請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68661完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李世光(Chih-Kung Lee),吳光鐘(Kuang-Chong Wu) | |
| dc.contributor.author | Yu-Sheng Liao | en |
| dc.contributor.author | 廖堉盛 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:29:31Z | - |
| dc.date.available | 2022-08-21 | |
| dc.date.copyright | 2020-09-22 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-19 | |
| dc.identifier.citation | [1] L. S. McCarty and G. M. Whitesides, 'Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets,' Angewandte Chemie International Edition, vol. 47, no. 12, pp. 2188-2207, 2008. [2] J. Alametsä et al., 'Automatic detection of spiking events in EMFi sheet during sleep,' Medical engineering physics, vol. 28, no. 3, pp. 267-275, 2006. [3] G. Evreinov and R. Raisamo, 'One-directional position-sensitive force transducer based on EMFi,' Sensors and Actuators A: Physical, vol. 123, pp. 204-209, 2005. [4] J. Hillenbrand and G. M. Sessler, 'High-sensitivity piezoelectric microphones based on stacked cellular polymer films (L),' The Journal of the Acoustical Society of America, vol. 116, no. 6, pp. 3267-3270, 2004. [5] F. Seco, J. L. Ealo, and A. R. Jiménez, 'Modulation and codification of ultrasonic signals with EMFi transducers,' in 2009 IEEE International Ultrasonics Symposium, Ergife Palace Hotel, Roma, Italy, 2009: IEEE, pp. 1726-1729. [6] J. L. Ealo et al., '5h-5 broadband omnidirectional ultrasonic transducer for air ultrasound based on emfi,' in 2006 IEEE Ultrasonics Symposium, Vancouver, Canada, 2006: IEEE, pp. 812-815. [7] A. Jimenez et al., 'EMFi-based ultrasonic transducer for robotics applications,' Sensors and Actuators A: Physical, vol. 148, no. 1, pp. 342-349, 2008. [8] A. Streicher, R. Muller, H. Peremans, and R. Lerch, 'Broadband ultrasonic transducer for a artificial bat head,' in IEEE Symposium on Ultrasonics, 2003, Honolulu, Hawaii, 2003, vol. 2: IEEE, pp. 1364-1367. [9] P. Alto. Canalys: Global smart speaker installed base to top 200 million by end of 2019 [Online] Available: https://www.canalys.com/newsroom/canalys-global-smart-speaker-installed-base-to-top-200-million-by-end-of-2019 [10] T. Sugimoto et al., 'PVDF-driven flexible and transparent loudspeaker,' Applied Acoustics, vol. 70, no. 8, pp. 1021-1028, 2009. [11] L. Xiao et al., 'Flexible, stretchable, transparent carbon nanotube thin film loudspeakers,' Nano letters, vol. 8, no. 12, pp. 4539-4545, 2008. [12] W.-C. Ko, '溶液製程駐極體的電荷儲存機制與在可撓式靜電致動器的應用,' 臺灣大學工程科學及海洋工程學研究所學位論文, pp. 1-151, 2010. [13] G. Sessler, Electrets Third Edition vol. 1. California USA: Laplacian Press, USA, 1998. [14] M. Paajanen, H. Välimäki, and J. Lekkala, 'Modelling the electromechanical film (EMFi),' Journal of Electrostatics, vol. 48, no. 3-4, pp. 193-204, 2000. [15] J. Döring, J. Bartusch, U. Beck, and A. Erhard, 'EMFIT ferroelectret film transducers for non-contact ultrasonic testing,' Mater. Res, pp. 1-10, 2006. [16] G. Neugschwandtner et al., 'Large and broadband piezoelectricity in smart polymer-foam space-charge electrets,' Applied Physics Letters, vol. 77, no. 23, pp. 3827-3829, 2000. [17] M. Wegener, M. Paajanen, O. Voronina, R. Schulze, W. Wirges, and R. Gerhard-Multhaupt, 'Voided cyclo-olefin polymer films: Ferroelectrets with high thermal stability,' in 2005 12th International Symposium on Electrets, Salvador, Brazil, 2005: IEEE, pp. 47-50. [18] A. Streicher, M. Kaltenbacher, R. Lerch, and H. Peremans, 'Broadband EMFi ultrasonic transducer for bat research,' in IEEE Ultrasonics Symposium, 2005., Rotterdam, The Netherlands, The Netherlands, 2005, vol. 3: IEEE, pp. 1629-1632. [19] A. Mohebbi, F. Mighri, A. Ajji, and D. Rodrigue, 'Cellular polymer ferroelectret: a review on their development and their piezoelectric properties,' Advances in Polymer Technology, vol. 37, no. 2, pp. 468-483, 2018. [20] Y.-C. Chen, P.-Z. Chang, W.-C. Ko, H.-C. Liao, W.-J. Wu, and C.-K. Lee, 'Tailoring the performance of flexible electret loudspeakers by varying cell actuator formation,' IEEE Transactions on Dielectrics and Electrical Insulation, vol. 19, no. 4, pp. 1094-1100, 2012. [21] 陳昱吉, '陣列結構駐極體揚聲器系統之設計與研製,' 國立臺灣大學工學院應用力學研究所博士論文, pp. 1-175, 2012. [22] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics, 4th Edition (Fundamentals of Acoustics, 4th Edition, by Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, James V. Sanders, pp. 560. ISBN 0-471-84789-5. Wiley-VCH, December 1999.). December 1999, p. 560. [23] H.-C. Gao and W. Zhu, 'Plane Array Loudspeakers of Multi-cells Drive,' Audio Engineering, Beijing, vol. 31, no. 8, pp. 21-26, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68661 | - |
| dc.description.abstract | 孔洞駐極體材料為一種具可撓性、輕薄之聚丙烯薄膜,從截面觀察可發現許多扁平之孔洞結構,使其具有穩定的儲存電荷能力,常被用於各式致動器與感測器上。而在致動器部分,其電荷分布平均、形狀設計容易、高效率及低聲學阻抗使其常被用在聲學相關之應用,而由於其共振頻位置位於300 kHz左右之高頻區域,多用於超聲波相關之應用。相形之下,此種薄膜十分輕薄,因此其低頻響應不佳,若作為揚聲器振動源,難以在低頻擁有較大之振動幅度。本研究透過提升薄膜張力與改變孔洞結構,影響薄膜之聲壓頻譜輸出,透過施加張力與產生負壓的方式於薄膜產生應變,使內部之孔洞結構趨於扁平,藉此影響其聲壓頻譜響應。本研究並將此概念應用於陣列式結構,利用抽氣施加負壓使其中每個單元薄膜之孔洞的扁平度下降,並經紅外線加熱維持薄膜形狀。由實驗證明提升孔洞扁平度約53.3 %,並可提高聲壓輸出並使聲壓響應往低頻延伸。本研究並研究振動單元之形狀大小對薄膜之聲壓頻譜輸出之影響,並將雙層薄膜結構引入,研究其對聲壓的影響。在陣列單元的變因中,單元之特徵長度為影響聲壓頻譜響應之主要因素,若增加單元尺寸,聲壓響應隨之增大並且有往低頻移動之趨勢,其中,利用陣列單元為直徑12.5 mm圓形之4×4之蜂巢式陣列,聲壓平均整體較抽氣施加負壓前提升9.9 dB,特別是在1 kHz到13 kHz的範圍內,有47 %的提升,而在1 kHz到10 kHz之範圍內,擁有相對平坦、聲壓平均值為48 dB之曲線,而陣列單元為直徑15 mm圓形之4×4之蜂巢式陣列相較於單一矩形薄膜聲壓在1 kHz到12 kHz提升了34.3 %,相較所有裝置有較良好之聲壓頻譜響應。本研究驗證提升孔洞的扁平度及增加陣列單元之特徵長度可提升聲壓及低頻響應之研究目標。透過這些研究,找出更適合應用於揚聲器之薄膜參數,希望在未來製作出頻域廣、擁有低頻輸出之可撓式駐極體揚聲器。 | zh_TW |
| dc.description.abstract | Porous PP film has superior mechanical properties due to its micro voids, including lightweight, flexible, and a high sensitivity. The porous structure allows it to store a large number of space charges and to have piezoelectric effect. Porous-electret has been applied in applications of sensors and actuators. For the application of actuators, it can provide a uniform distribution of space charges, a high energy efficiency, and low acoustic impedance. The resonance frequency of porous-electret is around 300 kHz, It makes it well suited to ultrasonic transducers. But, its low frequency response is poor due to its high flexibility and thin-thickness. In this thesis, we study the influence of porous structure to the acoustic performance of the porous electret film. Mechanical tension was applied to alter the flatness of voids This process can make the voids flatter, and it results in a wider frequency response and can extend to lower frequency region. Using this concept, a suction force was applied on an array of porous electret to change its curvature and to increase the flatness of voids. An infrared emitter was used to maintain the final curvature of each electret film. Scanning electron micrographs shows that this method can reduce ratio of porous diameter and height by 53.3 %. Experimental results also show that the acoustic response can be enhanced by using electret films with flatter voids. We also introduce bimorph structure to study its contributions to sound pressure. In the properties of the array device, the characteristic length of the cell was the main factor that effected on frequency response. If the cell size was increased, the sound pressure would increase and there would be better low frequency response. Experimental studies show that a 4 by 4 array with 12.5 mm in diameter circular cells can increase its sound pressure by an average of 9.9 dB after applying suction force. In the range between 1 kHz to 13 kHz, the sound pressure even enhanced 47 %. Moreover, a flatten area was observed between 1 kHz to10 kHz with the sound pressure reached 48 dB in average. For a 4 by 4 array with 15 mm in diameter circular cells, 1 kHz to 13 kHz, the sound pressure enhanced 34.3 % in the range between. In summary, the concept of using a flattened voids structure to enhance acoustic response of porous electret is verified. In the future, we hope this technology can be applied to flexible speakers with a wider bandwidth and low frequency response. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:29:31Z (GMT). No. of bitstreams: 1 U0001-1708202011003900.pdf: 13091195 bytes, checksum: 6e244f5eb099926baad1aca40783c0a7 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 vi 圖目錄 viii 表目錄 xiv 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機 4 1.3 文獻探討 5 1.3.1 孔洞駐極體 5 1.3.2 駐極體揚聲器應用 6 1.3.3 駐極體薄膜參數對揚聲器性能之影響 9 1.3.4 陣列式揚聲器 12 1.4 論文目標 14 1.5 論文架構 14 第2章 理論及測量方法 15 2.1 實驗設計理念 15 2.2 駐極體揚聲器運作機制 15 2.3 駐極體揚聲器理論方程式 16 2.3.1 薄膜振動方程式 16 2.3.2 遠聲場方程式 20 2.3.3 陣列式揚聲器對聲場影響之方程式 24 2.4 聲壓位準 28 第3章 研究方法與實驗架設 29 3.1 研究方法及設計 29 3.2 裝置命名 30 3.3 薄膜製作 32 3.4 夾具設計 33 3.4.1 施加張力 33 3.4.2 改變薄膜形狀 35 3.5 陣列結構 36 3.5.1 陣列單元大小變因 37 3.5.2 陣列單元形狀變因 39 3.5.3 陣列之單一單元結構 40 3.5.4 陣列雙層薄膜結構 41 3.6 頻率響應之測量系統 42 3.7 聲場之測量系統 44 第4章 結果與討論 45 4.1 改變張力及孔洞形狀對駐極體薄膜之影響 45 4.1.1 施加張力於薄膜對聲壓頻譜之影響 45 4.1.2 改變薄膜孔洞形狀對聲壓頻譜之影響 47 4.2 陣列抽氣結構 48 4.2.1 單一單元之聲壓頻譜響應與聲場探討 48 4.2.2 掃描雷射都普勒測振儀PSV量測邊界穩定性 52 4.2.3 陣列式結構揚聲器改變薄膜孔洞結構之影響 56 4.2.4 陣列式揚聲器之穩定性研究 59 4.2.5 陣列式結構與抽氣製程對薄膜頻譜之影響 60 4.2.6 陣列單元大小對聲壓頻譜之影響 62 4.2.7 陣列單位形狀對聲壓頻譜之影響 65 4.2.8 陣列結構聲場之討論 66 4.2.9 陣列雙層結構 68 第5章 結論與未來展望 71 5.1 結論 71 5.2 未來展望 72 參考文獻 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | 揚聲器陣列 | zh_TW |
| dc.subject | 孔洞駐極體 | zh_TW |
| dc.subject | 孔洞結構 | zh_TW |
| dc.subject | porous structure | en |
| dc.subject | speaker array | en |
| dc.subject | Porous-electret | en |
| dc.title | 商業用孔洞駐極體應用於揚聲器系統之初步設計與開發 | zh_TW |
| dc.title | Preliminary design and development of a porous-electret film for the application of acoustic speaker | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 許聿翔(Yu-Hsiang Hsu) | |
| dc.contributor.oralexamcommittee | 吳文中(Wen-Jong Wu),柯文清(Wen-Ching Ko) | |
| dc.subject.keyword | 孔洞駐極體,孔洞結構,揚聲器陣列, | zh_TW |
| dc.subject.keyword | Porous-electret,porous structure,speaker array, | en |
| dc.relation.page | 75 | |
| dc.identifier.doi | 10.6342/NTU202003694 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202011003900.pdf 未授權公開取用 | 12.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
