Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68706
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李君浩(Jiun-Haw Lee)
dc.contributor.authorYize Hsiaoen
dc.contributor.author蕭詒澤zh_TW
dc.date.accessioned2021-06-17T02:31:30Z-
dc.date.available2022-08-25
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-17
dc.identifier.citation[1] J. T. Smith, B. O’Brien,Y. K. Lee, E. J. Bawolek, and J. B. Christen, “Application of flexible OLED display technology for electro-optical stimulation and/or silencing of neural activity.” IEEE/OSA J. Display Technol. 10, 514, 2014.
[2] S. Shama, U. Jindal, M. Goyal, S. Sharma, and V. Goyal, “A review- on different types of displays.” International Journal of Multimedia and Ubiquitous Engineering. 11, 327, 2016.
[3] P. S. Vincett, W. A. Barlow, R. A. Hann, and G.G. Roberts, “Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films.” Thin Solid Films 94, 171, 1982.
[4] W. Brütting, S. Berleb, and A. G. Mückl, “Device physics of organic light-emitting diodes based on molecular materials.” Org. Electron. 2, 1, 2001.
[5] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes.” Appl. Phys. Lett. 51, 913, 1987.
[6] S. Ogawa, “Organic Electronics Materials and Devices,” Springer, 2015.
[7] R. W. Sinkeldam, N. J. Greco and Y. Tor, “Fluorescent analogs of biomolecular building blocks design, properties, and applications.” Chem. Rev. 210, 2579, 2010.
[8] D. Volz, “Review of organic light-emitting diodes with thermally activated delayed fluorescence emitters for energy-efficient sustainable light sources and displays.” J. Photon. Energy 6, 020901, 2016.
[9] Y. J. Lee, S. H. Kim, G.H. Kim, Y. H. Lee, Y. R. Do, Y. C. Kim, Y. W. Song, and Y. H. Lee, “Far-field radiation of photonic crystal organic light-emitting diode.” J. Appl. Phys. 96, 7629, 2004.
[10] R. Seifert, S. Scholz, B. Lüssem, and K. Leo, “Comparison of ultraviolet- and charge-induced degradation phenomena in blue fluorescent organic light emitting diodes.” Appl. Phys. Lett. 97, 013308, 2010.
[11] T. Zhang, B. Chu, W. Li, Z. Su, Q. M. Peng, B. Zhao, Y. Luo, F. Jin, X. Yan, Y. Gao, H. Wu, F. Zhang, D. Fan, and J. Wang, “Efficient triplet application in exciplex delayed-fluorescence OLEDs using a reverse intersystem crossing mechanism based on a ΔE S−T of around zero.” ACS Appl. Mater. Interfaces 6, 11907, 2014.
[12] M. Aydemir, G. Haykır, A. Battal, V. Jankus, S. K. Sugunan, F. B. Dias, H. A. Al-Attar, F. Türksoy, M. Tavaslı, and A. P. Monkman, “High efficiency OLEDs based on anthracene derivatives: the impact of electron donating and withdrawing group on the performance of OLED.” Org. Electron. 30, 149, 2014.
[13] D. Y. Kondakov, “Characterization of triplet-triplet annihilation in organic light-emitting diodes based on anthracene derivatives.” J. Appl. Phys. 102, 114504, 2007.
[14] D. Y. Kondakov, T. D. Pawlik, T. K. Hatwar, and J. P. Spindler, “Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes.” J. Appl. Phys. 106, 124510, 2009.
[15] B. Y. Lin, C. J. Easley, C. H. Chen, P. C. Tseng, M. Z. Lee, P. H. Sher, J. K. Wang, T. L. Chiu, C. F. Lin, C. J. Bardeen, and J. H. Lee, “Exciplex-sensitized triplet-triplet annihilation in heterojunction organic thin-film.” ACS Appl. Mater. Interfaces 9, 10963, 2017.
[16] H. Nakanotani, T. Furukawa, K. Morimoto, and C. Adachi, “Long-range coupling of electron-hole pairs in spatially separated organic donor-acceptor layers.” Sci. Adv. 2, e1501470, 2016.
[17] 李明哲,“三重態-三重態消滅藍色有機發光二極體之研究”,台大光電所碩士論文 (2016)。
[18] 藍義信,“有機發光二極體發光層之研究”,東華大學材料科學與工程學系碩士論文 (2010)。
[19] D. Y. Zhou, H. Z. Siboni, Q. Wang, L. S. Liao, and H. Aziz, “Host to guest energy transfer mechanism in phosphorescent and fluorescent organic light-emitting devices utilizing exciplex-forming hosts.” J. Phys. Chem. C 118, 24006, 2014.
[20] W. C. H. Choy, K. N. Hui, H. H. Fong, Y. J. Liang, and P. C. Chui, “Improving the efficiency of organic light emitting devices by using co-host electron transport layer.” Thin Solid Films 509, 193, 2006.
[21] A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes.” J. Appl. Phys. 80, 6954, 1996.
[22] J. H. Lee, K. Y. Chen, C. C. Hsiao, H. C. Chen, C. H. Chang, Y. W. Kiang, and C. C. Yang, “Radiation simulations of top-emitting organic light-emitting devices with two- and three-microcavity structures.” IEEE/OSA J. Display Technol. 2, 130, 2006.
[23] H. van Eersel, P. A. Bobbert, R. A. J. Janssen, and R. Coehoorn, “Effect of förster-mediated triplet-polaron quenching and triplet-triplet annihilation on the efficiency roll-off of organic light-emitting diodes.” J. Appl. Phys. 119, 163102, 2016.
[24] H. Z. Siboni and H. Aziz, “Triplet-polaron quenching by charges on guest molecules in phosphorescent organic light emitting devices.” Appl. Phys. Lett. 101, 063502, 2012.
[25] M. Aonuma, T. Oyamada, H. Sasabe, T. Miki, and C. Adachi, “Material design of hole transport materials capable of thick-film formation in organic light emitting diodes.” Appl. Phys. Lett. 90, 183503, 2007.
[26] S. Naka, H. Okada, H. Onnagawa and T. Tsutsui, “High electron mobility in bathophenanthroline.” Appl. Phys. Lett. 76, 197, 2000.
[27] S. C. Tse, S. K. So, M. Y. Yeung, C. F. Lo, S. W. Wen, and C. H. Chen, “The role of charge-transfer integral in determining and engineering the carrier mobilities of 9,10-di(2-naphthyl)anthracene compounds.” Chem. Phys. Lett. 422, 354, 2006.
[28] B. Chen, C. S. Lee, S. T. Lee, P. Webb, Y. C. Chan, W. Gambling, H. Tian, and W. Zhu, “Improved time-of-flight technique for measuring carrier mobility in thin films of organic electroluminescent materials.” Jpn. J. Appl. Phys. 39, 1190, 2000.
[29] L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, and J. Kido, “Recent progresses on materials for electrophosphorescent organic light-emitting devices.” Adv. Mater. 23, 926, 2011.
[30] D. Yokoyama, Y. Park, B. Kim, S. Kim, Y. J. Pu, J. Kido, and J. Park, “Dual efficiency enhancement by delayed fluorescence and dipole orientation in high-efficiency fluorescent organic light-emitting diodes.” Appl. Phys. Lett. 99, 123303, 2011.
[31] J. H. Lee, Y. H. Ho, T. C. Lin, and C. F. Wu, “High-efficiency fluorescent blue organic light-emitting device with balanced carrier transport.” J. Electrochem. Soc. 154, J226, 2007.
[32] H. A. Al-Attar and A. P. Monkman, “Electric field induce blue shift and intensity enhancement in 2D exciplex organic light emitting diodes; controlling electron–hole separation.” Adv. Mater. 28, 8014, 2016.
[33] M. S. Kim, B. K. Choi, T. W. Lee, D. Shin, S. K. Kang, J. M. Kim, S. Tamura, and T. Noh, “A stable blue host material for organic light-emitting diodes.” Appl. Phys. Lett. 91, 251111, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68706-
dc.description.abstract本研究有兩個主題,其一為複合受激態之有機發光二極體的效率提升。其二為複合受激態觸發三重態-三重態消滅藍色有機發光二極體之效率提升。
複合受激態 (Exciplex) 為兩有機材料,分別具電子施體與電子受體特性,在界面處形成激發態的錯合物。我們針對使用複合受激態之有機發光二極體,調變厚度與混合比例來優化,得到6.57 % 外部量子效率及20.95 lm/W 之功率效率。
再者為研究複合受激態觸發三重態-三重態消滅藍色有機發光二極體 (Exciplex sensitized triplet-triplet annihilation ,簡稱ESTTA)。此系統由複合受激態經能量傳遞給藍色三重態-三重態消滅 (Triplet-triplet annhiliation, 簡稱TTA) 發光體,產生上轉換 (Upconversion) 的放光。其效率可能因單重態激子猝熄而降低。故本章以兩種手段,改善此系統的能量傳遞路徑,增加藍光效率。其一為加入藍色螢光客體材料4,4'-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl) (DPAVBi),其二為插入 4,7-diphenyl-1,10-phenanthroline (BPhen) 作為三重態傳遞和單重態阻隔層 (Triplet diffusion and singlet blocking,簡稱TDSB)。在既摻雜客體材料亦插 TDSB 層之元件,能提升外部量子效率的藍色分量至2.316%。
上述研究皆屬於延遲型螢光放光,因此我們利用暫態電激發光 (Transient electroluminescence, 簡稱TrEL) 量測系統,來分析這種延遲放光。透過量測電訊號關掉後的電激放光,藉此研究激子於元件中的物理機制,以及能量轉移的過程。
zh_TW
dc.description.abstractThere are two topics in this thesis. The first one is the optimization of exciplex-based organic light-emitting diode (OLED). The second part describes the methods to improve the efficiency of exciplex sensitized triplet-triplet annihilation (ESTTA) OLED.
When two organic materials act as electron donor and acceptor respectively and form the excited complexes at their interface, it is called exciplex. We optimized exciplex-based OLED to achieve higher efficiency by means of layer structure tuning. Finally, the power efficiency of 20.95 lm/W and external quantum efficiency (EQE) of 6.57% were obtained.
Exciplex generated by two species could transfer its energy to triplet-triplet annihilation (TTA) blue emitter, and created energy upconversion blue emission afterwards. We called this process exciplex sensitized triplet-triplet annihilation (ESTTA). Here, two methods have been adopted to improve the efficiency, which were: (1) doping blue fluorescence dye: 4,4'-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl) (DPAVBi), and (2) inserting 4,7-diphenyl-1,10-phenanthroline (BPhen) as “triplet diffusion and singlet blocking (TDSB)” layer. By employing dopant combined with TDSB layer, ESTTA-OLED increased its blue EQE to 2.316%.
In these OLEDs, transient electroluminescence (TrEL) were employed to investigatet the carrier and exciton dynamics by measuring the turn-off responses.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:31:30Z (GMT). No. of bitstreams: 1
ntu-106-R02941094-1.pdf: 5466262 bytes, checksum: d33488d9b05f4bf5fa512cccb6f24cc3 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents目錄 I
圖目錄 III
表目錄 X
第1章 緒論 1
1.1 OLED的基礎知識 1
1.2 Exciplex與TTA,以及利用兩者的ESTTA 7
1.3 實驗動機 12
第2章 製程及量測系統 13
2.1 簡介 13
2.2 元件製程 13
2.3 量測系統 15
2.3.1 穩態 B-J-V 量測 15
2.3.2 暫態電激發光 (Transient electroluminescence,TrEL) 量測系統 16
第3章 具備複合受激態發光層有機發光二極體之元件優化 17
3.1 實驗動機與本章簡介 17
3.2 調變電子傳輸層厚度 19
3.3 變化發光層厚度 22
3.4 調變發光層混合比例 26
第4章 複合受激態觸發三重態-三重態消滅有機發光二極體之效率提升 30
4.1 實驗動機與本章簡介 30
4.2 優化ESTTA元件厚度 34
4.2.1 增厚電子傳輸層 34
4.2.2 增厚電洞傳輸層 40
4.2.3 ESTTA/ TTA/ Exciplex 控制元件比較 45
4.3 加入 DPAVBi 藍光客體材料,調變摻雜濃度 50
4.4 插入BPhen作為 TDSB 層,調變插入厚度 57
4.5 固定 TDSB = 1 nm 並調變發光層與電子傳輸層厚度 65
4.6 同時摻雜客體材料及插入 TDSB 層 71
第5章 結論 76
參考資料 78
附錄 84
第三章複合受激態優化過程,剛復機完,曾做出高效率元件 84
dc.language.isozh-TW
dc.title三重態-三重態消滅與複合受激態之有機發光二極體研究zh_TW
dc.titleStudy of Triplet-triplet Annihilation and Exciplex-based Organic Light-emitting Diodeen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱天隆(Tien-Lung Chiu),林奇鋒(Chi-Feng Lin)
dc.subject.keyword有機發光二極體,複合受激態,三重態-三重態消滅,暫態電激放光,zh_TW
dc.subject.keywordOrganic light-emitting diode (OLED),Exciplex,Triplet-triplet annihilation (TTA),Transient electroluminescence (TrEL),en
dc.relation.page87
dc.identifier.doi10.6342/NTU201703767
dc.rights.note有償授權
dc.date.accepted2017-08-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
5.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved