請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68742
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 羅凱尹 | |
dc.contributor.author | Jing-Ting Shie | en |
dc.contributor.author | 謝境梃 | zh_TW |
dc.date.accessioned | 2021-06-17T02:33:11Z | - |
dc.date.available | 2022-08-24 | |
dc.date.copyright | 2017-08-24 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-17 | |
dc.identifier.citation | Allmang, C., P. Mitchell, E. Petfalski, and D. Tollervey. 2000. Degradation of ribosomal RNA precursors by the exosome. Nucleic acids research. 28:1684-1691.
Audhya, A., and S.D. Emr. 2002. Stt4 PI 4-kinase localizes to the plasma membrane and functions in the Pkc1-mediated MAP kinase cascade. Dev Cell. 2:593-605. Audhya, A., and S.D. Emr. 2003. Regulation of PI4,5P2 synthesis by nuclear-cytoplasmic shuttling of the Mss4 lipid kinase. The EMBO journal. 22:4223-4236. Bassler, J., P. Grandi, O. Gadal, T. Lessmann, E. Petfalski, D. Tollervey, J. Lechner, and E. Hurt. 2001. Identification of a 60S preribosomal particle that is closely linked to nuclear export. Molecular cell. 8:517-529. Bassler, J., M. Kallas, B. Pertschy, C. Ulbrich, M. Thoms, and E. Hurt. 2010. The AAA-ATPase Rea1 drives removal of biogenesis factors during multiple stages of 60S ribosome assembly. Molecular cell. 38:712-721. Basu, U., K. Si, J.R. Warner, and U. Maitra. 2001. The Saccharomyces cerevisiae TIF6 gene encoding translation initiation factor 6 is required for 60S ribosomal subunit biogenesis. Molecular and cellular biology. 21:1453-1462. Ben-Shem, A., N. Garreau de Loubresse, S. Melnikov, L. Jenner, G. Yusupova, and M. Yusupov. 2011. The structure of the eukaryotic ribosome at 3.0 A resolution. Science. 334:1524-1529. Bussiere, C., Y. Hashem, S. Arora, J. Frank, and A.W. Johnson. 2012. Integrity of the P-site is probed during maturation of the 60S ribosomal subunit. The Journal of cell biology. 197:747-759. Calvino, F.R., S. Kharde, A. Ori, A. Hendricks, K. Wild, D. Kressler, G. Bange, E. Hurt, M. Beck, and I. Sinning. 2015. Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an essential rRNA-binding site. Nature communications. 6:6510. Chadrin, A., B. Hess, M. San Roman, X. Gatti, B. Lombard, D. Loew, Y. Barral, B. Palancade, and V. Doye. 2010. Pom33, a novel transmembrane nucleoporin required for proper nuclear pore complex distribution. The Journal of cell biology. 189:795-811. Cole, S.E., F.J. LaRiviere, C.N. Merrikh, and M.J. Moore. 2009. A convergence of rRNA and mRNA quality control pathways revealed by mechanistic analysis of nonfunctional rRNA decay. Molecular cell. 34:440-450. Couttas, T.A., M.J. Raftery, M.P. Padula, B.R. Herbert, and M.R. Wilkins. 2012. Methylation of translation-associated proteins in Saccharomyces cerevisiae: Identification of methylated lysines and their methyltransferases. Proteomics. 12:960-972. De Keersmaecker, K., Z.K. Atak, N. Li, C. Vicente, S. Patchett, T. Girardi, V. Gianfelici, E. Geerdens, E. Clappier, M. Porcu, I. Lahortiga, R. Luca, J. Yan, G. Hulselmans, H. Vranckx, R. Vandepoel, B. Sweron, K. Jacobs, N. Mentens, I. Wlodarska, B. Cauwelier, J. Cloos, J. Soulier, A. Uyttebroeck, C. Bagni, B.A. Hassan, P. Vandenberghe, A.W. Johnson, S. Aerts, and J. Cools. 2013. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet. 45:186-190. Dez, C., J. Houseley, and D. Tollervey. 2006. Surveillance of nuclear-restricted pre-ribosomes within a subnucleolar region of Saccharomyces cerevisiae. The EMBO journal. 25:1534-1546. Dragon, F., J.E. Gallagher, P.A. Compagnone-Post, B.M. Mitchell, K.A. Porwancher, K.A. Wehner, S. Wormsley, R.E. Settlage, J. Shabanowitz, Y. Osheim, A.L. Beyer, D.F. Hunt, and S.J. Baserga. 2002. A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature. 417:967-970. Eisinger, D.P., F.A. Dick, E. Denke, and B.L. Trumpower. 1997. SQT1, which encodes an essential WD domain protein of Saccharomyces cerevisiae, suppresses dominant-negative mutations of the ribosomal protein gene QSR1. Molecular and cellular biology. 17:5146-5155. Ellis, S.R., and P.E. Gleizes. 2011. Diamond Blackfan anemia: ribosomal proteins going rogue. Seminars in hematology. 48:89-96. Fatica, A., M. Dlakic, and D. Tollervey. 2002. Naf1 p is a box H/ACA snoRNP assembly factor. Rna. 8:1502-1514. Finch, A.J., C. Hilcenko, N. Basse, L.F. Drynan, B. Goyenechea, T.F. Menne, A. Gonzalez Fernandez, P. Simpson, C.S. D'Santos, M.J. Arends, J. Donadieu, C. Bellanne-Chantelot, M. Costanzo, C. Boone, A.N. McKenzie, S.M. Freund, and A.J. Warren. 2011. Uncoupling of GTP hydrolysis from eIF6 release on the ribosome causes Shwachman-Diamond syndrome. Genes & development. 25:917-929. Fujii, K., M. Kitabatake, T. Sakata, A. Miyata, and M. Ohno. 2009. A role for ubiquitin in the clearance of nonfunctional rRNAs. Genes & development. 23:963-974. Gartmann, M., M. Blau, J.P. Armache, T. Mielke, M. Topf, and R. Beckmann. 2010. Mechanism of eIF6-mediated inhibition of ribosomal subunit joining. The Journal of biological chemistry. 285:14848-14851. Gavin, A.C., M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J.M. Rick, A.M. Michon, C.M. Cruciat, M. Remor, C. Hofert, M. Schelder, M. Brajenovic, H. Ruffner, A. Merino, K. Klein, M. Hudak, D. Dickson, T. Rudi, V. Gnau, A. Bauch, S. Bastuck, B. Huhse, C. Leutwein, M.A. Heurtier, R.R. Copley, A. Edelmann, E. Querfurth, V. Rybin, G. Drewes, M. Raida, T. Bouwmeester, P. Bork, B. Seraphin, B. Kuster, G. Neubauer, and G. Superti-Furga. 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 415:141-147. Gerhardy, S., A.M. Menet, C. Pena, J.J. Petkowski, and V.G. Panse. 2014. Assembly and nuclear export of pre-ribosomal particles in budding yeast. Chromosoma. 123:327-344. Grandi, P., V. Rybin, J. Bassler, E. Petfalski, D. Strauss, M. Marzioch, T. Schafer, B. Kuster, H. Tschochner, D. Tollervey, A.C. Gavin, and E. Hurt. 2002. 90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Molecular cell. 10:105-115. Greber, B.J., D. Boehringer, C. Montellese, and N. Ban. 2012. Cryo-EM structures of Arx1 and maturation factors Rei1 and Jjj1 bound to the 60S ribosomal subunit. Nature structural & molecular biology. 19:1228-1233. Harnpicharnchai, P., J. Jakovljevic, E. Horsey, T. Miles, J. Roman, M. Rout, D. Meagher, B. Imai, Y. Guo, C.J. Brame, J. Shabanowitz, D.F. Hunt, and J.L. Woolford, Jr. 2001. Composition and functional characterization of yeast 66S ribosome assembly intermediates. Molecular cell. 8:505-515. Hedges, J., M. West, and A.W. Johnson. 2005. Release of the export adapter, Nmd3p, from the 60S ribosomal subunit requires Rpl10p and the cytoplasmic GTPase Lsg1p. The EMBO journal. 24:567-579. Hoelz, A., E.W. Debler, and G. Blobel. 2011. The structure of the nuclear pore complex. Annual review of biochemistry. 80:613-643. Holzer, S., N. Ban, and S. Klinge. 2013. Crystal structure of the yeast ribosomal protein rpS3 in complex with its chaperone Yar1. Journal of molecular biology. 425:4154-4160. Huber, F.M., and A. Hoelz. 2017. Molecular basis for protection of ribosomal protein L4 from cellular degradation. Nature communications. 8:14354. Jakel, S., J.M. Mingot, P. Schwarzmaier, E. Hartmann, and D. Gorlich. 2002. Importins fulfil a dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic domains. The EMBO journal. 21:377-386. Jensen, O.N. 2006. Interpreting the protein language using proteomics. Nature reviews. Molecular cell biology. 7:391-403. Kappel, L., M. Loibl, G. Zisser, I. Klein, G. Fruhmann, C. Gruber, S. Unterweger, G. Rechberger, B. Pertschy, and H. Bergler. 2012. Rlp24 activates the AAA-ATPase Drg1 to initiate cytoplasmic pre-60S maturation. The Journal of cell biology. 199:771-782. Katoh, Y., Y. Shiba, H. Mitsuhashi, Y. Yanagida, H. Takatsu, and K. Nakayama. 2004. Tollip and Tom1 form a complex and recruit ubiquitin-conjugated proteins onto early endosomes. The Journal of biological chemistry. 279:24435-24443. Klinge, S., F. Voigts-Hoffmann, M. Leibundgut, S. Arpagaus, and N. Ban. 2011. Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science. 334:941-948. Kos, M., and D. Tollervey. 2010. Yeast pre-rRNA processing and modification occur cotranscriptionally. Molecular cell. 37:809-820. Kressler, D., G. Bange, Y. Ogawa, G. Stjepanovic, B. Bradatsch, D. Pratte, S. Amlacher, D. Strauss, Y. Yoneda, J. Katahira, I. Sinning, and E. Hurt. 2012. Synchronizing nuclear import of ribosomal proteins with ribosome assembly. Science. 338:666-671. Kressler, D., P. Linder, and J. de La Cruz. 1999. Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Molecular and cellular biology. 19:7897-7912. LaCava, J., J. Houseley, C. Saveanu, E. Petfalski, E. Thompson, A. Jacquier, and D. Tollervey. 2005. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell. 121:713-724. Lachner, M., and T. Jenuwein. 2002. The many faces of histone lysine methylation. Current opinion in cell biology. 14:286-298. LaRiviere, F.J., S.E. Cole, D.J. Ferullo, and M.J. Moore. 2006. A late-acting quality control process for mature eukaryotic rRNAs. Molecular cell. 24:619-626. Lebaron, S., C. Schneider, R.W. van Nues, A. Swiatkowska, D. Walsh, B. Bottcher, S. Granneman, N.J. Watkins, and D. Tollervey. 2012. Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nature structural & molecular biology. 19:744-753. Malyutin, A.G., S. Musalgaonkar, S. Patchett, J. Frank, and A.W. Johnson. 2017. Nmd3 is a structural mimic of eIF5A, and activates the cpGTPase Lsg1 during 60S ribosome biogenesis. The EMBO journal. 36:854-868. McCaughan, U.M., U. Jayachandran, V. Shchepachev, Z.A. Chen, J. Rappsilber, D. Tollervey, and A.G. Cook. 2016. Pre-40S ribosome biogenesis factor Tsr1 is an inactive structural mimic of translational GTPases. Nature communications. 7:11789. Melnikov, S., A. Ben-Shem, N. Garreau de Loubresse, L. Jenner, G. Yusupova, and M. Yusupov. 2012. One core, two shells: bacterial and eukaryotic ribosomes. Nature structural & molecular biology. 19:560-567. Mitchell, P., E. Petfalski, A. Shevchenko, M. Mann, and D. Tollervey. 1997. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. Cell. 91:457-466. Nissan, T.A., J. Bassler, E. Petfalski, D. Tollervey, and E. Hurt. 2002. 60S pre-ribosome formation viewed from assembly in the nucleolus until export to the cytoplasm. The EMBO journal. 21:5539-5547. Pausch, P., U. Singh, Y.L. Ahmed, B. Pillet, G. Murat, F. Altegoer, G. Stier, M. Thoms, E. Hurt, I. Sinning, G. Bange, and D. Kressler. 2015. Co-translational capturing of nascent ribosomal proteins by their dedicated chaperones. Nature communications. 6:7494. Pertschy, B., C. Saveanu, G. Zisser, A. Lebreton, M. Tengg, A. Jacquier, E. Liebminger, B. Nobis, L. Kappel, I. van der Klei, G. Hogenauer, M. Fromont-Racine, and H. Bergler. 2007. Cytoplasmic recycling of 60S preribosomal factors depends on the AAA protein Drg1. Molecular and cellular biology. 27:6581-6592. Pertschy, B., C. Schneider, M. Gnadig, T. Schafer, D. Tollervey, and E. Hurt. 2009. RNA helicase Prp43 and its co-factor Pfa1 promote 20 to 18 S rRNA processing catalyzed by the endonuclease Nob1. The Journal of biological chemistry. 284:35079-35091. Pillet, B., V. Mitterer, D. Kressler, and B. Pertschy. 2017. Hold on to your friends: Dedicated chaperones of ribosomal proteins: Dedicated chaperones mediate the safe transfer of ribosomal proteins to their site of pre-ribosome incorporation. BioEssays : news and reviews in molecular, cellular and developmental biology. 39:1-12. Porras-Yakushi, T.R., J.P. Whitelegge, T.B. Miranda, and S. Clarke. 2005. A novel SET domain methyltransferase modifies ribosomal protein Rpl23ab in yeast. The Journal of biological chemistry. 280:34590-34598. Rabl, J., M. Leibundgut, S.F. Ataide, A. Haag, and N. Ban. 2011. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science. 331:730-736. Raices, M., and M.A. D'Angelo. 2012. Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nature reviews. Molecular cell biology. 13:687-699. Rouquette, J., V. Choesmel, and P.E. Gleizes. 2005. Nuclear export and cytoplasmic processing of precursors to the 40S ribosomal subunits in mammalian cells. The EMBO journal. 24:2862-2872. Saveanu, C., D. Bienvenu, A. Namane, P.E. Gleizes, N. Gas, A. Jacquier, and M. Fromont-Racine. 2001. Nog2p, a putative GTPase associated with pre-60S subunits and required for late 60S maturation steps. The EMBO journal. 20:6475-6484. Saveanu, C., A. Namane, P.E. Gleizes, A. Lebreton, J.C. Rousselle, J. Noaillac-Depeyre, N. Gas, A. Jacquier, and M. Fromont-Racine. 2003. Sequential protein association with nascent 60S ribosomal particles. Molecular and cellular biology. 23:4449-4460. Schafer, T., B. Maco, E. Petfalski, D. Tollervey, B. Bottcher, U. Aebi, and E. Hurt. 2006. Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature. 441:651-655. Schafer, T., D. Strauss, E. Petfalski, D. Tollervey, and E. Hurt. 2003. The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes. The EMBO journal. 22:1370-1380. Schutz, S., U. Fischer, M. Altvater, P. Nerurkar, C. Pena, M. Gerber, Y. Chang, S. Caesar, O.T. Schubert, G. Schlenstedt, and V.G. Panse. 2014. A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly. eLife. 3:e03473. Strambio-De-Castillia, C., M. Niepel, and M.P. Rout. 2010. The nuclear pore complex: bridging nuclear transport and gene regulation. Nature reviews. Molecular cell biology. 11:490-501. Strunk, B.S., M.N. Novak, C.L. Young, and K. Karbstein. 2012. A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits. Cell. 150:111-121. Swaney, D.L., P. Beltrao, L. Starita, A. Guo, J. Rush, S. Fields, N.J. Krogan, and J. Villen. 2013. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature methods. 10:676-682. Takenawa, T., and T. Itoh. 2001. Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochimica et biophysica acta. 1533:190-206. Trievel, R.C., B.M. Beach, L.M. Dirk, R.L. Houtz, and J.H. Hurley. 2002. Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell. 111:91-103. Venema, J., and D. Tollervey. 1999. Ribosome synthesis in Saccharomyces cerevisiae. Annual review of genetics. 33:261-311. Vissers, J.H., F. Nicassio, M. van Lohuizen, P.P. Di Fiore, and E. Citterio. 2008. The many faces of ubiquitinated histone H2A: insights from the DUBs. Cell Div. 3:8. Warner, J.R. 1999. The economics of ribosome biosynthesis in yeast. Trends in biochemical sciences. 24:437-440. West, M., J.B. Hedges, A. Chen, and A.W. Johnson. 2005. Defining the order in which Nmd3p and Rpl10p load onto nascent 60S ribosomal subunits. Molecular and cellular biology. 25:3802-3813. Wong, C.C., D. Traynor, N. Basse, R.R. Kay, and A.J. Warren. 2011. Defective ribosome assembly in Shwachman-Diamond syndrome. Blood. 118:4305-4312. Zhao, R., E.J. Collins, R.B. Bourret, and R.E. Silversmith. 2002. Structure and catalytic mechanism of the E. coli chemotaxis phosphatase CheZ. Nature structural biology. 9:570-575. 陳柏儒. 2012. Bcp1蛋白在出芽酵母中核醣體生合成途徑之研究 Bcp1 is a protein involved in ribosome biogenesis in Saccharomyces cerevisiae. 農業化學系. Vol. 碩士論文. 國立臺灣大學, 台北. 丁亞涵. 2014. Bcp1、Rpl23及Sqt1形成的小複合體於核醣體生合成的功能研究。蛋白在出芽酵母中核醣體生合成途徑之研究 Functional characterization of the small complex containing Bcp1, Rpl23 and Sqt1 in ribosome biogenesis. 農業化學系. Vol. 碩士論文. 國立臺灣大學, 台北. 呂庭郡. 2015. Bcp1與Rpl23間交互作用之探討 Functional characterization of the interaction between Bcp1 and Rpl23. 農業化學系. Vol. 碩士論文. 國立臺灣大學, 台北. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68742 | - |
dc.description.abstract | 核醣體生合成的過程中,會有約略200個合成因子參與其中,這些因子主要的功用在幫助核醣體生成、修飾、組裝、以及品質的調控,讓核醣體能夠正確生成。我們實驗室之前發現Bcp1是核醣體蛋白Rpl23的伴護蛋白,具有保護Rpl23結構穩定的功能。我進一步研究發現Bcp1會將剛入核的Rpl23從運輸蛋白(Karyopherins) 上釋放,並和其結合,來確保Rpl23以正確構型結合到核醣體大單元60S上。從前人研究中知道Rkm1是甲基轉移酶,具有將Rpl23上的106與110的離胺酸雙甲基化(dimethylation)的功能,但其甲基化所造成的生理意義尚未被解開。本研究結果發現Rkm1需要Rpl23才會與運輸蛋白結合,一同運輸入核,之後和Bcp1形成三聚體,而Bcp1會活化Rkm1對Rpl23 lysine110的甲基化,在Rpl23甲基化順利完成後,會與Bcp1一同從Rkm1上釋放,接著組裝到60S上。Rkm1缺失時對細胞的生長速度並無明顯影響,但在bcp1突變株中去除Rkm1時,會產生更嚴重的生長缺失,實驗結果發現,Rpl23蛋白質的量於雙突變株中的減少比bcp1突變株更加明顯,證明兩者間有功能上的關聯性,推測為協同保護Rpl23的穩定性。 | zh_TW |
dc.description.abstract | There are about 200 biogenesis factors participate in the ribosome biosynthesis.These biogenesis factors possess multiple functions such as facilitating the synthesis of ribosome, modifications of rRNAs or ribosomal proteins, assembly of the complex, and quality control of the ribosome. In our previous study, we find that Bcp1 is a chaperone of Rpl23, which can protect and stabilize the structure of Rpl23. In my study, I discover that Bcp1 can release Rpl23 from Karyopherins just after they were imported to nucleus and bind Rpl23 subsequently to ensure incorperation of Rpl23. Rkm1 has been shown as a methyltransferase of Rpl23, adding dimethylation to lysine106 and lysine110. But the physiological significance of lysine methylation stays unclear. Here, I found that Rkm1 co-transport with Rpl23 to nucleus and released by Bcp1. Bcp1, Rkm1 and Rpl23 form hetero-trimer, meanwhile Bcp1 triggers dimethylations on Rpl23 via Rkm1. After accomplishment of dimethylations, Rpl23/Bcp1 complex leaves Rkm1 and delivers Rpl23 to pre-60S. Deletion of RKM1 did not show growth defect, but synthetic growth deficiency was observed in bcp1ts and rkm1Δ double mutant. Moreover, the level of Rpl23 decreased even lower in double mutant. This suggests that both Bcp1 and Rkm1 have functions in protecting the stability of Rpl23. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:33:11Z (GMT). No. of bitstreams: 1 ntu-106-R04623009-1.pdf: 3414001 bytes, checksum: 1a7770e34679608ed65c26b92f26f427 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 目錄
誌謝 i 摘要 ii Abstract iii 目錄 iv 表目錄 vii 圖目錄 viii 一、文獻回顧與探討 1 1.1核醣體 1 1.2核醣體的生合成 1 1.2.1核醣體成熟 1 a. pre-60S的成熟 2 b. pre-40S的成熟 3 c.出核機制 4 1. 2.2核醣體功能的校對 5 1.3核醣體蛋白的伴護蛋白 (Chaperon) 6 1.4研究目標蛋白 7 1.4.1 Bcp1 7 1.4.2 Rpl23 8 1.4.3 Rkm1 8 1.5 Ribosomopathy 9 二、研究動機 10 三、研究材料與方法 11 3.1 菌株與質體 11 附表一、二 11 3.2質體製備 11 3.2.1 PCR 11 3.2.2 電泳 11 3.2.3 DNA電泳膠體純化 11 3.2.4限制酶切割 11 3.2.5 接合作用 12 3.3轉型作用 12 3.3.1大腸桿菌轉型作用 12 3.2.2快速啤酒酵母轉殖作用(Quick yeast transformation) 12 3.4生長測試(Growth assay) 13 3.5多核醣體圖譜分析法(Polysome profile) 13 3.6 免疫沉澱 13 3.7 In vitro interaction 14 3.7.1 RanGTP的純化與製備 14 3.7.2Bcp1&Rpl23 14 a. Bcp1-HIS6 ( PKL502 )表現與純化 15 b. Rpl23 no tag ( PKL346 )表現 15 c. Bcp1&Rpl23複合體純化 15 3.7.3 Rkm1 16 a. GST-Rkm1 ( PKL519)表現 16 b. HIS-Rkm1 ( PKL519)表現 16 3.8 蛋白質染色 (Coomassie blue) 16 3.9 Native PAGE 17 3.10 Cross-link 17 3.11膠體過濾法(Gel filtration Chromatography) 17 3.12 in vitro methylation分析 18 3.13單點突變株的建構 19 四、結果 20 4.1 Bcp1為Rpl23的伴護蛋白且為釋放子(escortin) 20 4.2 Bcp1、Rpl23與Rkm1會形成三聚複合體 22 4.3 Rkm1與Rpl23協同入核 23 4.4 Bcp1的N端結構缺失會造成細胞的生長缺失 25 4.5 Bcp1透過N端與Rkm1結合 26 4.6 Bcp1的N端結構與入核運輸相關 27 4.7 Rpl23透過胺基酸41-52的Loop結構與Bcp1結合 28 4.8 Bcp1會影響Rkm1對Rpl23的甲基化程度 29 4.9 Rpl23的甲基化會影響與Rkm1的親和能力 30 4.10 Bcp1與Rkm1可以協同幫助Rpl23的穩定 32 4.11 Bcp1與Rkm1可以協同幫助Rpl23的穩定 33 五、討論 34 5.1 Bcp1為Rpl23的釋放子 34 5.2 Rpl23與Rkm1複合體 35 5.3 Bcp1的結構在生理上的意義 37 5.4 Rpl23的甲基化會影響結構正確性 39 5.5 Bcp1可能藉由活化Rkm1對Rpl23的甲基化來調控Rpl23蛋白質的表現量 40 六、參考文獻 42 | |
dc.language.iso | zh-TW | |
dc.title | Bcp1和甲基轉移酶Rkm1協同調控核醣體蛋白Rpl23的穩定性 | zh_TW |
dc.title | Bcp1 and methyltransferase Rkm1 regulate the stability of ribosomal protein Rpl23 coordinately | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃偉邦,冀宏源,吳惠芬,徐駿森 | |
dc.subject.keyword | 核醣體,Bcp1,Rkm1,Rpl23,核醣體蛋白,甲基化,伴護子, | zh_TW |
dc.subject.keyword | Ribsome,Bcp1,Rpl23,Rkm1,ribosomal protein,methylation,chaperone, | en |
dc.relation.page | 75 | |
dc.identifier.doi | 10.6342/NTU201703627 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 3.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。