Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68757
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor周綠蘋(Lu-Ping Chow)
dc.contributor.authorMing Jiun Tsaien
dc.contributor.author蔡銘駿zh_TW
dc.date.accessioned2021-06-17T02:33:54Z-
dc.date.available2020-09-13
dc.date.copyright2017-09-13
dc.date.issued2017
dc.date.submitted2017-08-17
dc.identifier.citation1. Forner, A., J.M. Llovet, and J. Bruix, Hepatocellular carcinoma. The Lancet, 2012. 379(9822): p. 1245-1255.
2. Wong, C. and K. Goh, Chronic hepatitis B infection and liver cancer. Biomed Imaging Interv J, 2006. 2(3): p. e7.
3. Goossens, N. and Y. Hoshida, Hepatitis C virus-induced hepatocellular carcinoma. Clin Mol Hepatol, 2015. 21(2): p. 105-14.
4. Abbas, Z., et al., Hepatitis D and hepatocellular carcinoma. World J Hepatol, 2015. 7(5): p. 777-86.
5. Morgan, T.R., S. Mandayam, and M.M. Jamal, Alcohol and hepatocellular carcinoma. Gastroenterology, 2004. 127(5): p. S87-S96.
6. Kew, M.C., Aflatoxins as a Cause of Hepatocellular Carcinoma. 2013.
7. Gomaa, A.I., Diagnosis of hepatocellular carcinoma. World Journal of Gastroenterology, 2009. 15(11): p. 1301.
8. Bialecki, E.S. and A.M. Di Bisceglie, Diagnosis of hepatocellular carcinoma. HPB (Oxford), 2005. 7(1): p. 26-34.
9. Pons, F., M. Varela, and J.M. Llovet, Staging systems in hepatocellular carcinoma. HPB (Oxford), 2005. 7(1): p. 35-41.
10. Lin, S., K. Hoffmann, and P. Schemmer, Treatment of hepatocellular carcinoma: a systematic review. Liver Cancer, 2012. 1(3-4): p. 144-58.
11. Mishra, A. and M. Verma, Cancer biomarkers: are we ready for the prime time? Cancers (Basel), 2010. 2(1): p. 190-208.
12. Behne, T. and M.S. Copur, Biomarkers for hepatocellular carcinoma. Int J Hepatol, 2012. 2012: p. 859076.
13. Mitsuhashi, N., et al., Clinical significance of alpha-fetoprotein: involvement in proliferation, angiogenesis, and apoptosis of hepatocellular carcinoma. J Gastroenterol Hepatol, 2008. 23(7 Pt 2): p. e189-97.
14. N. Leigh Anderson, N.G.A., Proteome and proteomics: New technologies, new concepts, and new words. Electrophoresis, 1998. 19: p. 1853-1861.
15. Weir, W.P.B.a.M.P., Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol, 1999. 17 (3): p. 121-7.
16. Humphery-Smith, W.C.C.-P.Y.G.W.D.H.W., Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis., 1991. 16(1): p. 1090-1094.
17. Anderson, J.D., et al., Comprehensive Proteomic Analysis of Mesenchymal Stem Cell Exosomes Reveals Modulation of Angiogenesis via Nuclear Factor-KappaB Signaling. Stem Cells, 2016. 34(3): p. 601-13.
18. Oda Y, H.K., Cross FR, Cowburn D, Chait BT, Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci USA, 1999. 96 (12): p. 6591-6596.
19. Karagiannis, G.S., M.P. Pavlou, and E.P. Diamandis, Cancer secretomics reveal pathophysiological pathways in cancer molecular oncology. Mol Oncol, 2010. 4(6): p. 496-510.
20. Whittaker, S., R. Marais, and A.X. Zhu, The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene, 2010. 29(36): p. 4989-5005.
21. Wilhelm, S.M., et al., Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther, 2008. 7(10): p. 3129-40.
22. Paul T.C. Wan, M.J.G., S. Mark Roe, Sharlene Lee, Dan Niculescu-Duvaz, Valerie M. Good, Cancer Genome Project, C. Michael Jones, Christopher J. Marshall, Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF. Cell, 2004. 116: p. 855-867.
23. Wilhelm, S.M., et al., BAY 43-9006 Exhibits Broad Spectrum Oral Antitumor Activity and Targets the RAF/MEK/ERK Pathway and Receptor Tyrosine Kinases Involved in Tumor Progression and Angiogenesis. Cancer Research, 2004. 64(19): p. 7099-7109.
24. Yu, C., et al., The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43-9006. Oncogene, 2005. 24(46): p. 6861-9.
25. Petersen, T.N., et al., SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods, 2011. 8(10): p. 785-6.
26. Urtasun, R., et al., Connective tissue growth factor autocriny in human hepatocellular carcinoma: oncogenic role and regulation by epidermal growth factor receptor/yes-associated protein-mediated activation. Hepatology, 2011. 54(6): p. 2149-58.
27. Mazzocca, A., et al., Down-regulation of connective tissue growth factor by inhibition of transforming growth factor β blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma. Hepatology, 2010. 51(2): p. 523-534.
28. Kodama, T., et al., Increases in p53 expression induce CTGF synthesis by mouse and human hepatocytes and result in liver fibrosis in mice. J Clin Invest, 2011. 121(8): p. 3343-56.
29. Wang, G.-B., et al., Significance of Serum Connective Tissue Growth Factor in Patients with Hepatocellular Carcinoma and Relationship with Angiogenesis. World Journal of Surgery, 2010. 34(10): p. 2411-2417.
30. Liu, H., et al., Transforming Growth Factor β1 Promotes Migration and Invasion of Human Hepatocellular Carcinoma Cells Via Up-Regulation of Connective Tissue Growth Factor. Cell Biochemistry and Biophysics, 2015.
31. Hu, Z., et al., Downregulation of galectin-3 by EGF mediates the apoptosis of HepG2 cells. Mol Cell Biochem, 2012. 369(1-2): p. 157-65.
32. Zheng, D., et al., Downregulation of galectin-3 causes a decrease in uPAR levels and inhibits the proliferation, migration and invasion of hepatocellular carcinoma cells. Oncol Rep, 2014. 32(1): p. 411-8.
33. Serizawa, N., et al., Galectin 3 regulates HCC cell invasion by RhoA and MLCK activation. Lab Invest, 2015. 95(10): p. 1145-56.
34. Bacigalupo, M.L., et al., Hierarchical and selective roles of galectins in hepatocarcinogenesis, liver fibrosis and inflammation of hepatocellular carcinoma. World J Gastroenterol, 2013. 19(47): p. 8831-49.
35. Ulu, M., et al., Prognostic significance of serum galectin-3 levels in patients with hepatocellular cancer and chronic viral hepatitis. Saudi J Gastroenterol, 2015. 21(1): p. 47-50.
36. •, C.X.Z.Y., Y. Wang, and L.Z. •, A comparison of glypican-3 with alpha-fetoprotein as a serum marker for hepatocellular carcinoma a meta-analysis. J Cancer Res Clin Oncol, 2013: p. 1417–24.
37. Liu, X., et al., Expression of glypican 3 enriches hepatocellular carcinoma development-related genes and associates with carcinogenesis in cirrhotic livers. Carcinogenesis, 2015. 36(2): p. 232-42.
38. Wu, Y., et al., Glypican-3 promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells through ERK signaling pathway. Int J Oncol, 2015. 46(3): p. 1275-85.
39. Capurro, M., et al., Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology, 2003. 125(1): p. 89-97.
40. Jakubovic, B.D. and S. Jothy, Glypican-3: from the mutations of Simpson-Golabi-Behmel genetic syndrome to a tumor marker for hepatocellular carcinoma. Exp Mol Pathol, 2007. 82(2): p. 184-9.
41. Li, L., et al., Oncogenic activation of glypican-3 by c-Myc in human hepatocellular carcinoma. Hepatology, 2012. 56(4): p. 1380-90.
42. Liu, F., et al., High expression of high mobility group box 1 (hmgb1) predicts poor prognosis for hepatocellular carcinoma after curative hepatectomy. Journal of Translational Medicine, 2012. 10(1): p. 135.
43. Sims, G.P., et al., HMGB1 and RAGE in Inflammation and Cancer. Annual Review of Immunology, 2010. 28(1): p. 367-388.
44. Chen., Y., et al., HMGB1 promotes HCC progression partly by downregulating p21 via ERK/c-Myc pathway and upregulating MMP-2. Tumor Biology, 2016.
45. Zhou, R.R., et al., Potential role of High mobility group box 1 in hepatocellular carcinoma. Cell Adh Migr, 2014. 8(5): p. 493-8.
46. Wilhelm, S., et al., Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov, 2006. 5(10): p. 835-44.
47. McCain, J., The MAPK (ERK) Pathway: Investigational Combinations for the Treatment Of BRAF-Mutated Metastatic Melanoma. Pharmacy and Therapeutics, 2013. 38(2): p. 96-108.
48. Brown, K.J., et al., Advances in the proteomic investigation of the cell secretome. Expert Rev Proteomics, 2012. 9(3): p. 337-45.
49. Pavlou, M.P. and E.P. Diamandis, The cancer cell secretome: A good source for discovering biomarkers? Journal of Proteomics, 2010. 73(10): p. 1896-1906.
50. Nilsson, T., et al., Mass spectrometry in high-throughput proteomics: ready for the big time. Nat Meth, 2010. 7(9): p. 681-685.
51. Schmidt, A., I. Forne, and A. Imhof, Bioinformatic analysis of proteomics data. BMC Systems Biology, 2014. 8(2): p. S3.
52. Möller, S., M.D.R. Croning, and R. Apweiler, Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics, 2001. 17(7): p. 646-653.
53. Dyrløv Bendtsen, J., et al., Improved Prediction of Signal Peptides: SignalP 3.0. Journal of Molecular Biology, 2004. 340(4): p. 783-795.
54. Bendtsen, J.D., et al., Feature-based prediction of non-classical and leaderless protein secretion. Protein Engineering, Design and Selection, 2004. 17(4): p. 349-356.
55. Krämer, A., et al., Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics, 2014. 30(4): p. 523-530.
56. Jun, J.I. and L.F. Lau, Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov, 2011. 10(12): p. 945-63.
57. Jia, X.-Q., et al., Inhibition of connective tissue growth factor overexpression decreases growth of hepatocellular carcinoma cells in vitro and in vivo. Chinese medical journal, 2011. 124(22): p. 3794-3799.
58. Neuzillet, C., et al., Targeting the TGFbeta pathway for cancer therapy. Pharmacol Ther, 2015. 147: p. 22-31.
59. Dumic, J., S. Dabelic, and M. Flogel, Galectin-3: an open-ended story. Biochim Biophys Acta, 2006. 1760(4): p. 616-35.
60. Dumic, J., G. Lauc, and M. Flögel, Expression of galectin-3 in cells exposed to stress - roles of Jun and NF-κB. Cellular Physiology and Biochemistry, 2000. 10(3): p. 149-158.
61. Costessi, A., et al., Extracellular nucleotides activate Runx2 in the osteoblast-like HOBIT cell line: a possible molecular link between mechanical stress and osteoblasts' response. Bone, 2005. 36(3): p. 418-32.
62. Stock, M., et al., Expression of Galectin-3 in Skeletal Tissues Is Controlled by Runx2. Journal of Biological Chemistry, 2003. 278(19): p. 17360-17367.
63. Krall, J.A., E.M. Beyer, and G. MacBeath, High- and low-affinity epidermal growth factor receptor-ligand interactions activate distinct signaling pathways. PLoS One, 2011. 6(1): p. e15945.
64. Morford, L.A., et al., The oncofetal gene glypican 3 is regulated in the postnatal liver by zinc fingers and homeoboxes 2 and in the regenerating liver by alpha-fetoprotein regulator 2. Hepatology, 2007. 46(5): p. 1541-7.
65. Ho, M. and H. Kim, Glypican-3: a new target for cancer immunotherapy. Eur J Cancer, 2011. 47(3): p. 333-8.
66. Nakano, K., et al., Anti-glypican 3 antibodies cause ADCC against human hepatocellular carcinoma cells. Biochem Biophys Res Commun, 2009. 378(2): p. 279-84.
67. Feng, M. and M. Ho, Glypican-3 antibodies: a new therapeutic target for liver cancer. FEBS Lett, 2014. 588(2): p. 377-82.
68. Zhu, A.X., et al., First-in-man phase I study of GC33, a novel recombinant humanized antibody against glypican-3, in patients with advanced hepatocellular carcinoma. Clin Cancer Res, 2013. 19(4): p. 920-8.
69. Ishiguro, T., et al., Anti-glypican 3 antibody as a potential antitumor agent for human liver cancer. Cancer Res, 2008. 68(23): p. 9832-8.
70. Feng, M., et al., Therapeutically targeting glypican-3 via a conformation-specific single-domain antibody in hepatocellular carcinoma. Proc Natl Acad Sci U S A, 2013. 110(12): p. E1083-91.
71. Phung, Y., et al., High-affinity monoclonal antibodies to cell surface tumor antigen glypican-3 generated through a combination of peptide immunization and flow cytometry screening. MAbs, 2012. 4(5): p. 592-9.
72. Uramoto, H., et al., Physical interaction of tumour suppressor p53/p73 with CCAAT-binding transcription factor 2 (CTF2) and differential regulation of human high-mobility group 1 (HMG1) gene expression. Biochemical Journal, 2003. 371(2): p. 301.
73. Nagatani, G., et al., Transcriptional Activation of the Human HMG1 Gene in Cisplatin-resistant Human Cancer Cells. Cancer Research, 2001. 61(4): p. 1592.
74. Sims, G.P., et al., HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol, 2010. 28: p. 367-88.
75. Müller, S., L. Ronfani, and M.E. Bianchi, Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. Journal of Internal Medicine, 2004. 255(3): p. 332-343.
76. França, A.V.C., et al., Diagnosis, staging and treatment of hepatocellular carcinoma. Brazilian Journal of Medical and Biological Research, 2004. 37: p. 1689-1705.
77. Ebara, M., M. Ohto, and F. Kondo, Strategy for early diagnosis of hepatocellular carcinoma (HCC). Annals of the Academy of Medicine, Singapore, 1989. 18(1): p. 83-89.
78. Zhou, L., J. Liu, and F. Luo, Serum tumor markers for detection of hepatocellular carcinoma. World Journal of Gastroenterology : WJG, 2006. 12(8): p. 1175-1181.
79. Yuen, M.-F. and C.-L. Lai, Serological markers of liver cancer. Best Practice & Research Clinical Gastroenterology, 2005. 19(1): p. 91-99.
80. Marrero, J.A., et al., Des-gamma carboxyprothrombin can differentiate hepatocellular carcinoma from nonmalignant chronic liver disease in american patients. Hepatology, 2003. 37(5): p. 1114-1121.
81. Grizzi, F., et al., Usefulness of cancer-testis antigens as biomarkers for the diagnosis and treatment of hepatocellular carcinoma. Journal of Translational Medicine, 2007. 5: p. 3-3.
82. Collins , F.S. and H. Varmus A New Initiative on Precision Medicine. New England Journal of Medicine, 2015. 372(9): p. 793-795.
83. Friedman, A.A., et al., Precision medicine for cancer with next-generation functional diagnostics. Nat Rev Cancer, 2015. 15(12): p. 747-56.
84. Jameson, J.L. and D.L. Longo, Precision Medicine — Personalized, Problematic, and Promising. New England Journal of Medicine, 2015. 372(23): p. 2229-2234.
85. Mok , T.S., et al., Gefitinib or Carboplatin–Paclitaxel in Pulmonary Adenocarcinoma. New England Journal of Medicine, 2009. 361(10): p. 947-957.
86. Kwak , E.L., et al., Anaplastic Lymphoma Kinase Inhibition in Non–Small-Cell Lung Cancer. New England Journal of Medicine, 2010. 363(18): p. 1693-1703.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68757-
dc.description.abstract肝癌是世界上最常見的癌症之一。其中有百分之七十五的肝癌屬於肝細胞癌 (hepatocellular carcinoma, HCC)。在臺灣,肝癌的盛行率為所有癌症的第二名,僅次於肺癌。目前臨床上已有許多生物標記可用來診斷與評估肝癌治療後的預後,也有許多具潛力的生物標記正在被研究。根據 Barcelona-clinic liver cancer staging (BCLC staging),晚期的肝癌病人常使用唯一的口服肝癌標靶藥物 sorafenib 治療。Sorafenib 是一種多重激酶抑制劑,能藉由 Raf 抑制 MAPK 細胞傳遞路徑,且是目前唯一美國 FDA 核可上市的口服肝癌標靶藥物,再加上其副作用相對和緩而被用來治療肝細胞癌後期之病人。然而,目前並沒有一個好的方法能用以預測 sorafenib 治療肝癌病人後的預後。近來雖然有許多的研究著力於 sorafenib 治療效果相關生物標記的探討,並沒有找到適當的生物標記能應用到臨床上以評估預後。因此找到能用以預測肝癌在 sorafenib 治療後之療效之生物標記是刻不容緩。
以定量蛋白質體學 (quantitative proteomics) 的方法,細胞培養中標記穩定同位素胺基酸 SILAC (stable isotope labeling of amino acids in culture) 之技術,分析HuH-7 在 sorafenib 治療前與治療後,細胞內及分泌性蛋白質表現量的差異,並以質譜儀 LC MS/MS 鑑定這些蛋白質,再以生物資訊分析軟體IPA (ingenuity pathway analysis) 對這些胞內與分泌性的蛋白質做疾病與功能上的分析。分別在細胞裂解液與細胞培養液中鑑定到2611個與1022個蛋白質,且分別有1091個與145個蛋白質的表現量是下降的。再將這些蛋白質以生物資訊分析軟體 TMHMM、SecretomeP 以及 SignalP 分析,發現在細胞裂解液與細胞培養液中共有103個蛋白質屬於分泌性蛋白質。這些蛋白質皆與細胞凋亡、細胞增生、血管生成與癌症有關,並從中篩選出四個有潛力之生物標記 CTGF、Galectin-3、Glypican-3 及 HMGB1。再分別以活體外之細胞實驗及活體內小鼠模式動物進行驗證,這四個蛋白質的表現量都會因sorafenib的治療而下降,且在活體內的腫瘤生長也會因sorafenib 的治療而受到明顯抑制。並也探討這些蛋白質所參與的細胞傳遞路徑,發現這些蛋白質皆屬於 MAPK/ERK 下游之表現蛋白質。另外也觀察細胞的生長情形,將蛋白質GPC3的表現抑制後,細胞的生長也會受到抑制。根據我們的研究結果,我們找到四個具有潛力的生物標記可以用來預測肝癌病人經 sorafenib 治療後之預後狀況。這些生物標記需更多臨床上相關的研究及驗證,從而了解其價值,並應用到臨床。
zh_TW
dc.description.abstractHepatocellular carcinoma, HCC, is the most common liver cancer in the world. Clinically, there are many biomarkers which can be used to diagnose HCC and predict prognosis. According to the Barcelona-clinic liver cancer staging (BCLC staging), sorafenib is the only anticancer drug with proven prognostic efficacy for treatment of HCC. Sorafenib is a multi-kinase inhibitor and inhibits the MAPK pathway by inhibiting Raf. Because sorafenib is the only approved drug for advanced HCC and exhibits relatively mild adverse effect, biomarkers which can be used to predict sorafenib efficacy can assist in identifying the patients who are likely to benefit from the treatment. Many studies have attempted to investigate biomarkers of sorafenib efficacy by analyzing the associations between potential markers and patients’ outcomes. However, there are no appropriate biomarkers can be used to estimate prognosis. Therefore, it is necessary to find biomarkers which can be used to predict the prognosis of HCC patients after sorafenib treatment.
We applied the quantitative proteomics method (Stable Isotope Labeling of Amino acids in Culture, SILAC) to analyze the differences of secretory and cytosolic proteins levels between HuH-7 and sorafenib-treated HuH-7 cells. We further used the LC MS/MS approach to identify the above proteins. The Ingenuity Pathway Analysis (IPA) was performed to analyze the difference of functions between secretory and cytosolic proteins of HuH-7 and sorafenib-treated HuH-7 cells. According to our results, we identified 2611 proteins in cell lysate and 1022 proteins in conditioned medium of sorafenib-treated HuH-7 cells. Of these proteins, there are 1091 and 145 proteins down-regulated in cell lysate and conditioned medium respectively after sorafenib treatment. Furthermore, we analyzed these two groups by bioinformatics software, TMHMM, SecretomeP and SignalP, and totally 103 proteins were classified as the secretory proteins. These proteins were found to be relating to apoptosis, proliferation, angiogenesis and cancer. In which, we selected four candidates, CTGF, Galectin-3, Glypican-3 and HMGB1, which may be potential biomarkers for predicting prognosis of HCC patients after sorafenib treatment. We validated these potential biomarkers by western blot in vitro and immunohistochemistry in vivo and found that the expressions of these four proteins are inhibited by sorafenib. In addition, the tumor volume was also decreased in vivo after sorafenib treatment. We further studied the involved cell signaling of these potential biomarkers with several inhibitors and found that these four proteins are regulated by MAPK/ERK pathway. Moreover, proliferation was also inhibited in GPC3-knowdown HuH-7 cells. In conclusion, we found that these four proteins are potential biomarkers for predicting prognosis of HCC patients after sorafenib treatment. It is expected to make these potential biomarkers be valuable in clinical use.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:33:54Z (GMT). No. of bitstreams: 1
ntu-106-R04442019-1.pdf: 3121178 bytes, checksum: 4a7a05fd30650e18ce43adf2dfd02e4e (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員審定書 i
謝誌 ii
中文摘要 iii
Abstract v
縮寫 vii
目錄 ix
圖目錄 xii
表目錄 xiii
附錄目錄 xiv
第一章 導論 1
第一節 肝癌 1
1.1 肝癌之流行病學 1
1.2 肝癌的危險因子 1
1.3 肝癌的診斷 2
1.4 肝癌的分期 2
第二節 臨床治療 3
2.1 肝臟切除術 (Liver resection) 3
2.2 肝臟移植 (Liver transplantation) 3
2.3 局部消融術 (Local ablative therapy) 3
2.4 肝動脈化學栓塞療法 (Liver Transarterial Chemoembolization, TACE) 3
2.5 標靶藥物蕾莎瓦 (Sorafenib) 3
第三節 肝細胞癌的生物標記 (Biomarkers for HCC) 4
3.1 生物標記的定義 (Definition of biomarkers) 4
3.2 癌症生物標記 (Cancer biomarkers) 4
3.3 現行的肝細胞癌生物標記 (Current biomarkers for HCC) 4
3.4 血清生物標記 (Serum biomarkers) 5
第四節 蛋白質體學 6
4.1 蛋白質體學定義 (Definition of proteomics) 6
4.2 定量蛋白質體學 (Quantitative proteomics) 6
4.3 蛋白質體學在癌症生物標記研究上的應用 7
第五節 分泌蛋白體 (Secretome) 7
第六節 肝細胞癌之訊息傳遞路徑 (Cell signaling of HCC) 8
第七節 蕾莎瓦 (Sorafenib) 8
第八節 研究動機 9
第二章 實驗材料 10
第一節 細胞株 10
第二節 抗體 10
第三節 藥品 11
第四節 試劑組 12
第五節 生物材料 13
第六節 重要儀器 13
第七節 酵素 14
第八節 軟體及資料庫 14
第三章 實驗方法 15
第一節 肝癌細胞的培養 15
1.1 細胞的培養 (Cell culture) 15
1.2 細胞的計數與細胞的存活率 (Cell counting and cell viability) 15
第二節 蛋白質分析法 15
2.1 蛋白質濃度測定 (BCA protein assay) 15
2.2 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 (SDS-PAGE) 16
2.3 電泳膠體的染色 (Protein staining) 18
2.4 西方點墨法 (Western blot) 19
第三節 Sorafenib影響HuH-7細胞蛋白質表現差異之鑑定 21
3.1 細胞培養中標記穩定同位素胺基酸 (Stable Isotope Labeling of Amino acids in Culture, SILAC) 21
3.2 膠體內水解 (In-gel digestion) 21
3.3 液相層析偶合串聯式質譜儀分析 (NanoLC-MS/MS analysis) 23
3.4 生物資訊學 (Bioinformatics) 23
第四節 異種移植小鼠 (Xenograft mice) 24
第五節 免疫組織化學染色 (Immunohistochemistry) 25
5.1 免疫組織化學染色溶液之配置 (Preparation of buffer for IHC)/ 25
5.2 免疫組織化學染色之步驟 25
第六節 訊息傳遞的研究 26
6.1 細胞加藥處理 (Drug treatment) 26
6.2 裂解細胞 (Cell lysis) 26
6.3 細胞裂解液的配置 (Preparation of RIPA cell lysis buffer) 27
第七節 小髮夾RNA (shRNA) 抑制目標基因 (gene knockdown) 27
7.1 菌株培養 27
7.2 中量shRNA質體DNA萃取 28
7.3 帶有shRNA慢病毒 (Lentivirus) 之製備 28
7.4 以帶有shRNA慢病毒感染肝癌細胞 29
7.5 抗生素篩選 (Screening) 29
第四章 實驗結果 30
第一節 分析細胞中分泌性蛋白質之表現量差異 30
1.1 細胞培養中標記穩定同位素胺基酸之定量 30
1.2 Mascot軟體之蛋白質鑑定及定量 30
1.3 分泌性蛋白質之分析 30
1.4 生物資訊學對蛋白質之疾病與功能分析 31
第二節 候選蛋白之驗證 31
2.1 HuH-7 細胞處理 sorafenib 後蛋白質表現量差異之驗證 31
2.2 動物模式中以 sorafenib 治療活體內動物腫瘤之驗證 32
第三節 CTGF、Galectin-3、Glypican-3 及 HMGB1之調控路徑 32
3.1 MAPK 路徑與 CTGF、Galectin-3、Glypican-3 及 HMGB1之表現量關係 32
3.2 ERK 路徑與 CTGF、Galectin-3、Glypican-3 及 HMGB1 之表現量關係 33
3.3 p-38 路徑與 CTGF、Galectin-3、Glypican-3 及 HMGB1 之表現量關係 33
第四節 Glypican-3對細胞株HuH-7生理功能分析 33
第五節 結論 34
第五章 討論 35
第一節 蛋白質體學與生物資訊學在分泌蛋白體之應用 35
第二節 候選蛋白質對肝癌細胞的調控 36
第三節 肝癌生物標記 38
第四節 精準醫療 (Precision medicine) 39
第六章 參考文獻 41
圖 47
表 56
附錄 63
dc.language.isozh-TW
dc.subjectGalectin-3zh_TW
dc.subject肝細胞癌zh_TW
dc.subject生物標記zh_TW
dc.subjectGlypican-3zh_TW
dc.subjectHMGB1zh_TW
dc.subjectCTGFzh_TW
dc.subject分泌蛋白體學zh_TW
dc.subjectHMGB1en
dc.subjectbiomarkeren
dc.subjectsecreted proteinen
dc.subjectCTGFen
dc.subjectGalectin-3en
dc.subjectGlypican-3en
dc.subjectHepatocellular carcinomaen
dc.title以蛋白質體學方法鑑定蕾莎瓦治療人類肝細胞癌後之預後生物標記zh_TW
dc.titleIdentification of Potential Prognostic Biomarkers for Sorafenib Efficacy in Hepatocellular Carcinoma Cells by Proteomic Approachesen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee龔秀妮(Hsiu-Ni Kung),黃楓婷(Feng-Ting Huang)
dc.subject.keyword肝細胞癌,生物標記,分泌蛋白體學,CTGF,Galectin-3,Glypican-3,HMGB1,zh_TW
dc.subject.keywordHepatocellular carcinoma,biomarker,secreted protein,CTGF,Galectin-3,Glypican-3,HMGB1,en
dc.relation.page69
dc.identifier.doi10.6342/NTU201703750
dc.rights.note有償授權
dc.date.accepted2017-08-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
Appears in Collections:生物化學暨分子生物學科研究所

Files in This Item:
File SizeFormat 
ntu-106-1.pdf
  Restricted Access
3.05 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved