Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68683
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉德銘(Der-Ming Yeh)
dc.contributor.authorShih-Ting Linen
dc.contributor.author林詩庭zh_TW
dc.date.accessioned2021-06-17T02:30:27Z-
dc.date.available2023-09-01
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citation林昭儀. 2006. 遮光、溫度與無機養分對擎天鳳梨‘Cherry’生長之影響. 國立臺灣大學園藝學系碩士論文. 臺北.
郭華仁. 2015. 種子學. 國立臺灣大學出版中心. 臺北.
陳以萱 . 2016. 溫度、遮光與無機養分對彩葉鳳梨穴盤苗光合作用與生長之影響. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
張爽、潘偉. 2010. 沙漠玫瑰繁殖與盆栽栽培管理技術. 黑龍江農業科學.8:178-179.
葉德銘、李哖. 1989. 無機養分對臺灣山蘇花生長之影響. 中國園藝. 35: 29-37.
葉德銘、李哖. 1989. 溫度與無機養分對波斯頓腎蕨生長之影響. 中國園藝. 35: 103-111
葉德銘、林立. 1999. 氮素濃度與型態對綠巨人白鶴芋生長之影響. 中國園藝. 45: 160-167.
黃群哲. 2013. 養液氮、磷與鉀濃度及氮型態對洋桔梗穴盤苗生長及後續開花表現之影響. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
黃群哲、魏子耀、葉德銘. 2015. 養液氮濃度對洋桔梗穴盤苗生長及後續開花之影響. 臺灣園藝. 61:177-196.
黃昭興、楊純明. 1995. 利用Weibull函數分析溫度對大豆種子發芽之效應. 中華農藝1: 25-34.
劉于賢. 2017. 養液氮、磷及鉀濃度與溫度對仙客來生長及開花之影響. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
鄒昌齡、李哖. 1978. 不同氮素型態對矮牽牛生長開花之影響. 中國園藝. 23: 141-150.
Altland, J.E., C.H. Gilliam, J.H. Edwards, G.J. Keever, D.C. Fare, and J.L. Sibley. 2002. Rapid determination of nitrogen status in annual vinca. J. Environ. Hort. 20: 189-194.
Angus, J.F., R.B. Cunningham, M.W. Moncur, and D.H. Mackenzie. 1980. Phasic development in field crops I. Thermal response in the seedling phase. Field Crops Res. 3: 365-378.
Atkinson, D. 1973. Some general effects of phosphorus deficiency on growth and development. New Phytol. 72: 101-111.
Augé, R.M., A.J.W. Stodola, and D.M. Gealy. 1990. Turgor maintenance in Rosa rugosa grown at three levels of nitrogen and subjected to drought. J. Environ. Hort. 8: 108-112.
Bierhuizen, J.F., and W.A. Wagenvoort. 1974. Some aspects of seed germination in vegetables. 1. The determination and application of heat sums and minimum temperature for germination. Scientia Hort. 2: 213-219.
Bolhar-Nordenkampf, H., S. Long, N. Baker, G. Oquist, U. Schreiber, and E. Lechner. 1989. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: A review of current instrumentation. Funct. Ecol. 3:497-514.
Botrel, N., L.F.S. Souza, A.G. Soares, V.F. Medina, and S.C. Freitas. 2004. Influência do potássio na suscetibilidade ao escurecimento interno do abacaxi ‘Pérola’ (Ananas comosus L.). Rev. Iber. Tec. Postc. 6:17-23.
Brown, R.F., and D.G. Mayer. 1988. Representing cumulative germination. 2. The use of the Weibull function and other empirically derived curves. Ann. Bot. 61: 127-138.
Brown, S.H. 2012. Adenium obesum – A report. Institute of Food and Agricultural Science, Lee County Extension.
Cakmak, I. and H. Marschner. 1987. Mechanism of phosphorus-induced zinc deficiency in cotton. III. Changes in physiological availability of zinc in plants. Physiol. Plant. 70:13-20.
Carpenter, W.J., and J.F. Boucher, J.F. 1992. Germination and storage of vinca seed is influenced by light, temperature, and relative humidity. HortScience 27: 993-996.
Chen, P.H., and W.H. Kuo. 1995. Germination conditions for the non-dormant seeds of Monochoria vaginalis. Taiwania 40: 419-432.
Christin, H., P. Petty, K. Ouertani, S. Burgado, C. Lawrence, and M.A. Kassem. 2009. Influence of iron, potassium, magnesium, and nitrogen deficiencies on the growth and development of sorghum (Sorghum bicolor L.) and sunflower (Helianthus annuus L.) seedlings. J. Biotech. Res. 1: 64-71.
Claussen, W. and F. Lenz. 1999. Effect of ammonium or nitrate nutrition on net photosynthesis, growth, and activity of the enzymes nitrate reductase and glutamine synthetase in blueberry, raspberry and strawberry. Plant Soil. 208: 95-102.
Colombo, R.C., V. Favetta, L.Y. Yamamoto, G.A. C. Alves, J. Abati, L.S.A. Takahashi, and R.T.D. Faria. 2015. Biometric description of fruits and seeds, germination and imbibition pattern of desert rose [Adenium obesum (Forssk.), Roem. Schult.]. J. Seed Sci. 37: 206-213.
Colombo, R.C., M.A.D. Cruz, D.U.D. Carvalho, R.T. Hoshino, G.A.C. Alves, and R.T.D. Faria. 2018. Adenium obesum as a new potted flower: growth management. Ornamental Hort. 24: 197-205.
Conover, C.A. and R. Poole. 1986. Nitrogen source effects on growth and tissue content of selected foliage plants. HortScience 21:1008-1009.
Crawford, N.M. and A.D. Glass. 1998. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci. 3:389-395.
Dell, B., S. Jones, and S.A. Wilson. 1987. Phosphorus nutrition of jarrah (Eucalyptus marginata) seedlings. Plant Soil 97: 369-379.
Dimmitt, M.G., G. Joseph, and D. Palzkill. 2009. Adenium: Sculptural elegance, floral extravagance. Scathingly Brilliant Idea. Tucson, AZ.
Dufault, R. J. 1994. Long-term consequences and significance of short-term pretransplant nutritional conditioning. HortTechnology 4:41-42.
Dufault, R.J. and J.R. Schultheis. 1994. Bell pepper seedling growth and yield following pretransplant nutritional conditioning. HortScience 29:999-1001.
Dumur, D., C.J. Pilbeam, and J. Craigon. 1990. Use of the Weibull function to calculate cardinal temperatures in faba bean
Epstein, E. and A. Bloom. 2005. Mineral nutrition of plants: Principles and perspectives Sinauer Sunderland, MA., U.S.
Galíndez, G., C.E. Seal, M.I. Daws, L. Lindow, P. Ortega‐Baes, and H.W. Pritchard. 2017. Alternating temperature combined with darkness resets base temperature for germination (Tb) in photoblastic seeds of Lippia and Aloysia (Verbenaceae). Plant Biol. 19: 41-45.
Griffith Jr, L. P. 1998. Tropical foliage plants: a grower's guide. Ball Publishing, Batavia, IL.
Guo, X.R., Y.G. Zu, and Z.H. Tang. 2012. Physiological responses of Catharanthus roseus to different nitrogen forms. Acta Physiol. Plant. 34: 589-598.
Henny R.J. and J. Chen. 2013. Florida foliage house plant care: Adenium obesum. ENH1213. Gainesville: UF/IFAS. http://edis.ifas.ufl.edu/ep474
Hermans, C., J.P. Hammond, P.J. White, and N. Verbruggen. 2006. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci. 11:610 617.
Hood, T.M., H.A. Mills, and P.A. Thomas. 1993. Developmental stage affects nutrient uptake by four snapdragon cultivars. HortScience 28: 1008-1010.
Huang, Z.A., D.A. Jiang, Y. Yang, J.W. Sun, and S.H. Jin. 2004. Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants. Photosynthetica 42: 357-364.
James, E. and M. van Iersel. 2001. Ebb and flow production of petunias and begonias as affected by fertilizers with different phosphorus content. HortScience 36:282-285.
Johnson, C.M., P.R. Stout, T.C. Broyer, and A.B. Carlton. 1957. Comparative chlorine requirements of different plant species. Plant Soil 8:337-353.
Kaczperski, M.P., W.H. Carlson, and M. G. Karlsson. 1991. Growth and development of Petunia ×hybrida as a function of temperature and irradiance. J. Amer. Soc. Hort. Sci. 116: 232-237.
Kang, J.G. and M.W. van Iersel. 2001. Interactions between temperature and fertilizer concentration affect growth of subirrigated petunias. J. Plant Nutr. 24: 753-765.
Karlsson, M. and J. Werner. 2001. Temperature affects leaf unfolding rate and flowering of Cyclamen. HortScience 36:292 294.
Kent, M.W. and D.W. Reed. 1996. Nitrogen nutrition of new guinea impatiens 'Barbados' and Spathiphyllum 'Petite'in a subirrigation system. J. Amer. Soc. Hort. Sci. 121:816-819.
Khalaj, M. A., S. Kiani, A.H. Khoshgoftarmanesh, and R. Amoaghaie 2017. Growth, quality, and physiological characteristics of gerbera (Gerbera jamesonii L.) cut flowers in response to different NO3−: NH4+ ratios. Hort. Environ. Biotech. 58: 313-323.
Kraus, H.T., S.L. Warren, and C.E. Anderson. 2002. Nitrogen form affects growth, mineral nutrient content, and root anatomy of cotoneaster and rudbeckia. HortScience 37:126-129.
Kim, H. J. and X. Li. 2016. Effects of phosphorus on shoot and root growth, partitioning, and phosphorus utilization efficiency in Lantana. HortScience 51: 1001-1009.
Ku, C.S. and D.R. Hershey. 1997. Growth response, nutrient leaching, and mass balancefor potted poinsettia. I. Nitrogen. J. Amer. Soc. Hort. Sci. 122:452-458.
Lima, J. D., P. R. Mosquim, and F. M. Da Matta. 1999. Leaf gas exchange and chlorophyll fluorescence parameters in Phaseolus vulgaris as affected by nitrogen and phosphorus deficiency. Photosynthetica 37: 113-121.
Lin, C.Y. and D.M. Yeh. 2008. Potassium nutrition affects leaf growth, anatomy, and macroelements of Guzmania. HortScience 43:146-148.
Lonati, M., D.J. Moot, P. Aceto, A. Cavallero, and R.J. Lucas. 2009. Thermal time requirements for germination, emergence and seedling development of adventive legume and grass species. N.Z. J. Agr. Res. 52:17-29.
Maathuis, F.J. and D. Sanders. 1996. Mechanisms of potassium absorption by higher plant roots. Physiol. Plant. 96:158-168.
Masson, J., N. Tremblay, and A. Gosselin. 1991. Nitrogen fertilization and HPS supplementary lighting influence vegetable transplant production. I. Transplant growth. J. Amer. Soc. Hort. Sci. 116:594-598.
McBride, K.M. 2012. The effect of cultural practices on growth, flowering and rooting of Adenium Obseum. PhD Thesis. University of Florida.
McBride, K.M., R.J. Henny, J. Chen, and T.A. Mellich. 2014a. Effect of light intensity and nutritionlevel on growth and flowering of Adenium obesum ‘Red’ and ‘Ice Pink’. HortScience 49:430-433.
McBride, K.M., R.J. Henny, T.A. Mellich, and J. Chen. 2014b. Mineral nutrition of Adenium obesum ‘Red’. HortScience 49:1518-1522.
McLaughlin, J. and J. Garofalo. 2002. Desert Rose, Adenium obesum: nursery production. University of Florida Cooperative Extension Service. Miami-Dade County Extension. 66: 1-2.
Mengel, K. and W.W. Arneke. 1982. Effect of potassium on the water potential, the pressure potential, the osmotic potential and cell elongation in leaves of Phaseolus vulgaris. Physiol. Plant. 54:402-408.
Mengel, K. and E.A. Kirkby. 2001. Principles of plant nutrition. 5th ed. Kluwer Academic Pubblishers, MA., U.S.
Netto, A.T., E. Campostrini, J.G.d. Oliveira, and R.E. Bressan-Smith. 2005. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Hort. 104:199-209.
Oosterhuis, D.M., D.A. Loka, E.M. Kawakami, and W.T. Pettigrew. 2014. The physiology of potassium in crop production. Academic Press. 126: 203-233.
Oyen, L.P.A. 2008. Schmelzer Gh. In: Gurib-Fakim (eds.) Plant resources of tropical Africa. Wageningen. Backhuys.
Pietsch, G.M., W.H. Carlson, R.D. Heins, and J.E. Faust. 1995. The effect of day and night temperature and irradiance on development of Catharanthus roseus (L.) Grape Cooler'. J. Amer. Soc. Hort. Sci. 120: 877-881.
Pitchay, D.S., J.M. Frantz, J.C. Locke, C.R. Krause, and G.C. Fernandez. 2007. Impact of applied nitrogen concentration on growth of elatior begonia and New Guinea impatiens and susceptibility of begonia to Botrytis cinerea. J. Amer. Soc. Hort. Sci. 132:193-201.
Plaizier, A.C. 1980. A revision of Adenium Roem. Schult. and of Diplorhynchus Welw. ex Foc. Hiern (Apocynaceae). Mededelingen landbouwhogeschool 80:1-40.
Qu, X.X., Z.Y. Huang, J.M. Baskin, and C.C. Baskin. 2008. Effect of temperature, light and salinity on seed germination and radicle growth of the geographically widespread halophyte shrub Halocnemum strobilaceum. Ann. Bot. 101: 293-299.
Radin, J.W. and M.P. Eidenbock. 1984. Hydraulic conductance as a factor limiting leaf expansion of phosphorus-deficient cotton plants. Plant Physiol. 75:372-377.
Raghothama, K. 1999. Phosphate acquisition. Annu. Rev. Plant Biol. 50:665-693.
Romero, F.R., H.G. Taber, and R.J. Gladon. 2006. Nitrogen source and concentration affect growth and performance of bedding-plant impatiens. J. Plant Nutr. 29:1315-1326.
Schubert, S. and F. Yan. 1997. Nitrate and ammonium nutrition of plants: Effects on acid/base balance and adaptation of root cell plasmalemma H+-ATPase. Zeitschrift für Pflanzenernährung und Bodenkunde 160:275-281.
Scoggins, H.L., D.A. Bailey, and P.V. Nelson. 2002. Efficacy of the press extraction method for bedding plant plug nutrient monitoring. HortScience 37:108
Singh, P. and M. A. Blanke. 2000. Deficiency of potassium but not phosphorus enhances root respiration. Plant Growth Regulation. 32: 77-81.
Stegani, V., G.A.C. Alves, T.R.D. Melo, R.C. Colombo, G. Biz, and R.T.D. Faria. 2019. Growth of fertigated desert rose in different nitrate/ammonium proportion. Ornamental Hort 25: 18-25.
Stevens, N., C. E. Seal, S. Archibald, and W. Bond. 2014. Increasing temperatures can improve seedling establishment in arid-adapted savanna trees. Oecologia 175: 1029-1040.
Streck, N.A., F.L.M. de Paula, D.A. Bisognin, A.B. Heldwein, and J. Dellai. 2007. Simulating the development of field grown potato (Solanum tuberosum L.). Agr. and Forest Meteorol. 14: 1-11.
Styer, R.C. and D.S. Koranski. 1997. Plug transplant production. A grower's guide.1st ed. Ball publishing, Oklahoma, U.S.
Tabatabaei, S.J., M. Yusefi, and J. Hajilo. 2008. Effects of shading and NO3: NH4 ratio on the yield, quality and N metabolism in strawberry. Scientia Hort. 116: 264-272.
Taiz, L., E. Zeiger, I.M. Moller, and A. Murphy. 2015. Plant physiology and development, sixth edition. Sinauer Associates, Inc., Sunderland, U.S.A.
Vance, C.P., C. Uhde-Stone, and D.L. Allan. 2003. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157:423-447.
Van der Walt, K. and E.T.F. Witkowski. 2017. Seed viability, germination and seedling emergence of the critically endangered stem succulent, Adenium swazicum, in South Africa. South African J. Bot. 109: 237-245.
van Iersel, M.W., R.B. Beverly, P.A. Thomas, J.G. Latimer, and H.A. Mills. 1998a. Fertilizer affects on the growth of impatiens, petunia, salvia, and vinca plug seedlings. HortScience 33:678-682.
van Iersel, M.W., P.A. Thomas, R.B. Beverly, J.G. Latimer, and H.A. Mills. 1998b. Nutrition affects pre-and posttransplant growth of impatiens and petunia plugs. HortScience 33:1014-1018.
van Iersel, M.W., R.B. Beverly, P.A. Thomas, J.G. Latimer, and H.A. Mills. 1999. Nitrogen, phosphorus, and potassium effects on pre-and post-transplant growth of salvia and vinca seedlings. J. Plant Nutr. 22:1403-1413.
Weigle, J., H. Taber, and S. Dunston. 1982. Ammonium toxicity of Impatiens platypetala. HortScience 17:199-200.
Xing, S., J. Wang, Y. Zhou, S. A. Bloszies, C. Tu, and S. Hu. 2015 Effects of NH4+ -N/NO3--N ratios on photosynthetic characteristics, dry matter yield and nitrate concentration of spinach. Expt. Agr. 51: 151-160
Yeh, D.M. and J.G. Atherton. 2000. Cardinal temperature and thermal requirements for germination of cineraria seed. J. Hort. Sci. Biotechnol. 75:476-480.
Zhu, J.K. 2001. Plant salt tolerance. Trends Plant Sci. 6: 66-71.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68683-
dc.description.abstract沙漠玫瑰[Adenium obesum (Forssk.) Roem. Schult. ]具特別的株形和豐富的花型花色,深受歡迎。然而亟待建立沙漠玫瑰穴盤育苗期間之養分管理標準,以加速整齊生產。本研究探討溫度、養液氮(N)濃度、N型態、磷(P)濃度、鉀(K)濃度及介質體積含水量對沙漠玫瑰‘Harry Potter’生長之影響,以供栽培參考。
種子以日均溫19.1、21.1、24.3、29.2及32.4℃處理,結果顯示,17天後各處理之最大發芽率皆達85%-89%,並於32.4℃時,有較快的發芽速率,於均溫19.1℃時則會延遲發芽,依迴歸計算發芽的基礎溫度為13.5℃,發芽最低積溫為33.1℃d。
於子葉展開後,置於均溫20.6、22.8、25.2、28.9、33.5℃,搭配每週施用自來水、50%、100%及200%強生氏養液1次。結果顯示,不論溫度為何,未施用養液均不利於植株生長,尤其以20.6℃搭配自來水處理者,生長顯著受到抑制。以50%-200%養液濃度處理加上28.9及33.5℃,顯著加速第2及3對葉展開。以100%養液搭配28.9℃處理者,具有較高的葉面積、葉片數及乾重。
於子葉展開後,每週施予含0-24 mM N之強生氏養液1次。結果顯示,缺氮(0 mM N)及低氮(4-8 mM N)顯著延緩葉片展開時間,缺氮處理者全株葉片黃化並且老葉特別黃,完全展開葉數少、葉面積小,根冠比高。葉面積及株高隨養液N濃度由0-24 mM上升而增加,莖徑、完全展開葉數及葉綠素計讀值亦隨養液濃度增加,約在16-24 mM N達飽和。沙漠玫瑰‘Harry Potter’植體N、P及鈣(Ca)及鎂(Mg)濃度隨著養液N濃度由0 mM提升至24 mM而增加。
於子葉展開後,每週施予含0-4 mM P之強生氏養液1次。結果顯示,缺P(0 mM P)處理者其葉片較小,並且老葉呈現些微的紫紅色,並且顯著延緩第3對葉展開。株高隨養液P濃度於0-4 mM上升而增加,在1-4 mM時達飽和。0.25-4 mM P之總展開葉數、葉面積、葉綠素計讀值、莖徑及總乾重無顯著差異。植體P濃度隨養液P濃度由0提升至4 mM增加而上升;植體K濃度於養液P濃度0至1 mM之間無差異,養液P濃度提高至2-4 mM時植體K濃度下降。
於子葉展開後,每週施予含0-10 mM K之強生氏養液1次。結果顯示,缺K(0 mM K)顯著延緩葉片展開時間,第3對葉在2-10 mM K處理間無顯著差異。缺K處理者老葉出現黃化、葉緣焦枯及落葉等徵狀。株高、葉面積及總展開葉數隨養液K濃度由0-8 mM 上升而增加,並於4-8 mM K達飽和;莖徑及葉綠素計讀值於2-10 mM K間無顯著差異。植株乾重以6 mM K處理為最重,根冠比則以缺K處理最高。植體K濃度隨養液K濃度由0 mM增加至10 mM而上升;植體N濃度隨養液K濃度提高而下降;P、Ca及Mg濃度於各養液K濃度處理間無差異。
子葉展開後,分別於夏季及冬季,每週施含20 mM N 銨硝比(NH4+:NO3-)為0:100、25:75、50:50、75:25 和100:0 之強生氏養液1 次。夏季生長期間以100% NO3-N處理使株高、莖徑及乾重顯著低於養液含有NH4-N處理者,且根冠比最小。施用養液NH4+:NO3-為50:50、75:25及100:0使莖徑、葉面積及葉片數較大。養液NH4-N的比例由0%增加至50%使沙漠玫瑰的淨光合作用速率會隨之提高,並於NH4-N比例50%-100%時無顯著差異。植體N濃度於100% NO3-N養液處理者最低。植體K濃度於各處理間無顯著差異。冬季生長期間以100% NH4-N養液處理會使其株高、葉面積及葉片數顯著低於養液含有NO3-N處理者。隨著養液NH4-N 的比例由0%增加至100%,莖乾重及全株乾重隨之下降。光合作用速率於各N型態及比例處理中無顯著差異。植體N、P及K濃度於各處理間無顯著差異。
將穴盤苗移植後,以20%、40%、70%及20/70%介質體積含水量處理124天,結果顯示,莖徑、株高、乾重及根冠比於各處理間無差異。在70%VWC處理之光合作用顯著低於其他處理,是由於氣孔因素所限制;以40% VWC及20/70%VWC處理,氣孔導度、蒸散速率及細胞間隙CO2濃度皆最高;以20% VWC處理者雖氣孔導度降低,但仍能有效利用細胞間隙 CO2以維持光合作用速率。顯示沙漠玫瑰‘Harry Potter’耐旱但不耐濕,澆水時以乾溼交替使生長較佳。
zh_TW
dc.description.abstractDesert rose [Adenium obesum (Forssk.), Roem. Schult.] is a popular flowering potted plant due to its attractive sculptural caudex with a wide range of flower colors. However, nutrition management during slow and long plug production has not yet been well established. This study aimed to determine the effects of temperature, nitrogen (N), phosphorus (P), and potassium (K) concentration, nitrogen form, and volumetric water content on growth of A. obesum ‘Harry Potter’.
Seeds were sown at mean temperature of 19.1, 21.1, 24.3, 29.2, and 32.4℃. Results showed that the maximum germination rate of each treatment was 85%-89%. Seeds germination was fast at 32.4°C and slow at 19.1°C. The base temperature of ‘Harry Potter’ was estimated as 13.5 ℃, and minimum thermal time for germination was 33.1℃d.
After cotyledon fully expanded, the seedlings were placed at a mean temperature of 20.6, 22.8, 25.2, 28.9, and 33.5°C combined with tap water, 50%, 100%, and 200% Johnson's solution once a week. Results showed that tap water treatment reduced seedling growth, especially for those grown at 20.6°C. The time required for the second and third leaf-pair expansion was shortened with 50% to 200% Johnson's solution at 28.9 and 33.5°C. Leaf area, leaf number and plant dry weights were highest with 100% Johnson's solution at 28.9°C
Seedlings were applied with Johnson’s solution containing 0-24 mM N weekly started after the cotyledon had fully expanded. Results showed that N deficiency and 4-8 mM N treatments took longer time for third leaf pairs to expand. N deficiency resulted in small and chlorotic leaves especially in old leaves. Leaf area and plant height increased with increasing N concentration from 0 to 24 mM. Stem caliper, leaf number, and SPAD-502 value increased with increasing N concentration up to 16 mM and did not increase significantly with further increased N. Tissue N, P, Ca, and Mg concentrations increased with increasing solution N concentration from 0 to 24 mM.
Seedlings were applied with Johnson’s solution containing 0-4 mM P weekly from the fully expanded cotyledon. Results showed that P-deficient plant had smaller leaves, with purplish red old leaves, and took longer time for third leaf pairs to expand. Plant height increased with increasing P concentration up to 1 mM and did not increase significantly with further increased P. Leaf number, leaf area, SPAD-502 value, stem caliper, and plant dry weight did not differ at 0.25-4 mM P treatments. Tissue P concentration increased with increasing solution P concentration from 0-4 mM. Tissue K concentration did not differ between 0-1 mM P, and decreased with increased P at 2-4 mM.
Seedlings were applied with Johnson’s solution containing 0-10 mM K weekly from the fully expanded cotyledon. Results showed that K-deficient plants took longer time for leaf pairs to expand, had the highest root to shoot ratio, and grow poorly, with necrotic or yellow leaves. Plant height, leaf area, and leaf number were not different among 4 to 8 mM K treatments. Stem caliper and SPAD-502 value were not different among 2 to 10 mM K treatments. Maximum plant dry weight was recorded at 6 mM K. Tissue K concentration increased and N decreased with increasing solution K concentration from 0 to 10 mM. Tissue P, Ca, and Mg concentrations did not differ among 0 to 10 mM K treatments.
Seedlings were applied with Johnson’s solution containing 20 mM N in 0:100, 25:75, 50:50, 75:25, and 100:0 of NH4+:NO3- ratio from cotyledon fully expanded during summer and winter, respectively. During summer growth period (30.2/24.9°C, 1418.1µmol·m-2·s-1), plants had higher stem caliper, leaf area and leaf number when supplied with 50:50, 75:25, and 100:0 of NH4+:NO3- than those with 100% NO3-N. Net photosynthetic rate increased with increasing NH4-N ratio from 0% to 50%. Tissue N concentration was lowest when supplied with 100% NO3-N. Tissue K concentration was not different with all treatments. During winter growth period (24.1/17.6°C, 953.8 µmol·m-2·s-1), plants had the lowest plant height, leaf area, and leaf number when supplied with 100% NH4-N. Stem dry weight and plant dry weight decreased with increasing NH4-N ratio from 0% to 100%. Net photosynthetic rate and tissue N, P, and K concentractions were not different among all treatments.
After the plug seedlings transplanted, they were treated with 20%, 40%, 70%, and 20/70% volumetric water contents for 124 d. Results showed that stem caliper, plant height, dry weight, and root to shoot ratio did not differ among the treatments. The net photosynthesis rate and intercellular CO2 concentration in plants at 70% VWC treatment was significantly lowest through stomatal limitation. Net photosynthesis rate, stomatal conductance, transpiration rate, and intercellular CO2 concentration were higher in plants at 40% and 20/70% VWC treatments. Stomatal conductance was also reduced in plants at 20% VWC treatment, while the intercellular CO2 concentraction can still be effectively used to maintain the net photosynthesis rate. Thus, Adenium obesum was categorized as drought-tolerant and moisture-intolerant species, alternate dry and wet for better growth when watering.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:30:27Z (GMT). No. of bitstreams: 1
U0001-1708202010425200.pdf: 3602119 bytes, checksum: acabe7ccbbeab1337bd58ccb1f51bfba (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iv
目錄 viii
表目錄 x
圖目錄 xii
前言(Introduction) 1
前人研究(Literature Review) 3
一、沙漠玫瑰之生長習性及形態 3
二、栽培環境對沙漠玫瑰生長之影響 4
三、溫度及養液濃度對花卉作物生長之影響 5
四、氮、磷、鉀對花卉作物生長及生理之影響 5
(一) 氮對花卉作物生長及生理之影響 5
(二) 磷對花卉作物生長及生理之影響 8
(三) 鉀對花卉作物生長及生理之影響 9
五、氮、磷、鉀對草本花卉穴盤苗生長之影響 10
(一)氮濃度對草本花卉穴盤苗及移植後生長之影響 11
(二)磷濃度對草本花卉穴盤苗及移植後生長之影響 11
(三)鉀濃度對草本花卉穴盤苗及移植後生長之影響 12
六、介質體積含水量對花卉作物之影響 12
材料與方法 (Materials and Methods) 14
試驗一、溫度對沙漠玫瑰種子發芽之影響 14
試驗二、溫度及強生氏養液對沙漠玫瑰穴盤苗生長之影響 15
試驗三、氮濃度對沙漠玫瑰穴盤苗生長之影響 17
試驗四、磷濃度對沙漠玫瑰穴盤苗生長之影響 18
試驗五、鉀濃度對沙漠玫瑰穴盤苗生長之影響 19
試驗六、養液氮型態及比例對沙漠玫瑰穴盤苗生長之影響 20
試驗七、介質體積含水量對沙漠玫瑰生長之影響 23
結果(Results) 25
試驗一、溫度對沙漠玫瑰種子發芽之影響 25
試驗二、溫度及強生氏養液對沙漠玫瑰穴盤苗生長之影響 25
試驗三、氮濃度對沙漠玫瑰穴盤苗生長之影響 27
試驗四、磷濃度對沙漠玫瑰穴盤苗生長之影響 28
試驗五、鉀濃度對沙漠玫瑰穴盤苗生長之影響 29
試驗六、養液氮型態及比例對沙漠玫瑰穴盤苗生長之影響 30
試驗七、介質體積含水量對沙漠玫瑰生長之影響 33
討論(Discussion) 96
試驗一、溫度對沙漠玫瑰種子發芽之影響 96
試驗二、溫度及強生氏養液對沙漠玫瑰穴盤苗生長之影響 97
試驗三、氮濃度對沙漠玫瑰穴盤苗生長之影響 101
試驗四、磷濃度對沙漠玫瑰穴盤苗生長之影響 104
試驗五、鉀濃度對沙漠玫瑰穴盤苗生長之影響 106
試驗六、養液氮型態及比例對沙漠玫瑰穴盤苗生長之影響 109
試驗七、介質體積含水量對沙漠玫瑰生長之影響 112
綜合討論(General Discussion) 114
參考文獻(References) 117
附錄(Appendix) 126
dc.language.isozh-TW
dc.subject沙漠玫瑰zh_TW
dc.subject積溫zh_TW
dc.subject銨硝比zh_TW
dc.subject根冠比zh_TW
dc.subject營養元素分析zh_TW
dc.subjectroot to shoot ratioen
dc.subjectdesert roseen
dc.subjectnutrition analysisen
dc.subjectthermal timeen
dc.subjectammonium to nitrate ratioen
dc.title溫度、礦物營養與介質體積含水量對沙漠玫瑰生長之影響zh_TW
dc.titleEffects of Temperature, Mineral Nutrition, and Volumetric Water Content on Growth of Adenium obesumen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張耀乾(Yao-Chien Alex Chang),林淑怡(Shu-I Lin),陳彥銘(Yen-Ming Chen)
dc.subject.keyword沙漠玫瑰,積溫,銨硝比,根冠比,營養元素分析,zh_TW
dc.subject.keyworddesert rose,thermal time,ammonium to nitrate ratio,root to shoot ratio,nutrition analysis,en
dc.relation.page128
dc.identifier.doi10.6342/NTU202003691
dc.rights.note有償授權
dc.date.accepted2020-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
U0001-1708202010425200.pdf
  未授權公開取用
3.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved