請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68744完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 舒貽忠(Yi-Chung Shu) | |
| dc.contributor.author | Wei-Cheng Wang | en |
| dc.contributor.author | 王偉丞 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:33:17Z | - |
| dc.date.available | 2018-08-25 | |
| dc.date.copyright | 2017-08-25 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-17 | |
| dc.identifier.citation | [1] A. Chandrakasan, R. Amirtharajah, J. Goodman, and W. Rabiner, “Trends in Low Power Digital Signal Processing.” Int. Symp. Circuits and Systems, 4:604–607, 1998.
[2] S. Roundy, P. K. Wright, and J. Rabaey, “A Study of Low Level Vibrations as Power Source for Wireless Sensor Nodes.” Computer Communications, 26:1131-1144, 2003. [3] Y. B. Jeon, R. Sood, J. H. Jeong, and S. G. Kim, “MEMS Power Generator with Transverse Mode Thin Film PZT.” Sensors and Actuators A:Physical, 122:16-22, 2005. [4] E. E. Aktakka and K. Najafi. “A Micro Inertial Energy Harvesting Platform with Self-Supplied Power Management Circuit for Autonomous Wireless Sensor Nodes.” IEEE Journal of Solid-State Circuits, 49:2017-2029, 2014. [5] N. Elvin, A. A. Elvin, and M. Spector, “A Self-Powered Mechanical Strain Energy Sensor.” Smart Materials and Structures, 10:293-299, 2001. [6] N. Elvin, A. A. Elvin, and D. H. Choi, “A Self-Powered Damage Detection Sensor.” The Journal of Strain Analysis for Engineering Design, 38:115-124, 2003. [7] T. H. Ng and W. H. Liao, “Sensitivity Analysis And Energy Harvesting for a Self-Powered Piezoelectric Sensor.” Journal of Intelligent Material Systems and Structures, 16:785-797, 2005. [8] S. Roundy and P. K. Wright. “A Piezoelectric Vibration Based Generator for Wireless Electronics.” Smart Materials and Structures, 13:1131-1142, 2004. [9] J. J. Allen and A. J. Smits, “Energy Harvesting.” EEL Journal of Fluids and Structures, 15:629-640, 2001. [10] G. W. Taylor, J. R. Burns, S. M. Kammann, W. B. Powers, and T. R. Welsh, “The Energy Harvesting EEL: A Small Subsurface Ocean/River Power Generator.” IEEE Journal of Oceanic Engineering, 26:539-547, 2001. [11] H. W. Kim, A. Batra, S. Priya, K. Uchino, D. Markley, R. E. Newnham, and H. F. Hofmann, “Energy Harvesting Using a Piezoelectric ‘Cymbal’ Transducer in Dynamic Environment.” Japanese Journal of Applied Physics, 43:6178-6183, 2004. [12] H. W. Kim, S. Priya, K. Uchino, and R. E. Newnham, “Piezoelectric Energy Harvesting Under High Pre-Stressed Cyclic Vibrations.” Journal of Electroceramics, 15:27-34, 2005. [13] S. Priya, “Modeling of Electric Energy Harvesting Using Piezoelectric Windmill.” Applied Physics Letters, 87:184101, 2005. [14] S. Priya, C. T. Chen, D. Fye, and J. Zahnd, “Piezoelectric Windmill: A Novel Solution to Remote Sensing.” Japanese Journal of Applied Physics, 44:L104-107, 2005. [15] A. Erturk and D. J. Inman. “Piezoelectric Energy Harvesting.” Wiley, 2011. [16] S. R. Anton, K. M. Farinholt, and A. Erturk, “Piezoelectret Foam-Based Vibration Energy Harvesting.” Journal of Intelligent Material Systems and Structures, 25:1681-1692, 2014. [17] M. S. S. Bafqi, R. Bagherzadeh, and M. Latifi, “Fabrication of Composite PVDF-ZnO Nanofiber Mats by Electrospinning for Energy Scavenging Application with Enhanced Efficiency.” Journal of Polymer Research, 22:130, 2015. [18] A. Mathers, K. S. Moon, and J. Yi, “A Vibration-Based PMN-PT Energy Harvester.” IEEE Sensors Journal, 9:731-739, 2009. [19] T. Ro¨odig and A. Sch¨onecker, “A Survey on Piezoelectric Ceramics for Generator Applications.” Journal of the American Ceramic Society, 93:901-912, 2010. [20] C. Sun, L. Qin, F. Li, and Q. M. Wang, “Piezoelectric Energy Harvesting using Single Crystal Pb(Mg1/3Nb2/3)O3−xPbTiO3 (PMN-PT) Device.” Journal of Intelligent Material Systems and Structures, 20:559-568, 2009. [21] A. Badel, A. Benayad, E. Lefeuvre, L. Lebrun, C. Richard, and D. Guyomar, “Single Crystals and Nonlinear Process for Outstanding Vibration-Powered Electrical Generators.” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 53:673-684, 2006. [22] D. Guyomar, A. Badel, E. Lefeuvre, and C. Richard, “Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing.” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 52:584-595, 2005. [23] P. H. Hsieh, C. H. Chen, and H. C. Chen, “Improving the Scavenged Power of Nonlinear Piezoelectric Energy Harvesting Interface at Off-Resonance by Introducing Switching Delay.” IEEE Transactions on Power Electronics, 30:3142-3155, 2015. [24] M. Lallart, D. J. Inman, and D. Guyomar, “Transient Performance of Energy Harvesting Strategies under Constant Force Magnitude Excitation.” Journal of Intelligent Material Systems and Structures, 21:1279-1291, 2010. [25] J. R. Liang and W. H. Liao, “Improved Design and Analysis of Self-Powered Synchronized Switch Interface Circuit for Piezoelectric Energy Harvesting Systems.” IEEE Transactions on Industrial Electronics, 59:1950-1960, 2012. [26] A. M. Wickenheiser and E. Garcia, “Power Optimization of Vibration Energy Harvesters Utilizing Passive and Active Circuits.” Journal of Intelligent Material Systems and Structures, 21:1343-1361, 2010. [27] W. J. Wu, A. M. Wickenheiser, T. Reissman, and E. Garcia., “Modeling and Experimental Verification of Synchronized Discharging Techniques for Boosting Power Harvesting from Piezoelectric Transducers.” Smart Materials and Structures, 18:055012, 2009 [28] Y. C. Shu and I. C. Lien, “Analysis of Power Output for Piezoelectric Energy Harvesting System.” Smart Materials and Structures, 15:1499-1512, 2006. [29] Y. C. Shu and I. C. Lien. “Efficiency of Energy Conversion for a Piezoelectric Power Harvesting System.” Journal of Micromechanics and Microengineering, 16:2429-2438, 2006. [30] S. Putter and H. Manor, “Natural Frequencies of Radial Rotating Beams.” Journal of Sound and Vibration, 56:175-185, 1978. [31] S. V. Hoa, “Vibration of a Rotating Beam with Tip Mass.” Journal of Sound and Vibration, 67:369-381, 1979. [32] A. Yigit, R. A. Scott, and A. Galip Ulsoy, “Flexural Morion of a Radially Rotating Beam Attached to a Rigid Body.” Journal of Sound and Vibration, 121:201-210, 1988. [33] H. P. Lee, “Effect of Gravity on the Stabiblity of a Rotationg Cantilever Beam in a Vertical Plane.” Computers & Structure, 53:351-355, 1994. [34] L. Gu and C. Livermore, “Passive Self-tuning Energy Harvester for Extracting Energy from Rotational Motion.” Applied Physics Letters, 97:081904, 2010. [35] L. Gu and C. Livermore, “Compact Passively Self-tuning Energy Harvesting for Rotating Applications.” Smart Materials and Structures, 21:015002, 2012. [36] J. C. Hsu, C. T. Tseng, and Y. S. Chen, “Analysis and Experiment of Self-frequency-tuning Piezoelectric Energy Harvesters for Rotational Motion.” Smart Materials and Structures, 23:075013, 2014. [37] M. Guan and W. H. Liao, “Design and Analysis of a Piezoelectric Energy Harvester for Rotational Motion System.” Energy Conversion and Management, 111:239-244, 2016. [38] Y. Zhang, R. Zheng, T. Kaizuka, D. Su, K. Nakano, and M. P. Cartmell, “Broadband Vibration Energy Harvesting by Application of Stochastic Resonance from Rotational Environments.” The European Physical Journal Special Topics, 224:2687-2701, 2015. [39] Z. Chen, B. Guo, Y. Xiong, C. Cheng, and Y. Yang, “Melnikov-Method-Based Broadband Mechanism and Necessary Conditions of Nonlinear Rotating Energy Harvesting Using Piezoelectric Beam.” Journal of Intelligent Material Systems and Structures, 27:2555-2567, 2016. [40] X. Wu, M. Parmar, and D. W. Lee, “A Seesaw-Structured Energy Harvester with Superwide Bandwidth for TPMS Application.” IEEE/ASME Transactions on Mechatronics, 19:5, 2014. [41] K. Joseph, F. Ibrahim, J. Cho, T. H. G. Thio, W. A. Faqheri, and M. Madou, “Design and Development of Micro-Power Generating Device for Biomedical Applications of Lab-on-a-Disc.” PLoS ONE, 10:9, 2015. [42] R. Ramezanpour, H. Nahvi, and S. Z. Rad, “A Vibration-based Energy Harvester Suitable for Low-frequency, High-amplitude Environments Theoretical and Experimental Investigations.” Journal of Intelligent Material Systems and Structures, 27:642-665, 2016. [43] 黃育熙,「旋轉機構之機電整合量測轉速並應用於壓電發電元件之製作與實測」,台灣科技大學機械工程系實務專題報告,2016。 [44] 徐仕銘,「並聯與串聯電感同步切換開關介面電路應用於壓電振動能量擷取之研究」,台灣大學應用力學所研究生論文,2010。 [45] 莊為傑,「不同力電耦合強度壓電振子應用於能量擷取之研究」,台灣大學應用力學所研究生論文,2016 [46] K. W. Yung, P. B. Landecker, and D. D. Villani, “An Analytic Solution for the Force Between Two Magnetic Dipoles.” Magnetic and Electrical Separation, 9:39-52, 1998. [47] 陳彥禎,「混合陣列式壓電振子應用於能量擷取之實驗驗證」,台灣大學應用力學所研究生論文,2017 [48] 莊欽雄,「陣列式壓電能量擷取系統之半自動化人機介面設計」,台灣大學應用力學所研究生論文,2015 [49] 吳文中,「虛擬儀控之設計與應用」,台灣大學工程科學及海洋工程學研究所課堂簡報 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68744 | - |
| dc.description.abstract | 本研究旨為探討壓電振子受到旋轉磁鐵激振下之自主發電研究,並發展理論模型及其實驗驗證。由文獻回顧可知,壓電振能擷取研究幾乎都集中在單軸線性激盪壓電振子發電,而在旋轉環境下的振能擷取研究則較少。而本論文則利用磁鐵旋轉給予貼在壓電懸臂樑端點的另一顆磁鐵斥力,產生類似週期性脈衝波形的激振力,而此週期磁力經過傅立葉展開可得到多項等同於垂直式之線性激振力,能夠在旋轉轉速為壓電振子共振頻除上整數倍時,激發壓電振子在第一模態下的共振。另在實驗部分,本文開發適用於本研究之LabView 實驗介面,並且設計出實驗架構及其實驗流程,成功做出AC交流輸出以及搭配標準介面電路的DC 直流輸出之實驗,使實驗與理論可以相互驗證。結果顯示,(1)兩磁鐵的間距較小時雖然磁力係數會變大,但強耦合壓電振子會出現非線性現象,而弱耦合壓電振子則否;(2)實驗結果顯示有高達數十多項磁力係數可維持一常數,故可在一固定轉速區間均有功率輸出,但之後便會明顯開始下降;(3)發現採用阻尼比較大之弱力電耦合壓電振子,並搭配較小之磁鐵間距,可以得到功率波形重疊之掃頻圖;(4)最後實驗結果顯示,在5-14Hz之旋轉轉速下,壓電振子之平均直流功率輸出可達到1mW之高。 | zh_TW |
| dc.description.abstract | The thesis aims to develop a theoretical framework together with experimental validation to investigate the piezoelectric energy harvesting under rotational environment. Much work has been done on the study of vibrational energy harvesting under translational excitation along certain directions. However, little work has been done for rotational energy harvesting. Instead, the present thesis studies the energy harvesting from a cantilever piezoelectric bimorph attached to a magnet on its tip which is excited by a rotational movement of another magnet. As a result, such an excitation is similar to the case of periodic impulsive force. In addition, The Fourier expansion of such an impulsive force indicates that the cantilever bimorph is able to be resonantly excited at its first flexural mode as long as the rotational frequency is equal to the integer fraction of the natural frequency of the oscillator. In addition, an experimental setup with LabView interface is developed for validating the proposed model. Both AC and DC harvested power are recorded and found in good agreement with theoretical predictions. The result shows that the driving force increases as the distance between two magnets decreases. However, under this circumstance, the frequency response shows nonlinearity for strongly coupled oscillators while the response remains linear for weakly coupled oscillators. Second, the there is a range of rotational speeds such that power remains accumulated within this period. It is attributed to the non-vanishing Fourier coefficients of the magnetic impulsive force up to tens of terms in its Fourier expansion. But the subsequent coefficients drop to zero when the rotation speed is small. Third, there are a number of peaks of harvested power located at the integer fraction of the natural frequency of the oscillator in the power-frequency plot. But the interactions between two adjacent power curves remain sufficiently high in a wide range of rotational speeds for the case of weakly coupled oscillators. Finally, the experiment shows that the average harvested DC power can be up to 1mW with the rotational frequency range between 5-14Hz. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:33:17Z (GMT). No. of bitstreams: 1 ntu-106-R04543053-1.pdf: 7705995 bytes, checksum: be49d2e0d341c5c745d9e8ab3fe7ca81 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II ABSTRACT III 目錄 IV 圖目錄 VII 表目錄 XI CHAPTER 1. 導論 1 1-1 研究動機 1 1-2 文獻回顧 2 1-3 論文架構 8 CHAPTER 2. 壓電振動子模型 9 2-1 壓電效應(PIEZOELECTRIC EFFECT) 9 2-1-1 正壓電效應 9 2-1-2 逆壓電效應 10 2-2 線性壓電材料之本構方程式(CONSTITUTIVE EQUATIONS) 11 2-3 旋轉式單根壓電懸臂樑之理論模型 13 CHAPTER 3. 磁位能以及週期性磁力 21 3-1 磁位能 21 3-2 週期性磁力 24 3-2-1 磁力之推導 24 3-2-2 磁力之分析 25 3-2-3 磁力之傅立葉展開 28 3-3 多顆磁鐵之分析 32 CHAPTER 4. 簡化之旋轉式單根壓電懸臂樑理論 35 4-1 統御方程式 35 4-2 單根壓電懸臂樑搭配標準介面電路之分析 45 CHAPTER 5. 旋轉式壓電振能擷取系統設計探討 48 5-1 磁鐵選取及其影響 48 5-2 多顆磁鐵及其影響 50 5-3 壓電片式樣選取及其影響 53 CHAPTER 6. LABVIEW功能介紹與設計架構 56 6-1 軟硬體功能介紹 56 6-1-1 軟體功能介紹 56 6-1-2 硬體功能介紹與訊號處理 60 6-2 壓電能量擷取監控與量測系統之設計 63 6-2-1 LabView應用於AC交流電路之量測 63 6-2-2 LabView應用於DC標準介面電路之量測 66 CHAPTER 7. 實驗做法與結果分析比較 70 7-1 實驗之磁鐵磁力如何量測 70 7-2 實驗之壓電懸臂複合樑振動子等效參數如何量測 71 7-2-1 能量法在實驗上求解步驟 71 7-2-2 等效電路法在實驗上求解步驟 73 7-3 等效電路法與能量法磁力驗證以及估算等效加速度 76 7-4 實驗設計 77 7-4-1 實驗流程 77 7-4-2 實驗儀器及器具 77 7-5 實驗結果 84 7-5-1 QA實驗結果與驗證 85 7-5-2 KB實驗結果與驗證 99 CHAPTER 8. 結論與展望 113 8-1 結論 113 8-2 未來展望 115 參考文獻 117 | |
| dc.language.iso | zh-TW | |
| dc.subject | 功率增幅 | zh_TW |
| dc.subject | 寬頻提升 | zh_TW |
| dc.subject | 馬達 | zh_TW |
| dc.subject | LabView介面輔助 | zh_TW |
| dc.subject | 傅立葉展開 | zh_TW |
| dc.subject | 磁鐵 | zh_TW |
| dc.subject | 旋轉 | zh_TW |
| dc.subject | 壓電振能擷取 | zh_TW |
| dc.subject | LabView interface | en |
| dc.subject | magnet | en |
| dc.subject | Piezoelectric energy harvesting | en |
| dc.subject | Rotational environment | en |
| dc.subject | Bandwidth increase | en |
| dc.subject | Power increase | en |
| dc.subject | Fourier expansion | en |
| dc.subject | Motor | en |
| dc.title | 旋轉式週期性磁力應用於壓電振能擷取之研究 | zh_TW |
| dc.title | Application of Rotating Periodic Magnetic Force to Piezoelectric Energy Harvesting | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳文中(Wen-Jong Wu),李尉彰(Wei-Chang Li),邱佑宗(Yu-Tsung Chiu) | |
| dc.subject.keyword | 壓電振能擷取,旋轉,磁鐵,傅立葉展開,LabView介面輔助,馬達,功率增幅,寬頻提升, | zh_TW |
| dc.subject.keyword | Piezoelectric energy harvesting,Rotational environment,magnet,Fourier expansion,LabView interface,Motor,Power increase,Bandwidth increase, | en |
| dc.relation.page | 122 | |
| dc.identifier.doi | 10.6342/NTU201703529 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 7.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
