Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68767
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 黃心豪 | |
dc.contributor.author | Chi-Yu Chian | en |
dc.contributor.author | 簡志宇 | zh_TW |
dc.date.accessioned | 2021-06-17T02:34:23Z | - |
dc.date.available | 2020-09-04 | |
dc.date.copyright | 2017-09-04 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-17 | |
dc.identifier.citation | [1] 中華民國經濟部能源局. '離岸風電區塊開發政策評估說明書'. Available: http://eiadoc.epa.gov.tw/eiaweb/Main3.aspx?func=11 hcode=1050020A [accessed July 15 2017]. [2] A. Stacey and J. Sharp, 'Safety factor requirements for the offshore industry,' Engineering Failure Analysis, vol. 14, pp. 442-458, 2007. [3] K. Li, H. Bian, C. Liu, D. Zhang, and Y. Yang, 'Comparison of geothermal with solar and wind power generation systems,' Renewable and Sustainable Energy Reviews, vol. 42, pp. 1464-1474, 2015. [4] Global wind speed rankings, [Online]. Available: http://www.4coffshore.com/windfarms/windspeeds.aspx [accessed July 15 2017]. [5] 福海風力發電股份有限公司, '福海離岸風力發電計畫(示範機組) 海岸利用管理說明書,' 2016. [6] T. O. Flanders Investment Trade, The Offshore Wind Power Industry in Taiwan. Available: http://www.flandersinvestmentandtrade.com/export/sites/trade/files/market_studies/905140103101359/905140103101359_1.pdf [accessed July 15 2017]. [7] P. Passon, 'Damage equivalent wind-wave correlations on basis of damage contour lines for the fatigue design of offshore wind turbines,' Renewable Energy, vol. 81, pp. 723-736, 2015. [8] [IEC] International Electrotechnical Commission, 'Wind turbines - Part 3: Design requirements for offshore wind turbines.' International Standard IEC 61400-3, 2009. [9] W. Dong, T. Moan, and Z. Gao, 'Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection,' Reliability Engineering System Safety, vol. 106, pp. 11-27, 2012. [10] T. Pang, Y. Yang, and D. Zhao, 'Convergence Studies on Monte Carlo Methods for Pricing Mortgage-Backed Securities,' International Journal of Financial Studies, vol. 3, pp. 136-150, 2015. [11] P. A. Graf, G. Stewart, M. Lackner, K. Dykes, and P. Veers, 'High-throughput computation and the applicability of Monte Carlo integration in fatigue load estimation of floating offshore wind turbines,' Wind Energy, vol. 19, pp. 861-872, 2016. [12] W. E. de Vries, 'Assessment of bottom-mounted support structure types with conventional design stiffness and installation techniques for typical deep water sites,' WP4: Offshore Foundations and Support Structures, Deliverable D4.2.1, Project UpWind, 2007. [13] L. Fenech, T. Sant, and M. Muscat, 'Design and cost evaluation of a deep water support structure for a wind turbine in central mediterranean waters,' Proceedings of the European Wind Energy Conference, Brussels, Belgium, The European Windd Energy Association, 2011 March 14-17. [14] W. Shi, J. Han, C. Kim, D. Lee, H. Shin, and H. Park, 'Feasibility study of offshore wind turbine substructures for southwest offshore wind farm project in Korea,' Renewable Energy, vol. 74, pp. 406-413, 2015. [15] M. Seidel, 'Feasibility of monopiles for large offshore wind turbines,' Proceedings of the 10th German Wind Energy Conference, Bremen, German, REpower Systems, 2010 November 17-18. [16] W. Dong, T. Moan, and Z. Gao, 'Long-term fatigue analysis of multi-planar tubular joints for jacket-type offshore wind turbine in time domain,' Engineering Structures, vol. 33, pp. 2002-2014, 2011. [17] A. A. Khalifa, S. Y. Haggag, and M. N. Fayed, 'Fatigue assessment analysis of offshore structures with application to an existing platform in Suez Gulf, Egypt,' World Applied Sciences Journal, vol. 30, pp. 1000-1019, 2014. [18] W. E. de Vries, 'Support structure concepts for deep water sites.' Delft University of Technology, The Netherlands, WP4: Offshore Foundations and Support Structures, Deliverable D4.2.8, Project UpWind, 2011. [19] W. Dong, T. Moan, and Z. Gao, 'Statistical uncertainty analysis in the long-term distribution of wind-and wave-induced hot-spot stress for fatigue design of jacket wind turbine based on time domain simulations,' ASME 30th International Conference on Ocean, Offshore and Arctic Engineering, Rotterdam, The Netherlands, The American Society of Mechanical Engineers, 2011 June 19-24. [20] 廖柏凱, '大型貨櫃輪波振效應之探討,' 臺灣大學工程科學及海洋工程學系碩士論文, 2014. [21] J. H. Vugts, 'Fatigue damage assessments and the influence of wave directionality,' Applied Ocean Research, vol. 27, pp. 173-185, 2005. [22] [DNV GL] Det Norske Veritas-Germanischer Lloyd, 'Fatigue design of offshore steel structures,' No. DNV-RP-C203, 2010. [23] M. J. Kühn, Dynamics and design optimisation of offshore wind energy conversion systems: DUWIND Delft University Wind Energy Research Institute, The Netherlands, ISBN:90-76468-07-9, 2001. [24] L. Haid, G. Stewart, J. Jonkman, A. Robertson, M. Lackner, and D. Matha, 'Simulation-length requirements in the loads analysis of offshore floating wind turbines,' ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France, The American Society of Mechanical Engineers, pp. V008T09A091-V008T09A091, 2013 June 9-14. [25] D. Zwick and M. Muskulus, 'The simulation error caused by input loading variability in offshore wind turbine structural analysis,' Wind Energy, vol. 18, pp. 1421-1432, 2015. [26] S. Ji and Q. Yue, 'Monte-Carlo simulation of fatigue ice-load for offshore platform with ice-broken cone in the Liaodong Gulf,' Acta Oceanologica Sinica/Haiyang Xuebao, vol. 25, pp. 114-119, 2003. [27] Y. Dong and C. G. Soares, 'Uncertainty analysis of local strain and fatigue crack initiation life of welded joints under plane strain condition,' Proceedings of the 6th International Conference on Marine Structures, Lisbon, Portugal, MARSTRUCT Virtual Institute, 2017 May 8-10. [28] D. V. Bilionis and D. Vamvatsikos, 'Fatigue analysis of an offshore wind turbine in Mediterranean Sea under a probabilistic framework,' VI International Conference on Computational Methods in Marine Engineering (MARINE 2015), Rome, Italy, International Center for Numerical Methods in Engineering, 2015 June 15-17. [29] M. J. Vahdatirad, L. V. Andersen, L. B. Ibsen, and J. D. Sorensen, 'Stochastic dynamic stiffness of a surface footing for offshore wind turbines: Implementing a subset simulation method to estimate rare events,' Soil Dynamics and Earthquake Engineering, vol. 65, pp. 89-101, 2014. [30] L. V. Andersen, M. Vahdatirad, M. T. Sichani, and J. D. Sørensen, 'Natural frequencies of wind turbines on monopile foundations in clayey soils—A probabilistic approach,' Computers and Geotechnics, vol. 43, pp. 1-11, 2012. [31] J. J. Jensen, 'Fatigue damage estimation in non-linear systems using a combination of Monte Carlo simulation and the First Order Reliability Method,' Marine Structures, vol. 44, pp. 203-210, 2015. [32] J. T. H. Horn and J. J. Jensen, 'Reducing uncertainty of Monte Carlo estimated fatigue damage in offshore wind turbines using FORM,' 13th International Symposium on Practical Design of Ships and Other Floating Structures (PRADS'2016), Copenhagen, Denmark, DIS Congress Service A/S, 2016 September 4-8. [33] [IEC] International Electrotechnical Commission, 'Wind turbines - Part 1: Design requirements.' International Standard IEC 61400-1, 2005. [34] [DNV GL] Det Norske Veritas-Germanischer Lloyd, 'Design of offshore wind turbine structures,' No. DNV-OS-J101, 2014. [35] I. W. Chen, B. L. Wong, Y. H. Lin, S. W. Chau, and H. H. Huang, 'Design and analysis of jacket substructures for offshore wind turbines,' Energies, vol. 9, p. 264, 2016. [36] P. Li, 'Analysis and design of offshore jacket wind turbine,' Master's Thesis, Norwegian University of Science and Technology Department of Marine Technology, p. 94, 2010. [37] Siemens, Wind Turbine SWT-3.6-120, [Online]. Available: https://www.siemens.com/content/dam/internet/siemens-com/global/market-specific-solutions/wind/data_sheets/data-sheet-wind-turbine-swt-3-6-120.pdf [accessed July 15 2017]. [38] 中華民國經濟部 (Ministry of Economic Affairs, R.O.C.), '風力發電離岸系統示範獎勵辦法 (Regulations for Demonstration and Rewards of Offshore Wind Power System),' Taiwan, 2012. [39] H. Kawai, K. Michishita, and A. Deguchi, 'Design wind loads on a wind turbine for strong wind,' BBAA VI International Colloquium on: Bluff Bodies Aerodynamics and Applications, Milano, Italy, University of Politecnico di Milano, 2008 July 20-24. [40] 常態分佈(Normal Distribution)之檢測, [Online]. Available: http://www.pt.ntu.edu.tw/hmchai/SAS/SASdescriptive/SASnormality.htm [accessed July 15 2017]. [41] M. Efthymiou, 'Development of SCF formulae and generalised influence functions for use in fatigue analysis,' Recent Developments in Tubular Joint Technology, OTJ'88, October 1988, London. [42] S. Chiew, C. Soh, and N. Wu, 'General SCF design equations for steel multiplanar tubular XX-joints,' International Journal of Fatigue, vol. 22, pp. 283-293, 2000. [43] C.O. Woghiren, and F. P. Brennan, 'Weld toe stress concentrations in multi-planar stiffened tubular KK joints,' International Journal of Fatigue, vol. 31, pp. 164-172, 2009. [44] J. C. Paul, Y. Makino, and Y. Kurobane, 'Ultimate resistance of unstiffened multiplanar tubular TT-and KK-joints,' Journal of Structural Engineering, vol. 120, pp. 2853-2870, 1994. [45] J. Maheswaran, 'Fatigue life estimation of tubular joints in offshore jacket according to the SCFs in DNV-RP-C203, with comparison of the SCFs in ABAQUS/CAE,' Master's Thesis, University of Stavanger, 2014. [46] A. Niesłony, 'Determination of fragments of multiaxial service loading strongly influencing the fatigue of machine components,' Mechanical Systems and Signal Processing, vol. 23, pp. 2712-2721, 2009. [47] A. Niesłony, 'Rainflow Counting Algorithm, version 1.2,' Rain flow counting method, set of functions with user guide for use with MATLAB, [Online]. Available: http://www.mathworks.com/matlabcentral/fileexchange/3026 [accessed July 15 2017]. [48] A. Fatemi and L. Yang, 'Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials,' International Journal of Fatigue, vol. 20, pp. 9-34, 1998. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68767 | - |
dc.description.abstract | 本研究以台灣海峽福海風場的離岸風機作為設計目標,建立3.6MW的K型桁架式支撐結構有限元素模型,並且考量離岸風機系統的高度非線性,而採用時間域分析取代頻率域分析。疲勞分析流程參考DNV規範採用熱點應力法,包含銲接效應也納入考量,輔以雨流計數法以及Palmgren-Miner的線性破壞率理論評估疲勞壽命。環境參數根據當地長期氣象統計,建立各參數的聯合機率表。在本文中以三種負載狀況:只施加風負載、只施加波浪負載與兩者都施加,探討疲勞破壞率的統計不確定性。會造成此不確定的因素為時域性負載計算採用隨機過程,這對桁架式支撐結構接點的熱點應力會產生相當大的影響,也意味著需要更大量的模擬數量,已取得能代表該氣象狀況的特徵破壞率。 在現有的設計規範中使用方格法去計算結構的長期破壞率,也就是模擬所有氣象參數所構成的組合,但這也使得模擬數量會隨著考量參數呈現指數成長,若要將上述統計不確定性納入討論,更將造成模擬數量的倍增。為了解決計算效率的問題,使用收斂速度與參數數量無關的蒙地卡羅法,提供了在離岸風機疲勞分析中相當具有潛力的另一個選擇。本研究中藉由10,000個風場、流場與結構疲勞模擬,探討蒙地卡羅法與方格法的計算效率。 | zh_TW |
dc.description.abstract | The K-type jacket substructure of a 3.6 MW offshore wind turbine, designed for the Fuhai Offshore Wind Farm in Taiwan Strait, modeled in the FEA software. Time-domain analyses were conducted rather than frequency-domain because of the strong nonlinearity of the OWT system. The fatigue assessment procedure in this paper based on the Hot-Spot Stress Approach in accordance with DNV standards, with welding effects considered. Rainflow Counting Algorithm and Palmgren-Miner's linear damage theory were used to predict the fatigue life. The Joint Probability table of long-term statistical environment condition was based on a preliminary site survey. The statistical uncertainty of the distribution of fatigue damage has been assessed by considering 3 different load cases: wind loads only, wave loads only and combination of wind and wave loads. The uncertainty caused by the stochastic processes of wave and wind loads have a great influence on hot-spot stress of welded tubular joints for jacket-type substructure, which means more simulations for each representative short-term environment condition needed to derived the characteristic fatigue damage. Current design standards use Grid-Based method to derive the long-term fatigue damage: scanning over a rectangular grid of metocean inputs, the number of required simulations grows exponentially with dimension, and more simulations needed if we include statistical uncertainty as well. To reduce the number of simulations required, Monte Carlo method used in this paper, sampling simulation condition from the discrete probability distribution in the joint probability table. The theoretical convergence rate of Monte Carlo Method, which is independent of dimension, may offer a potential way to solve the high dimensionality in Offshore Wind Turbine. About 10,000 simulations over the whole joint probability table were discussed to compare the computational efficiency of two sampling method. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:34:23Z (GMT). No. of bitstreams: 1 ntu-106-R04525070-1.pdf: 5393323 bytes, checksum: cfb748b0e878307477249d58f19d01b4 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 目錄 口試委員會審定書 i 誌謝 ii 摘要 iii ABSTRACT iv 目錄 v 圖目錄 viii 表目錄 xii 第1章 簡介 1 1.1 動機 1 1.2 研究背景 1 1.3 研究目的 5 1.4 重要性與貢獻 6 1.5 名詞對照與符號說明 7 1.5.1 英文專有名詞與中文翻譯對照 7 1.5.2 符號說明表 10 第2章 文獻探討 12 2.1 離岸風機疲勞 13 2.2 可靠度分析 16 2.3 蒙地卡羅應用於離岸風機 19 第3章 方法 22 3.1 桁架式支撐結構挑選準則 23 3.2 模型建立 25 3.2.1 風機塔柱模型 26 3.2.2 過渡接件(Transition Piece) 28 3.2.3 K型桁架式支撐結構(K-Type Jacket Structure) 28 3.2.4 基樁結構模型 30 3.2.5 材料設定 30 3.2.6 腐蝕假設 30 3.2.7 支撐結構基本資訊 32 3.3 負載類型介紹 32 3.3.1 風概況 34 3.3.2 波浪概況 34 3.4 負載設定 35 3.4.1 永久負載 35 3.4.2 風負載 35 3.4.3 波浪負載 36 3.5 蒙地卡羅取樣法(Monte-Carlo Method) 39 3.5.1 蒙地卡羅信賴區間 43 3.6 應力集中係數 (Stress Concentration Factor) 44 3.7 應力評估 49 3.7.1 公稱應力 49 3.7.2 熱點應力 50 3.7.3 缺口應力 50 3.7.4 熱點應力範圍 (Hot Spot Stress Range) 51 3.8 雨流計數法 (Rainflow Counting Method) 53 3.9 S-N曲線 55 3.9.1 S-N曲線選擇 56 3.10 結構疲勞壽命 58 第4章 結果 60 4.1 特徵破壞率探討 60 4.1.1 風負載破壞率 60 4.1.2 波浪負載破壞率 63 4.1.3 測試模型 65 4.1.4 測試模型之蒙地卡羅法 67 4.2 蒙地卡羅法與方格法之特徵破壞率 67 第5章 討論 70 5.1 統計不確定性 70 5.2 測試模型 76 5.2.1 相位角變動性影響 77 5.3 特徵破壞率探討 79 5.3.1 方格法 79 5.3.2 蒙地卡羅法 81 第6章 結論與未來展望 83 6.1 結論 83 6.2 未來展望 84 參考文獻 86 | |
dc.language.iso | zh-TW | |
dc.title | 應用蒙地卡羅法提升離岸風力發電支撐結構長時域疲勞分析之計算效率 | zh_TW |
dc.title | The Application of Monte Carlo Method in Fatigue Estimation of Jacket Substructure for Offshore Wind Turbines to Improve the Computational Efficiency | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 宋家驥,李雅榮,丁肇隆,林宗岳 | |
dc.subject.keyword | 桁架式支撐結構,疲勞破壞率,統計不確定性,蒙地卡羅法,時域性分析,離岸風力發電桁架式支撐結構, | zh_TW |
dc.subject.keyword | Jacket Substructure,Fatigue Damage,Statistical Uncertainty,Monte Carlo Method,Time Domain Analysis,Offshore Wind Turbine, | en |
dc.relation.page | 89 | |
dc.identifier.doi | 10.6342/NTU201703521 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-18 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
Appears in Collections: | 工程科學及海洋工程學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-106-1.pdf Restricted Access | 5.27 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.