請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68708完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顧記華(Jih-Hwa Guh) | |
| dc.contributor.author | Ting-Huei Lin | en |
| dc.contributor.author | 林庭卉 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:31:36Z | - |
| dc.date.available | 2022-09-08 | |
| dc.date.copyright | 2017-09-08 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-18 | |
| dc.identifier.citation | [1] Erlay, J., Ervik, M., Dikshit, R., Eser, S., & Mathers, C. (2012). Cancer incidence and mortality worldwide: IARC CancerBase No. 11. In GLOBOCAN 2012 v1. 0. Accessed 9 July, 2017.
[2] American Cancer Society. Cancer Facts & Figures 2017. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2017/cancer-facts-and-figures-2017.pdf Accessed 9 July, 2017. [3] National Comprehensive Cancer Network. Prostate Cancer (Version1.2016). https://www.nccn.org/patients/guidelines/prostate/files/assets/basic-html/page-1.html Accessed 9 July, 2017. [4] Carroll, A. G., Voeller, H. J., Sugars, L., & Gelmann, E. P. (1993). p53 oncogene mutations in three human prostate cancer cell lines. The Prostate, 23(2), 123-134. [5] R. S. Kujur, V. Singh, M. Ram, H. N. Yadava, K. K. Singh, S. Kumari & B. K. Roy, Antidiabetic activity and phytochemical screening of crude extract of Stevia rebaudiana alloxan-induced diabetic rats. Pharmacogn. Res. 2010, 2(4), 258–263 [6] Bridel M, Lavieille R. Le principle sucre du Kaa-he-e (Stevia rebaudiana Bertoni) III. Lesteviol de I, hydrolyse diastasique et I‘ isostevial de I‘ hydrolyse acid. Bull Soc ChemBiol 1931a, 13, 409–12. [7] Akihisa, T., Hamasaki, Y., Tokuda, H., Ukiya, M., Kimura, Y., & Nishino, H. (2004). Microbial Transformation of Isosteviol and Inhibitory Effects on Epstein− Barr Virus Activation of the Transformation Products. Journal of natural products, 67(3), 407-410. [8] Ogawa, T., Nozaki, M., & Matsui, M. (1980). Total synthesis of stevioside. Tetrahedron, 36(18), 2641-2648. [9] Chatsudthipong, V., & Muanprasat, C. (2009). Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacology & therapeutics, 121(1), 41-54. [10] Wajant, H. (2002). The Fas signaling pathway: more than a paradigm. Science, 296(5573), 1635-1636. [11] Siegel, R. M., Frederiksen, J. K., Zacharias, D. A., Chan, F. K. M., Johnson, M., Lynch, D., Tsien RY& Lenardo, M. J. (2000). Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science, 288(5475), 2354-2357. [12] Boldin, M. P., Mett, I. L., Varfolomeev, E. E., Chumakov, I., Shemer-Avni, Y., Camonis, J. H., & Wallach, D. (1995). Self-association of the death domains of the p55 tumor necrosis factor (TNF) receptor and Fas/APO1 prompts signaling for TNF and Fas/APO1 effects. Journal of Biological Chemistry, 270(1), 387-391. [13] Schulze‐Osthoff, K., Ferrari, D., Los, M., Wesselborg, S., & Peter, M. E. (1998). Apoptosis signaling by death receptors. European Journal of Biochemistry, 254(3), 439-459. [14] Thome, M., Schneider, P., Hofmann, K., Fickenscher, H., Meinl, E., Neipel, F., Mattmann, C., Burns, K., Bodmer, J.L. , Schroter, M. & Scaffidi, C. (1997). Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature, 386(6624), 517. [15] Budd, R. C., Yeh, W. C., & Tschopp, J. (2006). cFLIP regulation of lymphocyte activation and development. Nature Reviews Immunology, 6(3), 196-204. [16] Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O'Rourke, K., Shevchenko, A., Ni, J., Mann, M. (1996). FLICE, a novel FADD-homologous ICE/CED-3–like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell, 85(6), 817-827. [17] Kischkel, F. C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P. H., & Peter, M. E. (1995). Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. The EMBO journal, 14(22), 5579. [18] Mehlen, P., & Bredesen, D. E. (2011). Dependence receptors: from basic research to drug development. [19] Kroemer, G., Galluzzi, L., & Brenner, C. (2007). Mitochondrial membrane permeabilization in cell death. Physiological reviews, 87(1), 99-163. [20] Tait, S. W., & Green, D. R. (2010). Mitochondria and cell death: outer membrane permeabilization and beyond. Nature reviews Molecular cell biology, 11(9), 621-632. [21] Brenner, C., & Grimm, S. (2006). The permeability transition pore complex in cancer cell death. Oncogene, 25(34), 4744-4756. [22] Galluzzi, L., Zamzami, N., de La Motte Rouge, T., Lemaire, C., Brenner, C., & Kroemer, G. (2007). Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis, 12(5), 803-813. [23] Cho, Y., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M., & Chan, F. K. M. (2009). Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell, 137(6), 1112-1123. [24] He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., & Wang, X. (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell, 137(6), 1100-1111. [25] Zhang, D. W., Shao, J., Lin, J., Zhang, N., Lu, B. J., Lin, S. C., Dong, M.Q. & Han, J. (2009). RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science, 325(5938), 332-336. [26] Degterev, A., Hitomi, J., Germscheid, M., Ch'en, I. L., Korkina, O., Teng, X., Abbott, D., Cuny, G.D. Yuan, C., Wagner, G., Hedrick, S.M. Gerber, S.A., Lugovskoy, A.& Hedrick, S. M. (2008). Identification of RIP1 kinase as a specific cellular target of necrostatins. Nature Chemical Biology, 4(5), 313-321. [27] Kroemer, G., & Levine, B. (2008). Autophagic cell death: the story of a misnomer. Nature reviews Molecular Cell Biology, 9(12), 1004-1010. [28] Fimia, G. M., Stoykova, A., Romagnoli, A., Giunta, L., Di Bartolomeo, S., Nardacci, R., Corazzari, M., Fuoco, C., Ucar, A., Schwartz, P., Gruss, P., Piacentini, M., Chowdhury K.& Gruss, P. (2007). Ambra1 regulates autophagy and development of the nervous system. Nature, 447(7148), 1121-1125. [29] Liang, X. H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., & Levine, B. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402(6762), 672-676. [30] Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E. S., Baehrecke, E. H., Blagosklonny, M.V., El-Deiry, W. S., Golstein, P., Green, D. R., Hengartner, M., Knight, R. A., Kumar, S., Lipton, S. A., Malorni, W., Nuñez, G., Peter, M. E., Tschopp, J., Yuan, J., Piacentini, M., Zhivotovsky, B.& Melino G. (2009). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death & Differentiation, 16(1), 3-11. [31] Danial, N. N. (2007). BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clinical cancer research, 13(24), 7254-7263. [32] Annis, M. G., Soucie, E. L., Dlugosz, P. J., Cruz‐Aguado, J. A., Penn, L. Z., Leber, B., & Andrews, D. W. (2005). Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. The EMBO journal, 24(12), 2096-2103. [33] Li, H., Zhu, H., Xu, C. J., & Yuan, J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 94(4), 491-501. [34] Datta, S. R., Katsov, A., Hu, L., Petros, A., Fesik, S. W., Yaffe, M. B., & Greenberg, M. E. (2000). 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Molecular cell, 6(1), 41-51. [35] Huang, D. C., & Strasser, A. (2000). BH3-only proteins—essential initiators of apoptotic cell death. Cell, 103(6), 839-842. [36] Nakano, K., & Vousden, K. H. (2001). PUMA, a novel proapoptotic gene, is induced by p53. Molecular cell, 7(3), 683-694. [37] Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T. & Tanaka, N. (2000). Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science, 288(5468), 1053-1058. [38] McIlwain, D. R., Berger, T., & Mak, T. W. (2013). Caspase functions in cell death and disease. Cold Spring Harbor perspectives in biology, 5(4), a008656. [39] Mihaylova, M. M., & Shaw, R. J. (2011). The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature cell biology, 13(9), 1016-1023. [40] Nojima, H., Tokunaga, C., Eguchi, S., Oshiro, N., Hidayat, S., Yoshino, K. I., Hara, K., Tanaka, N. Avruch, J.,& Yonezawa, K. (2003). The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. Journal of Biological Chemistry, 278(18), 15461-15464. [41] Guertin, D. A., & Sabatini, D. M. (2007). Defining the role of mTOR in cancer. Cancer cell, 12(1), 9-22. [42] Holz, M. K., Ballif, B. A., Gygi, S. P., & Blenis, J. (2005). mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell, 123(4), 569-580. [43] Sancak, Y., Thoreen, C. C., Peterson, T. R., Lindquist, R. A., Kang, S. A., Spooner, E., Carr, S. A.& Sabatini, D. M. (2007). PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Molecular cell, 25(6), 903-915. [44] Raman, M., Chen, W., & Cobb, M. H. (2007). Differential regulation and properties of MAPKs. Oncogene, 26(22), 3100-3112. [45] Tanoue, T., & Nishida, E. (2003). Molecular recognitions in the MAP kinase cascades. Cellular signalling, 15(5), 455-462. [46] Berridge, M. J., Lipp, P., & Bootman, M. D. (2000). The versatility and universality of calcium signalling. Nature reviews Molecular cell biology, 1(1), 11-21. [47] Ermak, G., & Davies, K. J. (2002). Calcium and oxidative stress: from cell signaling to cell death. Molecular immunology, 38(10), 713-721. [48] Morad, M., & Suzuki, Y. J. (2000). Redox regulation of cardiac muscle calcium signaling. Antioxidants & redox signaling, 2(1), 65-71. [49] Brookes, P. S., Yoon, Y., Robotham, J. L., Anders, M. W., & Sheu, S. S. (2004). Calcium, ATP, and ROS: a mitochondrial love-hate triangle. American Journal of Physiology-Cell Physiology, 287(4), C817-C833. [50] Gordeeva, A. V., Zvyagilskaya, R. A., & Labas, Y. A. (2003). Cross-talk between reactive oxygen species and calcium in living cells. Biochemistry (Moscow), 68(10), 1077-1080. [51] Sauer, H., Wartenberg, M., & Hescheler, J. (2001). Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cellular Physiology and Biochemistry, 11(4), 173-186. [52] Kevin, L. G., Novalija, E., & Stowe, D. F. (2005). Reactive oxygen species as mediators of cardiac injury and protection: the relevance to anesthesia practice. Anesthesia & Analgesia, 101(5), 1275-1287. [53] Ku, H. H., & Sohal, R. S. (1993). Comparison of mitochondrial pro-oxidant generation and anti-oxidant defenses between rat and pigeon: possible basis of variation in longevity and metabolic potential. Mechanisms of ageing and development, 72(1), 67-76. [54] Cadenas, E., & Boveris, A. (1980). Enhancement of hydrogen peroxide formation by protophores and ionophores in antimycin-supplemented mitochondria. Biochemical Journal, 188(1), 31-37. [55] Brookes, P. S., Yoon, Y., Robotham, J. L., Anders, M. W., & Sheu, S. S. (2004). Calcium, ATP, and ROS: a mitochondrial love-hate triangle. American Journal of Physiology-Cell Physiology, 287(4), C817-C833. [56] Zoratti, M., & Szabò, I. (1995). The mitochondrial permeability transition. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes, 1241(2), 139-176. [57] Crompton, M. (1999). The mitochondrial permeability transition pore and its role in cell death. Biochemical Journal, 341(2), 233-249. [58] Castilho, R. F., Kowaltowski, A. J., Meinicke, A., Bechara, E. J., & Vercesi, A. E. (1995). Permeabilization of the inner mitochondrial membrane by Ca2+ ions is stimulated by t-butyl hydroperoxide and mediated by reactive oxygen species generated by mitochondria. Free Radical Biology and Medicine, 18(3), 479-486. [59] Bánfi, B., Molnár, G., Maturana, A., Steger, K., Hegedûs, B., Demaurex, N., & Krause, K. H. (2001). A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes. Journal of Biological chemistry, 276(40), 37594-37601. [60] Bánfi, B., Tirone, F., Durussel, I., Knisz, J., Moskwa, P., Molnár, G. Z., Krause, K. H.& Cox, J. A. (2004). Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). Journal of Biological Chemistry, 279(18), 18583-18591. [61] Gordeeva, A. V., Zvyagilskaya, R. A., & Labas, Y. A. (2003). Cross-talk between reactive oxygen species and calcium in living cells. Biochemistry (Moscow), 68(10), 1077-1080. [62] Yang, T., & Poovaiah, B. W. (2002). Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proceedings of the National Academy of Sciences, 99(6), 4097-4102. [63] Kourie, J. I. (1998). Interaction of reactive oxygen species with ion transport mechanisms. American Journal of Physiology-Cell Physiology, 275(1), C1-C24. [64] Chiamvimonvat, N., O’Rourke, B., Kamp, T. J., Kallen, R. G., Hofmann, F., Flockerzi, V., & Marban, E. (1995). Functional consequences of sulfhydryl modification in the pore-forming subunits of cardiovascular Ca2+ and Na+ channels. Circulation Research, 76(3), 325-334. [65] Krippeitdrews, P., Britsch, S., Lang, F., & Drews, G. (1994). Effects of SH-group reagents on Ca2+ and K+ channel currents of pancreatic B-cells. Biochemical and biophysical research communications, 200(2), 860-866. [66] Pei, Z. M., Murata, Y., Benning, G., Thomine, S., Klüsener, B., Allen, G. J., Grill, E.& Schroeder, J. I. (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature, 406(6797), 731-734. [67] Meissner, G. (2002). Regulation of mammalian ryanodine receptors. Frontiers in bioscience: a journal and virtual library, 7, d2072-80. [68] Oba, T., Kurono, C., Nakajima, R., Takaishi, T., Ishida, K., Fuller, G. A., Klomkleaw, W.,& Yamaguchi, M. (2002). H2O2 activates ryanodine receptor but has little effect on recovery of releasable Ca2+ content after fatigue. Journal of Applied Physiology, 93(6), 1999-2008. [69] Favero, T. G., Zable, A. C., & Abramson, J. J. (1995). Hydrogen peroxide stimulates the Ca2+ release channel from skeletal muscle sarcoplasmic reticulum. Journal of Biological Chemistry, 270(43), 25557-25563. [70] Hidalgo, C., Bull, R., Behrens, M. I., & Donoso, P. (2004). Redox regulation of RyR-mediated Ca2+ release in muscle and neurons. Biological research, 37(4), 539-552. [71] Shen, H. M., & Liu, Z. G. (2006). JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radical Biology and Medicine, 40(6), 928-939. [72] Ma, X., Du, J., Nakashima, I., & Nagase, F. (2002). Menadione biphasically controls JNK-linked cell death in leukemia Jurkat T cells. Antioxidants and Redox Signaling, 4(3), 371-378. [73] Martindale, J. L., & Holbrook, N. J. (2002). Cellular response to oxidative stress: signaling for suicide and survival. Journal of cellular physiology, 192(1), 1-15. [74] Guyton, K. Z., Gorospe, M., Kensler, T. W., & Holbrook, N. J. (1996). Mitogen-activated protein kinase (MAPK) activation by butylated hydroxytoluene hydroperoxide: implications for cellular survival and tumor promotion. Cancer research, 56(15), 3480-3485. [75] Petrache, I., Choi, M. E., Otterbein, L. E., Chin, B. Y., Mantell, L. L., Horowitz, S., & Choi, A. M. (1999). Mitogen-activated protein kinase pathway mediates hyperoxia-induced apoptosis in cultured macrophage cells. American Journal of Physiology-Lung Cellular and Molecular Physiology, 277(3), L589-L595. [76] Xiantao, W. A. N. G., Martindale, J. L., Yusen, L. I. U., HolbrooK, N. J. (1998). The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochemical Journal, 333(2), 291-300. [77] Bhat, N. R., & Zhang, P. (1999). Hydrogen Peroxide Activation of Multiple Mitogen‐Activated Protein Kinases in an Oligodendrocyte Cell Line. Journal of neurochemistry, 72(1), 112-119. [78] Ishikawa, Y., & Kitamura, M. (2000). Anti-apoptotic effect of quercetin: intervention in the JNK-and ERK-mediated apoptotic pathways. Kidney international, 58(3), 1078-1087. [79] Jiménez, L. A., Zanella, C., Fung, H., Janssen, Y. M., Vacek, P. A. M., Charland, C., Goldberg, J.& Mossman, B. T. (1997). Role of extracellular signal-regulated protein kinases in apoptosis by asbestos and H2O2. American Journal of Physiology-Lung Cellular and Molecular Physiology, 273(5), L1029-L1035. [80] Guyton, K. Z., Gorospe, M., Kensler, T. W., & Holbrook, N. J. (1996). Mitogen-activated protein kinase (MAPK) activation by butylated hydroxytoluene hydroperoxide: implications for cellular survival and tumor promotion. Cancer research, 56(15), 3480-3485. [81] Guyton, K. Z., Liu, Y., Gorospe, M., Xu, Q., & Holbrook, N. J. (1996). Activation of mitogen-activated protein kinase by ho role in cell survival following oxidant injury. Journal of Biological Chemistry, 271(8), 4138-4142. [82] Aikawa, R., Komuro, I., Yamazaki, T., Zou, Y., Kudoh, S., Tanaka, M., Shiojima, I., Hiroi, Y.& Yazaki, Y. (1997). Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. Journal of Clinical Investigation, 100(7), 1813. [83] Ikeyama, S., Kokkonen, G., Shack, S., Wang, X. T., & Holbrook, N. J. (2002). Loss in oxidative stress tolerance with aging linked to reduced extracellular signal-regulated kinase and Akt kinase activities. The FASEB journal, 16(1), 114-116. [84] Wang, X., Martindale, J. L., & Holbrook, N. J. (2000). Requirement for ERK activation in cisplatin-induced apoptosis. Journal of Biological Chemistry, 275(50), 39435-39443. [85] Wang, P., Lindsay, J., Owens, T. W., Mularczyk, E. J., Warwood, S., Foster, F., Streuli, C. H., & Gilmore, A. P. (2014). Phosphorylation of the proapoptotic BH3-only protein bid primes mitochondria for apoptosis during mitotic arrest. Cell reports, 7(3), 661-671. [86] Gross, A. (2006). BID as a double agent in cell life and death. Cell Cycle, 5(6), 582-584. [87] 王信凱(民104)。Steviol衍生物之合成與其細胞毒性之探討(未出版之碩士論文)。臺北醫學大學,臺北市。 [88] Prakasam, A., Ghose, S., Oleinik, N. V., Bethard, J. R., Peterson, Y. K., Krupenko, N. I., & Krupenko, S. A. (2014). JNK1/2 regulate Bid by direct phosphorylation at Thr59 in response to ALDH1L1. Cell death & disease, 5(7), e1358. [89] Gross, A., Zaltsman, Y., & Maryanovich, M. (2015). The ATM–BID pathway plays a critical role in the DNA damage response by regulating mitochondria metabolism. Cell Death & Differentiation. [90] Desagher, S., Osen-Sand, A., Montessuit, S., Magnenat, E., Vilbois, F., Hochmann, A., Journot, L., Antonsson, B.& Martinou, J. C. (2001). Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase 8. Molecular cell, 8(3), 601-611. [91] Zinkel, S. S., Hurov, K. E., Ong, C., Abtahi, F. M., Gross, A., & Korsmeyer, S. J. (2005). A role for proapoptotic BID in the DNA-damage response. Cell, 122(4), 579-591. [92] Kamer, I., Sarig, R., Zaltsman, Y., Niv, H., Oberkovitz, G., Regev, L., Haimovich, G., Lerenthal, Y., Marcellus, R. C.& Gross, A. (2005). Proapoptotic BID is an ATM effector in the DNA-damage response. Cell, 122(4), 593-603. [93] Shen, L., & Glazer, R. I. (1998). Induction of apoptosis in glioblastoma cells by inhibition of protein kinase C and its association with the rapid accumulation of p53 and induction of the insulin-like growth factor-1-binding protein-3. Biochemical pharmacology, 55(10), 1711-1719. [94] Martiny-Baron, G., Kazanietz, M. G., Mischak, H., Blumberg, P. M., Kochs, G., Hug, H., Marmé, D. & Schächtele, C. H. (1993). Selective inhibition of protein kinase C isozymes by the indolocarbazole Gö 6976. Journal of Biological Chemistry, 268(13), 9194-9197. [95] Gschwendt, M., Dieterich, S., Rennecke, J., Kittstein, W., Mueller, H. J., & Johannes, F. J. (1996). Inhibition of protein kinase C μ by various inhibitors. Inhibition from protein kinase c isoenzymes. FEBS letters, 392(2), 77-80. [96] Galluzzi, L., Vitale, I., Abrams, J. M., Alnemri, E. S., Baehrecke, E. H., Blagosklonny, M. V., Dawson, T. M., Dawson, V. L., El-Deiry, W. S., Fulda, S. & Gottlieb, E. (2012). Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death & Differentiation, 19(1), 107-120. [97] Xu, J., Ji, J., & Yan, X. H. (2012). Cross-talk between AMPK and mTOR in regulating energy balance. Critical reviews in food science and nutrition, 52(5), 373-381. [98] Morrison, D. K. (2012). MAP kinase pathways. Cold Spring Harbor perspectives in biology, 4(11), a011254. [99] Yan, Y., Zhang, W. R., Cheng, H. P., & Liu, J. (2006). Cross‐talk between calcium and reactive oxygen species signaling. Acta pharmacologica Sinica, 27(7), 821-826. [100] Giorgi, C., Agnoletto, C., Baldini, C., Bononi, A., Bonora, M., Marchi, S., Missiroli, S., Patergnani, S., Poletti, F., Rimessi, A., Zavan, B. & Pinton, P. (2010). Redox control of protein kinase C: cell-and disease-specific aspects. Antioxidants & redox signaling, 13(7), 1051-1085. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68708 | - |
| dc.description.abstract | Steviol glycosides是由甜菊(Stevia rebaudiana)萃取而來的diterpene glycosides,近來有許多Stevioside相關代謝產物在營養以及藥理活性方面的研究,其中Steviol衍生物的討論以及調查相關藥理活性的相關研究更是引起極大的興趣。因此,我們的同仁合成了一系列的Steviol衍生物,本實驗室使用sulforhodamine B assay以PC-3細胞來篩選(一種對賀爾蒙療法具抵抗性並且已轉移的前列腺癌細胞株) ,結果發現STD-30具有最佳抗增生活性,其IC50為1.09 μM。在長時間的細胞群落生長試驗中更可以觀察到STD-30對PC-3細胞株的抑制效果有明顯的提升,其IC50為0.11 μM。藉由流式細胞儀分析經過propidium iodide染色的細胞,可以觀察到經過STD-30藥物處理後,代表細胞凋亡的Sub-G1細胞明顯的提高;另外,分析經過carboxyfluorescein succinimidyl ester (CFSE)染色的細胞也能觀察到STD-30的抗細胞增生活性。使用西方點墨法可以觀察到STD-30會造成Bcl-2家族蛋白中促細胞凋亡的Bid磷酸化現象以及Bak cleavage form的產生,以及JNK與c-Jun的活化。再更進一步使用流式細胞儀分析經由dichlorodihydrofluorescein diacetate (DCFH-DA)染色的細胞,可以觀察到STD-30會使細胞內活性氧化物質(ROS)明顯的上升,並且能被N-acetylcysteine (NAC, 抗氧化物)以及BAPTA (鈣離子螯合劑)抑制。另外,STD-30還會導致細胞外鈣離子進入細胞的量增加,此現象能被NAC抑制。這些研究顯示在STD-30作用下,ROS的生成會和細胞內鈣離子有交互作用。更進一步使用不同抑制劑觀察是否會影響藥物對細胞凋亡的效果以及在Bid、Bak、c-Jun產生的現象,結果顯示NAC、diphenyleneiodonium (NADPH oxidase抑制劑)、trolox (水溶性維他命E類似物), SP600125 (JNK抑制劑)以及Go 6983 (廣範圍protein kinase C抑制劑)都會逆轉細胞凋亡的現象;NAC、SP600125、移除細胞外鈣離子(Hank's Balanced Salt Solution + EGTA)都能夠逆轉Bid、Bak、c-Jun的現象。綜合上述實驗結果,steviol的衍生物STD-30在PC-3細胞中抑制細胞增生及導致細胞凋亡活性是來自ROS以及增加細胞內鈣離子濃度,雖然其上下游還有些尚待釐清的部分,但它展示了能夠被更進一步發展及研究的抗癌潛力。 | zh_TW |
| dc.description.abstract | Steviol glycosides are a group of sweet diterpene glycosides from Stevia rebaudiana. In recent decades, there are increasing studies reporting the nutritional and pharmacological benefits of these secondary metabolites. With many interests, the derivatives of steviol have been produced and the related pharmacological effects have been examined. Our colleagues have synthesized a number of steviol derivatives and, after an anti-proliferative screening test using sulforhodamine B assay in human hormone-refractory metastatic prostate cancer (HRMPC) cell line PC-3, the most effective derivative STD-30 stood out with an IC50 of 1.09 μM. A long-term exposure of cells to STD-30 for ten days resulted in a dramatic inhibition of colony formation with an IC50 of 0.11 μM. The flow cytofluorometric analysis of propidium iodide staining demonstrated that STD-30 caused an increase of sub-G1 population (apoptosis) and the analysis of carboxyfluorescein succinimidyl ester (CFSE) staining substantiated the anti-proliferative activity. Furthermore, the flow cytofluorometric analysis of dichlorodihydrofluorescein diacetate (DCFH-DA) staining demonstrated that STD-30 induced a significant production of reactive oxygen species (ROS), which was inhibitable by N-acetylcysteine (NAC, an antioxidant) and BAPTA (a calcium chelator). Furthermore, STD-30 induced an increase of extracellular Ca2+ influx that was NAC-inhibitable. The data suggested a crosstalk between the ROS production and intracellular Ca2+ mobilization to STD-30 action. Further study demonstrated that the apoptosis induced by STD-30 was significantly rescued by NAC, diphenyleneiodonium (an NADPH oxidase inhibitor), trolox (a water-soluble vitamin E analog), SP600125 (a JNK inhibitor) and Go 6983 (a broad spectrum protein kinase C inhibitor). Taken together, the data suggest that STD-30 induces both anti-proliferative and apoptotic activities in PC-3 cells through a crosstalk interaction between ROS production and Ca2+ influx. Although the functional contribution of NADPH oxidase, JNK and PKC needs further elucidation, the steviol derivative STD-30 displays anticancer potential for further development. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:31:36Z (GMT). No. of bitstreams: 1 ntu-106-R04423016-1.pdf: 3306285 bytes, checksum: 98fd0811d4ecc9e78d8b99b83a2dcab9 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 縮寫表 1
中文摘要 2 英文摘要 3 研究動機 5 研究背景 6 前列腺癌(Prostate cancer) 6 前列腺癌細胞株 8 STD-30 9 細胞死亡 (Cell death) 10 Bcl-2 家族蛋白 12 凋亡蛋白酵素(Caspase) 13 AMP-activated protein kinase (AMPK) 訊息傳導路徑 14 Mammalian target of rapamycin (mTOR) 及其上下游訊息傳導路徑 14 Mitogen-activated protein kinase (MAPK) 訊息傳導路徑 : JNK 15 活性氧化物質(ROS)與鈣離子 15 實驗材料與方法 18 實驗材料 18 實驗方法 20 實驗結果 28 STD-30 對人類前列腺癌細胞生長抑制之活性 28 STD-30 對人類前列腺癌PC-3細胞週期的影響 28 STD-30 造成粒線體膜電位的喪失 29 STD-30 造成Bcl-2 家族相關蛋白的改變 29 STD-30 對細胞凋亡相關蛋白的影響 30 STD-30 對AKT及、mTOR訊息傳導路徑蛋白的影響 30 STD-30 對MAPK-ERK訊息傳導路徑蛋白的影響 30 STD-30 對Bid轉譯後修飾的影響 31 STD-30 對DNA損傷相關蛋白以及對p-Bid(Ser 61)的影響 31 STD-30 在短時間點對Bid、c-Jun、DNA損傷蛋白的影響 32 STD-30 對PC-3細胞造成活性氧化物質 (ROS) 的影響 32 STD-30 在短時間點對活性氧化物質 (ROS) 的影響 32 STD-30 對細胞內鈣離子的影響 33 STD-30 對鈣離子由細胞外進入細胞內的影響 33 不同抑制劑對STD-30 所造成Sub-G1細胞上升的影響 34 不同抑制劑對STD-30 所造成Bid、c-Jun之磷酸化及Bak之cleavage form影響 34 實驗討論 36 STD-30 對細胞凋亡的相關影響 36 STD-30 對Bcl-2家族蛋白的影響 : Bid轉譯後修飾探討 39 STD-30 造成Bid轉譯後修飾應是來自JNK使其磷酸化 39 STD-30 造成細胞內ROS與Calcium上升與彼此交互關係 40 結論 42 參考文獻 74 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鈣離子 | zh_TW |
| dc.subject | 活性氧化物 | zh_TW |
| dc.subject | Bid | zh_TW |
| dc.subject | JNK | zh_TW |
| dc.subject | Steviol | zh_TW |
| dc.subject | JNK | en |
| dc.subject | ROS | en |
| dc.subject | Calcium | en |
| dc.subject | Steviol | en |
| dc.subject | Bid | en |
| dc.title | 探討Steviol活性衍生物在人類賀爾蒙不依賴型轉移性前列腺癌細胞之抗癌作用機轉 | zh_TW |
| dc.title | Mechanism Study of Active Steviol Derivative against Human Hormone-Refractory Metastatic Prostate Cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭哲志(George Hsiao),黃聰龍(Tsong-Long Hwang),楊家榮(Chia-Rong Yang),許麗卿 | |
| dc.subject.keyword | Steviol,JNK,Bid,活性氧化物,鈣離子, | zh_TW |
| dc.subject.keyword | Steviol,JNK,Bid,ROS,Calcium, | en |
| dc.relation.page | 86 | |
| dc.identifier.doi | 10.6342/NTU201703547 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
