請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68746完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王根樹 | |
| dc.contributor.author | Wei-Kai Fang | en |
| dc.contributor.author | 方暐凱 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:33:22Z | - |
| dc.date.available | 2020-09-12 | |
| dc.date.copyright | 2017-09-12 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-18 | |
| dc.identifier.citation | Amy, G., Bull, R., Craun, G. F., Pegram, R., Siddiqui, M., & World Health Organization. (2000). Disinfectants and disinfectant by-products.
Aprea, M.-C., Banchi, B., Lunghini, L., Pagliantini, M., Peruzzi, A., & Sciarra, G. (2010). Disinfection of swimming pools with chlorine and derivatives: formation of organochlorinated and organobrominated compounds and exposure of pool personnel and swimmers. Natural Science, 02(02), 68-78. doi:10.4236/ns.2010.22011 Beltran-Heredia, J., Torregrosa, J., Dominguez, J. R., & Peres, J. A. (2001). Kinetics of the Oxidation of p-Hydroxybenzoic Acid by the H2O2/UV System. Industrial & Engineering Chemistry Research, 40(14), 3104-3108. doi:10.1021/ie001069i Ben, W., Sun, P., & Huang, C. H. (2016). Effects of combined UV and chlorine treatment on chloroform formation from triclosan. Chemosphere, 150, 715-722. doi:10.1016/j.chemosphere.2015.12.071 Bielski, B. H., Cabelli, D. E., Arudi, R. L., & Ross, A. B. (1985). Reactivity of HO2/O− 2 radicals in aqueous solution. Journal of physical and chemical reference data, 14(4), 1041-1100. Bond, T., Goslan, E. H., Jefferson, B., Roddick, F., Fan, L., & Parsons, S. A. (2009). Chemical and biological oxidation of NOM surrogates and effect on HAA formation. Water Res, 43(10), 2615-2622. doi:10.1016/j.watres.2009.03.036 Bond, T., Henriet, O., Goslan, E. H., Parsons, S. A., & Jefferson, B. (2009). Disinfection byproduct formation and fractionation behavior of natural organic matter surrogates. Environ Sci Technol, 43(15), 5982-5989. doi:10.1021/es900686p Booth, M. L., Bauman, A., Owen, N., & Gore, C. J. (1997). Physical activity preferences, preferred sources of assistance, and perceived barriers to increased activity among physically inactive Australians. Preventive medicine, 26(1), 131-137. Bull, R. J., & Robinson, M. (1986). Carcinogenic activity of haloacetonitrile and haloacetone derivatives in the mouse skin and lung. Water chlorination: chemistry, environmental impact and health effects, 5, 221-227. Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅ OH/⋅ O− in aqueous solution. Journal of physical and chemical reference data, 17(2), 513-886. Cardador, M. J., & Gallego, M. (2011). Haloacetic acids in swimming pools: swimmer and worker exposure. Environ Sci Technol, 45(13), 5783-5790. doi:10.1021/es103959d Chang, M.-W., Chung, C.-C., Chern, J.-M., & Chen, T.-S. (2010). Dye decomposition kinetics by UV/H2O2: Initial rate analysis by effective kinetic modelling methodology. Chemical Engineering Science, 65(1), 135-140. doi:10.1016/j.ces.2009.01.056 Chen, H. W., Chen, C. Y., & Wang, G. S. (2011). Performance evaluation of the UV/ H2O2 process on selected nitrogenous organic compounds: reductions of organic contents vs. corresponding C-, N-DBPs formations. Chemosphere, 85(4), 591-597. doi:10.1016/j.chemosphere.2011.06.090 Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science & Technology, 37(24), 5701-5710. doi:10.1021/es034354c Chin, A., & Berube, P. R. (2005). Removal of disinfection by-product precursors with ozone-UV advanced oxidation process. Water Res, 39(10), 2136-2144. doi:10.1016/j.watres.2005.03.021 Chowdhury, S., Alhooshani, K., & Karanfil, T. (2014). Disinfection byproducts in swimming pool: occurrences, implications and future needs. Water Res, 53, 68-109. doi:10.1016/j.watres.2014.01.017 Dahlén, J., Bertilsson, S., & Pettersson, C. (1996). Effects of UV-A irradiation on dissolved organic matter in humic surface waters. Environment International, 22(5), 501-506. doi:http://dx.doi.org/10.1016/0160-4120(96)00038-4 de Almeida, M. D. V., Graça, P., Afonso, C., D'Amicis, A., Lappalainen, R., & Damkjaer, S. (1999). Physical activity levels and body weight in a nationally representative sample in the European Union. Public health nutrition, 2(1a), 105-114. Fang, J., Fu, Y., & Shang, C. (2014). The roles of reactive species in micropollutant degradation in the UV/free chlorine system. Environ Sci Technol, 48(3), 1859-1868. doi:10.1021/es4036094 Feng, Y., Smith, D. W., & Bolton, J. R. (2007). Photolysis of aqueous free chlorine species (HOCl and OCl) with 254 nm ultraviolet light. Journal of Environmental Engineering and Science, 6(3), 277-284. Florentin, A., Hautemaniere, A., & Hartemann, P. (2011). Health effects of disinfection by-products in chlorinated swimming pools. Int J Hyg Environ Health, 214(6), 461-469. doi:10.1016/j.ijheh.2011.07.012 Gregory, R., & Eng, C. (2002). Bench-marking pool water treatment for coping with Cryptosporidium. Haag, W. R., & Hoigne, J. (1983). Ozonation of bromide-containing waters: kinetics of formation of hypobromous acid and bromate. Environmental Science & Technology, 17(5), 261-267. doi:10.1021/es00111a004 Hong, H. C., Wong, M. H., & Liang, Y. (2009). Amino acids as precursors of trihalomethane and haloacetic acid formation during chlorination. Arch Environ Contam Toxicol, 56(4), 638-645. doi:10.1007/s00244-008-9216-4 Jia, A., Wu, C., & Duan, Y. (2016). Precursors and factors affecting formation of haloacetonitriles and chloropicrin during chlor(am)ination of nitrogenous organic compounds in drinking water. J Hazard Mater, 308, 411-418. doi:10.1016/j.jhazmat.2016.01.037 Kanan, A., & Karanfil, T. (2011). Formation of disinfection by-products in indoor swimming pool water: the contribution from filling water natural organic matter and swimmer body fluids. Water Res, 45(2), 926-932. doi:10.1016/j.watres.2010.09.031 Kanan, A. A. (2010). Occurrence and formation of disinfection by-products in indoor swimming pools water. Clemson University. Keuten, M. G., Peters, M. C., Daanen, H. A., de Kreuk, M. K., Rietveld, L. C., & van Dijk, J. C. (2014). Quantification of continual anthropogenic pollutants released in swimming pools. Water Res, 53, 259-270. doi:10.1016/j.watres.2014.01.027 Keuten, M. G., Schets, F. M., Schijven, J. F., Verberk, J. Q., & van Dijk, J. C. (2012). Definition and quantification of initial anthropogenic pollutant release in swimming pools. Water Res, 46(11), 3682-3692. doi:10.1016/j.watres.2012.04.012 Kim, H., Shim, J., & Lee, S. (2002). Formation of disinfection by-products in chlorinated swimming pool water. Chemosphere, 46(1), 123-130. doi:http://doi.org/10.1016/S0045-6535(00)00581-6 Kim, T. K., Moon, B. R., Kim, T., Kim, M. K., & Zoh, K. D. (2016). Degradation mechanisms of geosmin and 2-MIB during UV photolysis and UV/chlorine reactions. Chemosphere, 162, 157-164. doi:10.1016/j.chemosphere.2016.07.079 Lamsal, R., Walsh, M. E., & Gagnon, G. A. (2011). Comparison of advanced oxidation processes for the removal of natural organic matter. Water Res, 45(10), 3263-3269. doi:10.1016/j.watres.2011.03.038 Lee, J., Jun, M. J., Lee, M. H., Lee, M. H., Eom, S. W., & Zoh, K. D. (2010). Production of various disinfection byproducts in indoor swimming pool waters treated with different disinfection methods. Int J Hyg Environ Health, 213(6), 465-474. doi:10.1016/j.ijheh.2010.09.005 Li, K., Hokanson, D. R., Crittenden, J. C., Trussell, R. R., & Minakata, D. (2008). Evaluating UV/ H2O2 processes for methyl tert-butyl ether and tertiary butyl alcohol removal: effect of pretreatment options and light sources. Water Res, 42(20), 5045-5053. doi:10.1016/j.watres.2008.09.017 Li, T., Jiang, Y., An, X., Liu, H., Hu, C., & Qu, J. (2016). Transformation of humic acid and halogenated byproduct formation in UV-chlorine processes. Water Res, 102, 421-427. doi:10.1016/j.watres.2016.06.051 Lin, H.-C., & Wang, G.-S. (2011). Effects of UV/H2O2 on NOM fractionation and corresponding DBPs formation. Desalination, 270(1-3), 221-226. doi:10.1016/j.desal.2010.11.049 Manasfi, T., De Meo, M., Coulomb, B., Di Giorgio, C., & Boudenne, J. L. (2016). Identification of disinfection by-products in freshwater and seawater swimming pools and evaluation of genotoxicity. Environ Int, 88, 94-102. doi:10.1016/j.envint.2015.12.028 Marco, E., Lourencetti, C., Grimalt, J. O., Gari, M., Fernandez, P., Font-Ribera, L., Villanueva, C. M., & Kogevinas, M. (2015). Influence of physical activity in the intake of trihalomethanes in indoor swimming pools. Environ Res, 140, 292-299. doi:10.1016/j.envres.2015.04.005 Matilainen, A., & Sillanpaa, M. (2010). Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere, 80(4), 351-365. doi:10.1016/j.chemosphere.2010.04.067 Merlet, N., Thibaud, H., & Dore, M. (1985). Chloropicrin formation during oxidative treatments in the preparation of drinking water. Science of The Total Environment, 47, 223-228. doi:http://dx.doi.org/10.1016/0048-9697(85)90332-8 Nowell, L. H., & Hoigné, J. (1992). Photolysis of aqueous chlorine at sunlight and ultraviolet wavelengths—II. Hydroxyl radical production. Water Research, 26(5), 599-605. doi:http://dx.doi.org/10.1016/0043-1354(92)90233-T Ou, T. Y., & Wang, G. S. (2016). Comparative study on DBPs formation profiles of intermediate organics from hydroxyl radicals oxidation of microbial cells. Chemosphere, 150, 109-115. doi:10.1016/j.chemosphere.2016.01.124 Pettit, R. E. Organic matter, humus, humate, humic acid, fulvic acid and humin: their importance in soil fertility and plant health. Porter, C. K., Putnam, S. D., Hunting, K. L., & Riddle, M. R. (2005). The Effect of Trihalomethane and Haloacetic Acid Exposure on Fetal Growth in a Maryland County. American Journal of Epidemiology, 162(4), 334-344. doi:10.1093/aje/kwi211 Reckhow, D. A., MacNeill, A. L., Platt, T. L., & McClellan, J. N. (2001). Formation and degradation of dichloroacetonitrile in drinking waters. Journal of Water Supply: Research and Technology-Aqua, 50(1), 1-13. Reckhow, D. A., Singer, P. C., & Malcolm, R. L. (1990). Chlorination of humic materials: byproduct formation and chemical interpretations. Environmental Science & Technology, 24(11), 1655-1664. Rice, R. G., & Netzer, A. (1982). Handbook of ozone technology and applications. Ann Arbor, Mich.: Ann Arbor Science. Richardson, S. D., DeMarini, D. M., Kogevinas, M., Fernandez, P., Marco, E., Lourencetti, C., Balleste, C., Heederik, D., Meliefste, K., McKague, A. B., Marcos, R., Font-Ribera, L., Grimalt, J. O., & Villanueva, C. M. (2010). What's in the pool? A comprehensive identification of disinfection by-products and assessment of mutagenicity of chlorinated and brominated swimming pool water. Environ Health Perspect, 118(11), 1523-1530. doi:10.1289/ehp.1001965 Sanches, S., Barreto Crespo, M. T., & Pereira, V. J. (2010). Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes. Water Research, 44(6), 1809-1818. doi:http://dx.doi.org/10.1016/j.watres.2009.12.001 Sarathy, S. R., & Mohseni, M. (2007). The impact of UV/H2O2 advanced oxidation on molecular size distribution of chromophoric natural organic matter. Environ Sci Technol, 41(24), 8315-8320. doi:10.1021/es071602m Shah, A. D., Dotson, A. D., Linden, K. G., & Mitch, W. A. (2011). Impact of UV disinfection combined with chlorination/chloramination on the formation of halonitromethanes and haloacetonitriles in drinking water. Environ Sci Technol, 45(8), 3657-3664. doi:10.1021/es104240v Simard, S., Tardif, R., & Rodriguez, M. J. (2013). Variability of chlorination by-product occurrence in water of indoor and outdoor swimming pools. Water Res, 47(5), 1763-1772. doi:10.1016/j.watres.2012.12.024 Singer, P. (1999). Humic substances as precursors for potentially harmful disinfection by-products. Water Science and Technology, 40(9), 25-30. Spiliotopoulou, A., Hansen, K. M., & Andersen, H. R. (2015). Secondary formation of disinfection by-products by UV treatment of swimming pool water. Sci Total Environ, 520, 96-105. doi:10.1016/j.scitotenv.2015.03.044 Tardif, R., Catto, C., Haddad, S., Simard, S., & Rodriguez, M. (2016). Assessment of air and water contamination by disinfection by-products at 41 indoor swimming pools. Environ Res, 148, 411-420. doi:10.1016/j.envres.2016.04.011 Templin, M. V., Jamison, K. C., Sprankle, C. S., Wolf, D. C., Wong, B. A., & Butterworth, B. E. (1996). Chloroform-induced cytotoxicity and regenerative cell proliferation in the kidneys and liver of BDF1 mice. Cancer Letters, 108(2), 225-231. Templin, M. V., Larson, J. L., Butterworth, B. E., Jamison, K. C., Leininger, J. R., Méry, S., Morgan, K. T., Wong, B. A., & Wolf, D. C. (1996). A 90-Day Chloroform Inhalation Study in F-344 Rats: Profile of Toxicity and Relevance to Cancer Studies. Fundamental and Applied Toxicology, 32(1), 109-125. doi:http://dx.doi.org/10.1006/faat.1996.0113 Teo, T. L., Coleman, H. M., & Khan, S. J. (2015). Chemical contaminants in swimming pools: Occurrence, implications and control. Environ Int, 76, 16-31. doi:10.1016/j.envint.2014.11.012 Thomsen, C. L., Madsen, D., Poulsen, J. A., Thøgersen, J., Jensen, S. K., & Keiding, S. R. (2001). Femtosecond photolysis of aqueous HOCl. The Journal of Chemical Physics, 115(20), 9361-9369. Toor, R., & Mohseni, M. (2007). UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water. Chemosphere, 66(11), 2087-2095. doi:10.1016/j.chemosphere.2006.09.043 Venkatadri, R., & Peters, R. W. (1993). Chemical oxidation technologies: ultraviolet light/hydrogen peroxide, Fenton's reagent, and titanium dioxide-assisted photocatalysis. Hazardous Waste and Hazardous Materials, 10(2), 107-149. Villanueva, C. M., Cantor, K. P., Grimalt, J. O., Malats, N., Silverman, D., Tardon, A., Garcia-Closas, R., Serra, C., Carrato, A., Castaño-Vinyals, G., Marcos, R., Rothman, N., Real, F. X., Dosemeci, M., & Kogevinas, M. (2007). Bladder Cancer and Exposure to Water Disinfection By-Products through Ingestion, Bathing, Showering, and Swimming in Pools. American Journal of Epidemiology, 165(2), 148-156. doi:10.1093/aje/kwj364 Von Sonntag, C. (2008). Advanced oxidation processes: mechanistic aspects. Water Science and Technology, 58(5), 1015-1021. Wang, D., Bolton, J. R., Andrews, S. A., & Hofmann, R. (2015). Formation of disinfection by-products in the ultraviolet/chlorine advanced oxidation process. Sci Total Environ, 518-519, 49-57. doi:10.1016/j.scitotenv.2015.02.094 Wang, G., Liao, C.-H., Chen, H.-W., & Yang, H. (2006). Characteristics of natural organic matter degradation in water by UV/H2O2 treatment. Environmental Technology, 27(3), 277-287. Watts, M. J., & Linden, K. G. (2007). Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water. Water Res, 41(13), 2871-2878. doi:10.1016/j.watres.2007.03.032 World Health Organization. (2000). Air quality guidelines for Europe. World Health Organization. (2006a). Air quality guidelines: global update 2005: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide: World Health Organization. World Health Organization. (2006b). Guidelines for safe recreational water environments. Volume 2: Swimming pools and similar environments: World Health Organization. Wu, Z., Fang, J., Xiang, Y., Shang, C., Li, X., Meng, F., & Yang, X. (2016). Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process: Kinetics and transformation pathways. Water Res, 104, 272-282. doi:10.1016/j.watres.2016.08.011 Yang, X., Shang, C., & Westerhoff, P. (2007). Factors affecting formation of haloacetonitriles, haloketones, chloropicrin and cyanogen halides during chloramination. Water Res, 41(6), 1193-1200. doi:10.1016/j.watres.2006.12.004 Yang, X., Sun, J., Fu, W., Shang, C., Li, Y., Chen, Y., Gan, W., & Fang, J. (2016). PPCP degradation by UV/chlorine treatment and its impact on DBP formation potential in real waters. Water Res, 98, 309-318. doi:10.1016/j.watres.2016.04.011 Yimeng, Z., Wenhai, C., Ting, X., Daqiang, Y., Bin, X., Pan, L., & Na, A. (2017). Impact of pre-oxidation using H 2 O 2 and ultraviolet/H 2 O 2 on disinfection byproducts generated from chlor(am)ination of chloramphenicol. Chemical Engineering Journal, 317, 112-118. doi:10.1016/j.cej.2017.01.119 Zare Afifi, M., & Blatchley, E. R., 3rd. (2016). Effects of UV-based treatment on volatile disinfection byproducts in a chlorinated, indoor swimming pool. Water Res, 105, 167-177. doi:10.1016/j.watres.2016.08.064 Zuorro, A., Fidaleo, M., & Lavecchia, R. (2013). Response surface methodology (RSM) analysis of photodegradation of sulfonated diazo dye Reactive Green 19 by UV/H₂O₂ process. Journal of environmental management. 劉永渝. (2015). 不同消毒方法對游泳池池水中消毒副產物前質影響之研究. (碩士), 國立臺灣大學, 台北市. 盧月詩. (2005). 以氯及臭氧氧化模擬游泳池水質有機物之效能及消毒副產物之評估. (碩士), 逢甲大學, 台中市. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68746 | - |
| dc.description.abstract | 游泳池普遍會透過加氯消毒程序以維持水質安全並避免水媒疾病的傳播。不過在加氯消毒的過程當中,游泳池中的天然有機物以及泳客在游泳過程中所產生的有機物 (例如汗液及尿液) 會與氯進行反應,進而產生對人體健康造成危害的消毒副產物,包括三鹵甲烷 (Trihalomethanes, THMs)、含鹵乙酸 (Haloacetic acids, HAAs)以及含鹵乙腈 (Haloacetonitriles, HANs) 等。然而游泳池基於維護以及管理成本的考量,大多會使用水循環系統且鮮少更換池水,也因此增加有機前質與氯的反應機會及時間,進而導致游泳池水中消毒副產物的持續生成並且不斷地累積在泳池當中,也使得泳客有較高的消毒副產物暴露量。因此,為了減少游泳池水中的消毒副產物,除了透過定期換水之外,也能利用高級氧化處理程序 (例如UV/chlorine及UV/H2O2) 當中所生成的自由基,利用其高氧化力將有機前質降解成中間副產物甚至是無機物。以UV/H2O2為例,過程中所產生的氫氧自由基,能夠有效地將大分子有機物降解成小分子,同時也能夠有效地減少消毒副產物的生成潛能。
本研究首先針對游泳池進行環境採樣,監測並了解水質變化以及消毒副產物濃度。採樣地點為國立台灣大學綜合體育館溫水游泳池,採樣時間分別為2016年八月、十月以及2017年二月。其後對於不同高級氧化處理條件進行批次模擬實驗,比較不同紫外光強度以及氧化處理程序對於水中非氣提性溶解性有機碳 (non-purgeable dissolved organic carbon, NPDOC)的降解趨勢、消毒副產物的減少及其有機前質的降解效率之影響。 環境採樣結果顯示此游泳池的水質特性、NPDOC以及消毒副產物濃度趨勢變化並不明顯。由於游泳池是使用先臭氧後加氯的消毒程序,因此消毒副產物濃度略不同於加氯消毒的泳池,尤其是以含鹵乙酸的減少較為明顯,此情形也與過去文獻的觀察相符。 關於高級氧化處理條件改變的影響,首先紫外光強度對於高級氧化處理效率有很顯著的影響,不論是NPDOC的減少、消毒副產物以及其前質的變化和降解都隨著紫外光劑量上升以及氫氧自由基生成量增加而有所提升。然而當紫外光強度不足時,即使給予足夠的氧化時間對於氧化初期所增加的含鹵乙酸前質仍然無法有效地降解。 至於不同氧化處理方法的影響,結果顯示單獨使用UV以及UV/chlorine處理對於有機物的礦化作用影響較不顯著;反觀UV/H2O2氧化過程中,隨著氫氧自由基的增加,有機碳濃度也隨之下降。消毒副產物的部分,在三種不同處理方法之下三鹵甲烷均較含鹵乙酸難以降解,因其含有立體結構所以不易被光解。此外,氫氧自由基對於具有立體結構之化合物有較小的反應速率常數,因此需要較長的反應時間才能有效地降解。在UV/chlorine反應過程當中,消毒副產物濃度隨反應快速地增加,包括三鹵甲烷、含鹵乙腈等,即便反應一段時間後能夠減少其含量,但相較於未反應前之濃度仍有明顯地增加。另外,單獨UV處理會增加含溴之三鹵甲烷之生成比例,此現象可歸因於含溴大分子有機物經由光解後,會促使溴離子的生成,並於後續加氯過程中形成次溴酸,促使含溴消毒副產物生成。 有機前質經過三種不同處理方法之後,其變化趨勢均略有不同。單獨UV處理之後會使黃酸類物質增加,而此與三鹵甲烷之生成潛能上升之結果相符。有機物經過UV/chlorine處理過後,可以看到明顯的減少趨勢,推測可能與有機物於處理過程中與氯進行反應產生消毒副產物有關;而經過UV/H2O2處理後可觀察到芳香族蛋白質類的化合物於反應初期產生,此情形也與消毒副產物的生成潛能於反應初期上升有關。 | zh_TW |
| dc.description.abstract | Chlorine-based disinfectants are widely used in swimming pools to maintain water quality and inhibit the spreads of waterborne diseases. During chlorination, natural organic matter (NOM) and swimmers-derived organic matter (such as perspiration and urine) will react with chlorine to generate disinfection by-products (DBPs) such as trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs) and which are harmful to human health. However, owing to the cost of maintenance and management, most of swimming pools use recirculation system and seldom replace the whole pool water with fresh water, result in the accumulation of DBPs in water thus swimmers will have higher exposure of DBPs. In addition to replace pools water frequently, DBPs can also be minimized by the free radicals generated from advanced oxidation processes (AOPs), including UV/chlorine and UV/H2O2. The high oxidation power of free radicals can degrade organic precursors into intermediate by-products or inorganic matters. Taking UV/H2O2 for example, the formation of hydroxyl radials can efficiently degrade higher molecular weight organic matters into smaller species and reduce the DBPs formation potentials (DBPFPs).
The first part of this study was field sampling for monitoring of water quality and the occurrences of DBPs. The sampling location was National Taiwan University (NTU) Sports Center indoor swimming pool and the samples were taken in August, October of 2016 and February of 2017. Secondly, bench scale simulations were conducted with different operation conditions of AOPs to compare their effects on non-purgeable dissolved organic carbon (NPDOC) degradation, DBPs formation and DBPs precursors’ reductions. The results of field sampling showed that the variations of water quality including NPDOC and DBPs were not apparent. Owing to the type of disinfectant in the swimming pool was ozone combined with chlorine, the concentrations of DBPs were slightly differ from those observed in chlorinated swimming pools; especially the HAAs reduction which was consistent with previous studies. As for the change of operation conditions during AOPs, the results showed that increases of UV intensities had significant effects on NPDOC reduction, DBPs and their precursors’ alterations and degradation; and the efficiencies increased with the increasing UV intensities. However, when the UV intensities were insufficient, the HAAs precursors were be increased and a longer oxidation time could not efficiently degrade the HAAs precursors. As for the effects on organic matter among various oxidation processes, single UV and UV/chlorine treatments had slightly effects on organic matter mineralization; however, the NPDOC concentrations decreased gradually with the generation of hydroxyl radicals during the UV/H¬2O2 processes. The degradation efficiencies of HAAs were better than those of THMs among different oxidation treatments because THMs had steric hindrance itself therefore they were hard to be oxidized by free radicals or UV irradiation. In the reaction of UV/chlorine, concentrations of THMs, HANs and other DBPs would increase rapidly. Although DBPs concentrations decreased after a longer oxidation time with UV/chlorine treatments, they were still higher than the initial DBPs concentrations. Additionally, the reactions of single UV would increase the portion of Br-THMs which could be attributed to the release of bromide ion from large molecular compound and promoted the formation of hypobromous acid (HOBr). The tendencies of organic precursors among various oxidation processes were different. Through the UV treatments, the fulvic acid-like organic matters would increase and which were coincided with the elevated THMFPs. In the UV/chlorine treatments, it could be observed that organic matters had apparent degradation which could be associated with organic matters reacted with chlorine for the formation of DBPs; while during UV/H2O2 treatments, the portion of aromatic protein compounds increased initially, thus this was slightly consistent with the increasing DBPFPs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:33:22Z (GMT). No. of bitstreams: 1 ntu-106-R04844010-1.pdf: 2241883 bytes, checksum: d3b21ce9a0fc35a4a6ec99b9a53b3efe (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Contents
中文摘要 i Abstract iii Contents vi List of Figures ix List of Tables xi Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives 3 Chapter 2 Literature review 4 2.1 Overview of swimming pools 4 2.1.1 Air and water quality managements 4 2.1.2 Disinfection 5 2.1.3 Organic precursors 6 2.2 Overview of Disinfection byproducts (DBPs) in swimming pools 8 2.2.1 Trihalomethanes (THMs) 8 2.2.2 Haloacetic acids (HAAs) 9 2.2.3 Haloacetonitriles (HANs) 11 2.2.4 Haloketones (HKs) 12 2.2.5 Exposure to disinfection byproducts 12 2.2.6 Health effects 13 2.2.7 Factors related to DBPs formations in swimming pools 14 2.2.8 Regulations of DBPs in swimming pools 17 2.3 Overview of advanced oxidation processes 19 2.3.1 Role of AOPs and hydroxyl radicals 19 2.3.2 UV/chlorine 20 2.3.3 UV/H2O2 22 Chapter 3 Materials and methods 24 3.1 Study framework 24 3.2 Samples collections 25 3.3 Advanced oxidation processes 26 3.3.1 Equipment of advanced oxidation processes 26 3.3.2 Procedures of advanced oxidation processes 27 3.4 Sample analysis 29 3.4.1 Free chlorine analysis 29 3.4.2 H2O2 analysis 29 3.4.3 Non-purgeable dissolved organic carbon (NPDOC) analysis 31 3.4.4 Dissolved organic nitrogen (DON) analysis 32 3.4.5. Trihalomethanes (THMs), haloketones (HKs), haloacetonitrile (HANs) and trichloronitromethane (TCNM) analysis 36 3.4.6. Haloacetic acids (HAAs) analysis 38 Chapter 4 Results and discussion 41 4.1 Swimming pool water quality and occurrences of DBPs 41 4.2 The effects of UV intensities on DBPs concentrations during UV/H2O2 processes 43 4.2.1 The effects UV intensities on concentrations of H2O2 and NPDOC 43 4.2.2 The effects of UV intensities on concentrations of DBPs 46 4.2.3 The effects of UV intensities on DBPFPs 48 4.3 Comparisons of UV, UV/chlorine and UV/H2O2 treatments 52 4.3.1 The effects on concentrations of oxidants and NPDOC 52 4.3.2 The effects of different UV treatments on concentration of DBPs 55 4.3.3 The effects of different UV treatments on concentrations of DBPFPs 61 4.4 Characteristics on intermediate organic matters during the different treatments 69 Chapter 5 Conclusions and suggestions 80 Reference 83 Appendixes 90 | |
| dc.language.iso | en | |
| dc.subject | 游泳池 | zh_TW |
| dc.subject | 高級氧化 | zh_TW |
| dc.subject | UV/chlorine | zh_TW |
| dc.subject | UV/H2O2 | zh_TW |
| dc.subject | 消毒副產物 | zh_TW |
| dc.subject | advanced oxidation processes (AOPs) | en |
| dc.subject | UV/chlorine | en |
| dc.subject | UV/H2O2 | en |
| dc.subject | disinfection by-products (DBPs) | en |
| dc.subject | Swimming pool | en |
| dc.title | 高級氧化處理程序對於游泳池中消毒副產物生成之影響 | zh_TW |
| dc.title | Impacts of Advanced Oxidation Processes (AOPs) on Disinfection By-products Formation from Swimming Pools Water | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林財富,童心欣 | |
| dc.subject.keyword | 游泳池,高級氧化,UV/chlorine,UV/H2O2,消毒副產物, | zh_TW |
| dc.subject.keyword | Swimming pool,advanced oxidation processes (AOPs),UV/chlorine,UV/H2O2,disinfection by-products (DBPs), | en |
| dc.relation.page | 93 | |
| dc.identifier.doi | 10.6342/NTU201703913 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-18 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
| 顯示於系所單位: | 環境衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
