H., Salminen, S., Calder, P. and Sanders, M. 2014. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroentol. Hepatol. 11, 506–514. doi:10.1038/nrgastro.2014.66 Hosono, A., Lee, J., Ametani, A., Natsume, M., Hirayama, M., Adachi, T. and Kaminogawa, S. 1997. Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidohacterium adolescentis MIOl-4. Biosci. Biotech. Bioch. 61, 312–316. doi:10.1271/bbb.61.312 Huang, Y. and Adams, M. C. 2003. In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. Int. J. Food Microbiol. 91, 253–260. doi:10.1016/j.ijfoodmicro.2003.07.001. Jensen, H., Grimmer, S., Naterstad, K. and Axelsson, L. 2012. In vitro testing of commercial and potential probiotic lactic acid bacteria. Int. J. Food Microbiol. 153, 216–222. doi:10.1016/j.ijfoodmicro.2011.11.020 Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120. doi:10.1007/BF01731581 Kitazawa, H., Yamaguchi, T., Miura, M., Saito, T., and Itoh, H. 1993. B-cell mitogen produced by slime-forming, encapsulated Lactococcus lactis ssp. cremoris isolated from ropy sour milk. J. Dairy Sci. 76, 1514-1519. doi:10.3168/jds.S0022-0302(93)77483-4 Kitazawa, H., Harata, T., Uemura, J., Saito, T., Kaneko, T. and Itoh, T. 1998. Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Int. J. Food Microbiol. 40, 169–175. doi:10.1016/S0168-1605(98)00030-0 Kitazawa, H., Ishii, Y., Uemura, J., Kawai1, Y., Saito, T., Kaneko, T., Noda, K. and Itoh, T. 2000. Augmentation of macrophage functions by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Food Microbiol. 17, 199–218. doi:10.1006/fmic.1999.0294 Klein, G., Pack, A., Bonaparte, C. and Reuter, G. 1998. Taxonomy and physiology of probiotic lactic acid bacteria. Int. J. Food Microbiol. 41, 103–125. doi:10.1016/S0168-1605(98)00049-X Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. doi.org/10.1093/molbev/msw054. Lin, C., Chen, H. and Liu, J. 1999. Identification and characterization of lactic acid bacteria and yeasts isolated from kefir grams in Taiwan. Aust. J. Dairy. Technol. 54, 14–18. Lin, T. Y. and Chang Chien, M. F. 2007. Exopolysaccharides production as affected by lactic acid bacteria and fermentation time. Food Chem. 100, 1419–1423. doi:10.1016/j.foodchem.2005.11.033 Liu, W., Pang, H., Zhang, H. and Cai, Y. 2014. Biodiversity of Lactic Acid Bacteria. Page 107 in Lactic Acid Bacteria. H. Zhang and Y. Cai, ed. Springer, New York, NY. doi:10.1007/978-94-017-8841-0 Lo, P. R., Yu, R. C., Chou, C. C. and Tsai, T. H. 2002. Antimutagenic activity of several probiotic bifidobacteria against benzo[a] pyrene. J. Biosci. Bioeng. 94, 148-153. doi:10.1016/S1389-1723(02)80135-9 Looijesteijn, P. and Hugenholtz, J. 1999. Uncoupling of growth and exopolysaccharide production by Lactococcus lactis subsp. cremoris NIZO B40 and optimization of its synthesis. J. Biosci. Bioeng. 88, 178–182. doi:10.1016/S1389-1723(99)80198-4 Loy, A. and Bodrossy, L. 2006. Highly parallel microbial diagnostics using oligonucleotide microarrays. Clin. Chim. Acta. 363, 106–119. doi:10.1016/j.cccn.2005.05.041 Ludwig, W. and Klenk, H. 2005. Overview: a phylogenetic backbone and taxonomic framework for prokaryotic systematics. Pages 49–65 in Bergey’s Manual of Systematic Bacteriology, The Proteobacteria. Part A Introductory Essays vol. 2. G. Garrity, D. Bean, N. Krieg and T. Staley, ed, Springer, New York, NY. Matou, S., Colliec-Jouault, S., Galy-Fauroux, I., Ratiskol, J., Sinquin, C., Guezennec, J., Fischer, A. and Helley, D. 2005. Effect of an oversulfated exopolysaccharide on angiogenesis induced by fibroblast growth factor-2 or vascular endothelial growth factor in vitro. Biochem. Pharmacol. 69, 751–759. doi:10.1016/j.bcp.2004.11.021 Monsan, P., Bozonnet, S., Albenne, C., Joucla, G., Willemot, R. and Remaud–Siméon, M. 2001. Homopolysaccharides from lactic acid bacteria. Int. Dairy. J. 11, 675–685. doi:10.1016/S0958-6946(01)00113-3 Mozzi, F., Oliver, G., De Giori, G. and De Valdez, G. 1995. Influence of temperature on the production of exopolysaccharides by thermophilic lactic acid bacteria. Milchwissenschaft 50, 80–88. Muyanja, C., Narvhus, J., Treimo, J. and Langsrud, T. 2003. Isolation, characterisation and identification of lactic acid bacteria from bushera: a Ugandan traditional fermented beverage. Int. J. Food Microbiol. 80, 201–210. doi:10.1016/S0168-1605(02)00148-4 Nakajima, H., Suzuki, Y., Kaizu, H. and Hirota, T. 1992. Cholesterol lowering activity of ropy fermented milk. J. Food. Sci. 57, 1327–1329. doi:10.1111/j.1365-2621.1992.tb06848.x Naser, S. M., Thompson, F. L., Hoste, B., Gevers, D., Dawyndt, P., Vancanneyt, M. and Swings, J. 2005. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151, 2141–2150. doi:10.1099/mic.0.27840-0 Naser, S. M., Dawyndt, P., Hoste, B., Gevers, D., Vandemeulebroecke, K., Cleenweck, I., Vancanneyt, M. and Swings, J. 2007. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int. J. Syst. Evol. Microbiol. 57, 2777 –2789. doi:10.1099/ijs.0.64711-0 Nishimura-Uemura, J., Kitazawa, H., Kawai1, Y., Itoh, T., Oda, M. and Saito, T. 2003. Functional alteration of murine macrophages stimulated with extracellular polysaccharides from Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Food Microbiol. 20, 267 – 273. doi:10.1016/S0740-0020(02)00177-6 Oki, K., Dugersuren, J., Demberel, S. and Watanabe, K. 2014. Pyrosequencing analysis of the microbial diversity of Airag, Khoormog and Tarag, traditional fermented dairy products of Mongolia. Biosci. Microbiota Food Health. 33, 53–64. doi:10.12938/bmfh.33.53 Rijkers, G., de Vos, W., Brummer, R., Morelli, L., Corthier, G. and Marteau, P. 2011. Health benefits and health claims of probiotics: bridging science and marketing. Brit J. Nutr. 106, 1291–1296. doi:10.1017/S000711451100287X Ruas-Madiedo, P., Moreno, J. A., Salazar, N., Delgado, S., Mayo, B., Margolles, A. and de los Reyes-Gavilán, C. G. 2007. Screening of exopolysaccharide-producing Lactobacillus and Bifidobacterium strains isolated from the human intestinal microbiota. Appl. Environ. Microbiol. 73, 4385–4388. doi:10.1128/AEM.02470-06 Saarela, M., La ̈hteenma ̈ki, L., Crittenden, R., Salminen, S. and Mattila–Sandholm, T. 2002. Gut bacteria and health foods—the European perspective. Int. J. Food Microbiol. 78, 99–117. doi:10.1016/S0168-1605(02)00235-0 Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425. doi:10.1093/oxfordjournals.molbev.a040454 Salvetti, E., Torriani, S. and Felis, G. F. 2012. The genus Lactobacillus: a taxonomic update. Probiotics Antimicrob. Proteins 4, 217–226. doi:10.1007/s12602-012-9117-8 Sánchez, J., Maríınez, B., Guillén, R., Jiménez-Díaz, R. and Rodríguez, A. 2006. Culture conditions determine the balance between two different exopolysaccharides produced by Lactobacillus pentosus LPS26. Appl. Environ. Microb. 72, 7495–7502. doi:10.1128/AEM.01078-06 Sanders, M. 2008. Probiotics: definition, sources, selection, and uses. Clin. Infect. Dis. 46, 58–61. doi:10.1086/523341 Scheirlinck, I., Van der Meulen, R., Van Schoor, A., Huys, G., Vandamme, P., De Vuyst, L. and Vancanneyt, M. 2007. Lactobacillus crustorum sp. nov., isolated from two traditional Belgian wheat sourdoughs. Int. J. Syst. Evol. Microbiol. 57, 1462–1467. doi:10.1099/ijs.0.64836-0 Sharafi, H., Derakhshan, V., Paknejad, M., Alidoust, L., Tohidi, A., Pornour, M., Hajfarajollah, H., Shahbani Zahiri, H. and Akbari Noghabi, K. 2015. Lactobacillus crustorum KH: novel prospective probiotic strain isolated from Iranian traditional dairy products. Appl. Biochem. Biotech. 175, 2178–2194. doi:10.1007/s12010-014-1404-2 Stiles, M. and Holzapfel, W. 1997. Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36, 1–29. doi:10.1016/S0168-1605(96)01233-0 Sun, C., Wang, J., Fang, L., Gao, X. and Tan, R. 2004. Free radical scavenging and antioxidant activities of EPS2, an exopolysaccharide produced by a marine filamentous fungus Keissleriella sp. YS 4108. Life Sci. 75, 1063–1073. doi:10.1016/j.lfs.2004.02.015 Sun, Z., Liu, W., Zhang, J., Gao, W., Jiri, M., Menghe, B., Sun, T. and Zhang, T. 2010. Identification and characterization of the dominant lactic acid bacteria isolated from traditional fermented milk in Mongolia. Folia Microbiol. 55, 270–276. doi:10.1007/s12223-010-0040-7 Sun, Z., Yu, J., Dan, T., Zhang, W. and Zhang, H. 2014. Phylogenesis and Evolution of Lactic Acid Bacteria. Page 26 in Lactic Acid Bacteria. H. Zhang and Y. Cai, ed. Springer, New York, NY. doi:10.1007/978-94-017-8841-0 Takeda, S., Yamasaki, K., Takeshita, M., Kikuchi, Y., Tsend-Ayush, C., Dashnyam, B., Ahhmed, A., Kawahara, S. and Mugumura, M. 2011. The investigation of probiotic potential of lactic acid bacteria isolated from traditional Mongolian dairy products. Anim. Sci. J. 82, 571–579. doi:10.1111/j.1740-0929.2011.00874.x Tamang, J. 2010. Diversity of fermented foods, Pages 41–84 in Fermented Foods and Beverages of the World. J. Tamang and K. Kailasapathy, ed. CRC Press, New York, NY. doi: 10.1201/ebk1420094954-c2 Tamang, J., Watanabe, K. and Holzapfel, W. 2016. Review: Diversity of microorganisms in global fermented foods and beverages. Front. Microbiol. 7, 377. doi: 10.3389/fmicb.2016.00377 Tang, H. Y. 2016. Investigation on the responses of Lactobacillus kefiranofaciens M1 to various stresses and its survival after spray drying and freeze drying. Department of Animal Science and Technology, National Taiwan University. Master degree thesis. Temmerman, R., Huys, G. and Swings, J. 2004. Identification of lactic acid bacteria: culture-dependent and culture-independent methods. Trends Food Sci. Tech. 15, 348–359. doi:10.1016/j.tifs.2003.12.007 Thompson J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 doi:10.1093/nar/25.24.4876 Tu, R., Wu, H., Lock, Y. and Chen, M. 2010. Evaluation of microbial dynamics during the ripening of a traditional Taiwanese naturally fermented ham. Food. Microbiol. 27, 460–467. doi:10.1016/j.fm.2009.12.011 Uchida, K., Hirata, M., Motoshima, H., Urashima, T. and Arai, I. 2007. Microbiota of ‘Airag’, ‘Tarag’ and other kinds of fermented dairy products from nomad in Mongolia. Anim. Sci. J. 78, 650–658. doi: 10.1111/j.1740-0929.2007.00486.x Ventura, M., Meylan, V. and Zink, R. 2003. Identification and tracing of Bifidobacterium species by use of enterobacterial repetitive intergenic consensus sequences. Appl. Environ. Microbiol. 69, 4296–4301. doi:10.1128/AEM.69.7.4296–4301.2003 Vinderola, C. and Reinheimer, J. 2003. Lactic acid starter and probiotic bacteria: a comparative ‘‘in vitro’’ study of probiotic characteristics and biological barrier resistance. Food Res. Int. 36, 895–904. doi:10.1016/S0963-9969(03)00098-X Volokhov, D., Neverov, A., George, J., Kong, H., Liu, S., Anderson, C., Davidson, M. and Chizhikov, V. 2007. Genetic analysis of housekeeping genes of members of the genus Acholeplasma: Phylogeny and complementary molecular markers to the 16S rRNA gene. Mol. Phylogenet. Evol. 44, 699–710. doi:10.1016/j.ympev.2006.12.001 Watanabe, K., Fujimoto, J., Sasamoto, M., Dugersuren, J., Tumursuh, T. and Demberel, S. 2008. Diversity of lactic acid bacteria and yeasts in Airag and Tarag, traditional fermented milk products of Mongolia. World J. Microbiol. Biotechnol. 24, 1313–1325. doi:10.1007/s11274-007-9604-3 Xiao, J., Zhang, Y. and Yang, Z. 2014. Lactic Acid Bacteria in Health and Disease. Page 308 in Lactic Acid Bacteria. H. Zhang and Y. Cai, ed. Springer, New York, NY. doi:10.1007/978-94-017-8841-0 Yang, Z., Staaf, M., Huttunen, E. and Widmalm, G. 2000. Structure of a viscous exopolysaccharide produced by Lactobacillus helveticus K16. Carbohyd. Res. 329, 465–469. doi:10.1016/S0008-6215(00)00201-9 Yuksekdag, Z. N. and Belma Aslim, B. 2008. Influence of different carbon sources on exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus (B3, G12) and Streptococcus thermophilus (W22). Braz. Arch. Biol. Technol. 51, 581–585. doi:10.1590/S1516-89132008000300019 Zisu, B. and Shah, N. 2013. Effects of pH, temperature, supplementation with whey protein concentrate, and adjunct cultures on the production of exopolysaccharides by Streptococcus thermophilus 1275. J. Dairy Sci. 86, 3405–3415. doi:10.3168/jds.S0022-0302(03)73944-7 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68768 | - |
dc.description.abstract | 「益生菌」是一群在宿主體內達到一定數量時對宿主的健康有益處的微生物。乳酸菌一般被認為是安全的(Generally recognized as safe, GRAS),和傳統發酵食品,尤其是傳統發酵乳製品,有密切的關係。數百年來,蒙古地區的遊牧民族持續的製作各種發酵乳製品,如Airag(發酵馬乳)和Tarag(發酵之牛、山羊、犛牛乳)等等。為了要從這些傳統發酵乳中篩選新的潛力益生菌株,乳酸菌株的收集就變得非常重要。本研究中使用塗盤培養以及分子生物學的技術篩選蒙古傳統發酵乳中具潛力益生菌能力的乳酸菌株。
依據Enterobacterial Reptitive Intergenic Consensus PCR (ERIC-PCR)的結果為基礎,從106個分離自菌落中歸類出40個獨立菌株。透過16s rRNA以及持家基因(housekeeping gene)中的pheS 和 rpoA兩種基因的鑑定,這些菌株分屬八個菌種:Lactobacillus crustorum、Lactobacillus diolivorans、Lactobacillus kefiri、Lactobacillus paracasei、Lactobacillus plantarum subsp. plantarum、Lactococcus. lactis、Leuconostoc lactis以及Leuconostoc pseudomensenteroides。其中Lactobacillus kefiri為最主要的菌種(24株),Lactobacillus crustorum為排第二的菌種(6株)。 接著,本研究針對低pH值、含膽鹽環境的生存耐受性試驗、胞外多醣(EPS)生產量進行測試並作為挑選潛力益生菌能力的項目。結果顯示,Lactobacillus crustorum、Lactobacillus diolivorans、Lactobacillus kefiri在低pH值(pH 3.0)、含膽鹽(0.3% bile)環境具有較佳的生存能力,且Lactobacillus crustorum和Lactobacillus kefiri同時也具有較好的胞外多醣(EPS)生產量。再經過其他條件的測試,兩株Lactobacillus crustorum的菌株(MCC0017及MCC0029)被預期為新的潛力益生菌株。 | zh_TW |
dc.description.abstract | “Probiotics” are live microorganisms that provide health benefits on the host, when administered in adequate amounts. Lactic acid bacteria (LAB) are regarded as “Generally recognized as safe (GRAS)”, and are mainly involving in the fermentation of traditional fermented foods, especially in fermented milk products. For centuries, the nomadic peoples of Mongolia have been producing various kinds of traditional fermented milk products such as Airag (fermented mare’s milk) and Tarag (fermented milk of cows, goats and yaks). To explore the potential probiotic strains, it is very important to develop the culture collection at the first step. In this study, culture- and molecular-based methods were used to investigate the potential LAB probiotic strains in the traditional Mongolian fermented milk products.
Based on Enterobacterial Reptitive Intergenic Consensus PCR (ERIC-PCR) profiles, a total of 106 isolates isolated from five Mongolian traditional fermented milk products were categorized into 40 different strains, and identified as belonging to 8 species (Lactobacillus crustorum, Lactobacillus diolivorans, Lactobacillus kefiri, Lactobacillus paracasei, Lactobacillus plantarum subsp. plantarum, Lactococcus. lactis, Leuconostoc lactis, and Leuconostoc pseudomensenteroides) by 16S rRNA and housekeeping gene (pheS and rpoA) sequencing. Lactobacillus kefiri was isolated as the predominant species (24 strains), followed by Lb. crustorum (6 strains). By the screening tests, survival in low pH and bile salt and production of exopolysaccharides (EPS) were characterized as the potential probiotic abilities. As a result, almost of the strains in Lb. crustorum, Lb. diolivorans, and Lb. kefiri showed high survival ability in artificial gastric (pH 3.0) and intestinal (0.3% bile) juices. And, almost of the strains in the Lb. crustorum and Lb. kefiri species showed high ability to produce EPS. Finally, features of survival abilities in low pH and bile salt, and EPS production demonstrated that the two Lb. crustorum strains (MCC0017, MCC0029) could be novel prospective probiotics. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:34:25Z (GMT). No. of bitstreams: 1 ntu-106-R04626014-1.pdf: 7479591 bytes, checksum: bbc7624cffdb0ec5ff99d23109f482c7 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | Content
Abstract in Chinese .......................................................................................................i Abstract in English .....................................................................................................iii Preface ..........................................................................................................................v 1. Literature review .....................................................................................................1 1.1. Probiotics ........................................................................................................1 1.1.1. Definition of probiotics ........................................................................1 1.1.2. Health benefits of probiotics ................................................................1 1.1.3. Source of probiotics .............................................................................2 1.2. Mongolian traditional fermented dairy products .............................................3 1.2.1. Airag ....................................................................................................3 1.2.2. Tarag ....................................................................................................3 1.2.3. LAB in Mongolian traditional fermented dairy products ......................4 1.3. Lactic acid bacteria ..........................................................................................5 1.3.1. Classification of LAB ...........................................................................5 1.3.1.1. Lactobacillus .............................................................................6 1.3.1.2. Lactococcus ..............................................................................6 1.3.1.3. Leuconostoc ..............................................................................7 1.3.1.4. Streptococcus ............................................................................7 1.4. Techniques for typing and identification of LAB ...........................................8 1.4.1. Phenotypic method ...............................................................................8 1.4.2. Genotypic method ................................................................................9 1.4.2.1. Restriction fragment length polymorphism (RFLP) ..................9 1.4.2.2. Random amplified polymorphic DNA (RAPD) .....................10 1.4.2.3. Enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) ......................................................................................10 1.4.2.4. Polymerase chain reaction−denaturing gradient gel electrophoresis (PCR-DGGE) .........................................................10 1.4.3. Target gene for identification .............................................................11 1.4.3.1. 16S ribosomal RNA gene ........................................................11 1.4.3.2. Housekeeping gene .................................................................11 1.5. Stresses in the intestinal environment for probiotics .....................................12 1.6. Exopolysaccharides (EPS) ............................................................................13 1.6.1. Classification and composition of EPS ...............................................13 1.6.1.1. Homopolysaccharides .............................................................13 1.6.1.2. Heteropolysaccharides ............................................................14 1.6.2. Bioactivities of EPS ...........................................................................14 1.6.3. Factors influencing on EPS production ..............................................14 1.6.3.1. Temperature ............................................................................14 1.6.3.2. pH value ..................................................................................15 1.6.3.3. Culturing period ......................................................................15 1.6.3.4. Carbon source .........................................................................15 1.7. Aims of my study ..........................................................................................17 2. Materials and methods ...........................................................................................26 2.1. Sampling of traditional fermented milk products ..........................................26 2.2. Isolation of lactic acid bacterial (LAB) strains ..............................................26 2.3. DNA extraction .............................................................................................27 2.4. ERIC-PCR typing .........................................................................................28 2.5. PCR amplification of 16S rRNA and housekeeping gene ..............................28 2.6. 16S rRNA and housekeeping genes sequencing and phylogenetic analyses .29 2.7. Tolerance of LAB strains to low pH and bile salt ..........................................30 2.8. Tolerance assay in artificial gastric and small intestinal juices ......................31 2.9. Long-term tolerance of LAB in artificial gastric and small intestinal juices ..31 2.10. Determination of total viable LAB cell counts ............................................32 2.11. Screening for EPS-producing LAB strains ..................................................32 2.12. Quantitative analysis of produced EPS ........................................................33 2.13. Statistical analysis .......................................................................................33 3. Results .....................................................................................................................37 3.1. Identification of LAB strains .........................................................................37 3.2. Tolerance of LAB strains in artificial gastric and intestinal juices .................38 3.3. Long-term tolerance of LAB strains in artificial gastric and intestinal juices.38 3.4. Screening for EPS producing LAB strains ....................................................39 4. Discussion ...............................................................................................................77 4.1. Isolation and identification of LAB strains from Mongolian traditional fermented dairy products ............................................................................77 4.2. Tolerance assay of LAB strains in artificial gastric and intestinal juices........78 4.3. Screening of LAB strains producing large amount of EPS ............................79 5. Conclusions .............................................................................................................84 References ..................................................................................................................85 | |
dc.language.iso | en | |
dc.title | 傳統蒙古發酵乳製品中乳酸菌之分離及分子鑑定研究 | zh_TW |
dc.title | Isolation and molecular-identification of lactic acid bacteria from traditional Mongolian fermented milk products | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 渡邊幸一(Koichi Watanabe) | |
dc.contributor.oralexamcommittee | 廖啟成(Chii-Cherng Liao),曾浩洋,陳希嘉(Hsi-Chia Chen) | |
dc.subject.keyword | 傳統發酵乳,益生菌,乳酸菌,耐受性,胞外多醣, | zh_TW |
dc.subject.keyword | Traditional fermented milk,Probiotics,Lactic acid bacteria,Tolerance,Exopolysaccharides, | en |
dc.relation.page | 93 | |
dc.identifier.doi | 10.6342/NTU201703501 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 7.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。