Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68654
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳金洌(Jen-Leih Wu)
dc.contributor.authorShin-Jie Huangen
dc.contributor.author黃信傑zh_TW
dc.date.accessioned2021-06-17T02:29:12Z-
dc.date.available2022-09-14
dc.date.copyright2017-09-14
dc.date.issued2017
dc.date.submitted2017-08-18
dc.identifier.citationAfshar-Kharghan, V. (2017). The role of the complement system in cancer. J Clin Invest, 127: 780-789. DOI 10.1172/JCI90962
Alimuddin, Kiron, V., Satoh, S., Takeuchi, T. & Yoshizaki, G. (2008). Cloning and over-expression of a masu salmon (Oncorhynchus masou) fatty acid elongase-like gene in zebrafish. Aquaculture, 282: 13-18. DOI 10.1016/j.aquaculture.2008.06.033
Alimuddin, Yoshizaki, G., Kiron, V., Satoh, S. & Takeuchi, T. (2005). Enhancement of EPA and DHA biosynthesis by over-expression of masu salmon Δ6-desaturase-like gene in zebrafish. Transgenic Research, 14: 159-165. DOI 10.1007/s11248-004-7435-7
Alimuddin, Yoshizaki, G., Kiron, V., Satoh, S. & Takeuchi, T. (2007). Expression of masu salmon delta5-desaturase-like gene elevated EPA and DHA biosynthesis in zebrafish. Mar Biotechnol (NY), 9: 92-100. DOI 10.1007/s10126-006-6003-y
Barcelo-Coblijn, G. & Murphy, E.J. (2009). Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Progress in lipid research, 48: 355-74. DOI 10.1016/j.plipres.2009.07.002
Bell, M.V. & Tocher, D.R. (2009). Biosynthesis of polyunsaturated fatty acids in aquatic ecosystems: general pathways and new directions. IN Kainz, M., Brett, M.T. & Arts, M.T. (Eds.) Lipids in Aquatic Ecosystems. New York, NY: Springer New York.
Bergquist, A., Ekbom, A., Olsson, R., Kornfeldt, D., Loof, L., Danielsson, A., Hultcrantz, R., Lindgren, S., Prytz, H., Sandberg-Gertzen, H., Almer, S., Granath, F. & Broome, U. (2002). Hepatic and extrahepatic malignancies in primary sclerosing cholangitis. J Hepatol, 36: 321-7.
Calder, P.C. (2003). N-3 polyunsaturated fatty acids and inflammation: from molecular biology to the clinic. Lipids, 38: 343-52.
Chandrasekharan, J.A. & Sharma-Walia, N. (2015). Lipoxins: nature's way to resolve inflammation. J Inflamm Res, 8: 181-92. DOI 10.2147/JIR.S90380
Chen, J., Bai, M., Ning, C., Xie, B., Zhang, J., Liao, H., Xiong, J., Tao, X., Yan, D., Xi, X., Chen, X., Yu, Y., Bast, R.C., Zhang, Z., Feng, Y. & Zheng, W. (2016). Gankyrin facilitates follicle-stimulating hormone-driven ovarian cancer cell proliferation through the PI3K/AKT/HIF-1alpha/cyclin D1 pathway. Oncogene, 35: 2506-17. DOI 10.1038/onc.2015.316
Chen, Y., Li, H.H., Fu, J., Wang, X.F., Ren, Y.B., Dong, L.W., Tang, S.H., Liu, S.Q., Wu, M.C. & Wang, H.Y. (2007). Oncoprotein p28 GANK binds to RelA and retains NF-kappaB in the cytoplasm through nuclear export. Cell Res, 17: 1020-9. DOI 10.1038/cr.2007.99
Cheng, C.L., Huang, S.J., Wu, C.L., Gong, H.Y., Ken, C.F., Hu, S.Y. & Wu, J.L. (2015). Transgenic expression of omega-3 PUFA synthesis genes improves zebrafish survival during Vibrio vulnificus infection. J Biomed Sci, 22: 103. DOI 10.1186/s12929-015-0208-1
Domenichiello, A.F., Chen, C.T., Trepanier, M.O., Stavro, P.M. & Bazinet, R.P. (2014). Whole body synthesis rates of DHA from alpha-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats. J Lipid Res, 55: 62-74. DOI 10.1194/jlr.M042275
Erlinger, S. (2016). Intrahepatic cholestasis of pregnancy: A risk factor for cancer, autoimmune and cardiovascular diseases? Clin Res Hepatol Gastroenterol, 40: 139-40. DOI 10.1016/j.clinre.2015.09.003
Farazi, P.A. & Depinho, R.A. (2006). Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer, 6: 674-87. DOI 10.1038/nrc1934
Fedirko, V., Trichopolou, A., Bamia, C., Duarte-Salles, T., Trepo, E., Aleksandrova, K., Nothlings, U., Lukanova, A., Lagiou, P., Boffetta, P., Trichopoulos, D., Katzke, V.A., Overvad, K., Tjonneland, A., Hansen, L., Boutron-Ruault, M.C., Fagherazzi, G., Bastide, N., Panico, S., Grioni, S., Vineis, P., Palli, D., Tumino, R., Bueno-De-Mesquita, H.B., Peeters, P.H., Skeie, G., Engeset, D., Parr, C.L., Jakszyn, P., Sanchez, M.J., Barricarte, A., Amiano, P., Chirlaque, M., Quiros, J.R., Sund, M., Werner, M., Sonestedt, E., Ericson, U., Key, T.J., Khaw, K.T., Ferrari, P., Romieu, I., Riboli, E. & Jenab, M. (2013). Consumption of fish and meats and risk of hepatocellular carcinoma: the European Prospective Investigation into Cancer and Nutrition (EPIC). Annals of oncology : official journal of the European Society for Medical Oncology, 24: 2166-73. DOI 10.1093/annonc/mdt168
Fishelson, Z., Donin, N., Zell, S., Schultz, S. & Kirschfink, M. (2003). Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol Immunol, 40: 109-23.
Folch, J., Lees, M. & Sloane Stanley, G.H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of biological chemistry, 226: 497-509.
Fonseca-Madrigal, J., Navarro, J.C., Hontoria, F., Tocher, D.R., Martinez-Palacios, C.A. & Monroig, O. (2014). Diversification of substrate specificities in teleostei Fads2: characterization of Delta4 and Delta6Delta5 desaturases of Chirostoma estor. J Lipid Res, 55: 1408-19. DOI 10.1194/jlr.M049791
Gomez Candela, C., Bermejo Lopez, L.M. & Loria Kohen, V. (2011). Importance of a balanced omega 6/omega 3 ratio for the maintenance of health: nutritional recommendations. Nutricion hospitalaria, 26: 323-9. DOI 10.1590/S0212-16112011000200013
Guillou, H., Zadravec, D., Martin, P.G. & Jacobsson, A. (2010). The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Progress in lipid research, 49: 186-99. DOI 10.1016/j.plipres.2009.12.002
Guo, T., Liu, X.F., Ding, X.B., Yang, F.F., Nie, Y.W., An, Y.J. & Guo, H. (2011). Fat-1 transgenic cattle as a model to study the function of omega-3 fatty acids. Lipids Health Dis, 10: 244. DOI 10.1186/1476-511X-10-244
Hastings, N., Agaba, M., Tocher, D.R., Leaver, M.J., Dick, J.R., Sargent, J.R. & Teale, A.J. (2001). A vertebrate fatty acid desaturase with Delta 5 and Delta 6 activities. Proceedings of the National Academy of Sciences of the United States of America, 98: 14304-9. DOI 10.1073/pnas.251516598
Hastings, N., Agaba, M.K., Tocher, D.R., Zheng, X., Dickson, C.A., Dick, J.R. & Teale, A.J. (2004). Molecular cloning and functional characterization of fatty acyl desaturase and elongase cDNAs involved in the production of eicosapentaenoic and docosahexaenoic acids from alpha-linolenic acid in Atlantic salmon (Salmo salar). Mar Biotechnol (NY), 6: 463-74. DOI 10.1007/s10126-004-3002-8
Her, G.M., Chiang, C.C., Chen, W.Y. & Wu, J.L. (2003). In vivo studies of liver-type fatty acid binding protein (L-FABP) gene expression in liver of transgenic zebrafish (Danio rerio). FEBS letters, 538: 125-33. DOI 10.1016/s0014-5793(03)00157-1
Her, G.M., Hsu, C.C., Hong, J.R., Lai, C.Y., Hsu, M.C., Pang, H.W., Chan, S.K. & Pai, W.Y. (2011). Overexpression of gankyrin induces liver steatosis in zebrafish (Danio rerio). Biochimica et biophysica acta, 1811: 536-48. DOI 10.1016/j.bbalip.2011.06.011
Higashitsuji, H., Itoh, K., Nagao, T., Dawson, S., Nonoguchi, K., Kido, T., Mayer, R.J., Arii, S. & Fujita, J. (2000). Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas. Nat Med, 6: 96-99.
Hori, T., Kato, S., Saeki, M., Demartino, G.N., Slaughter, C.A., Takeuchi, J., Toh-E, A. & Tanaka, K. (1998). cDNA cloning and functional analysis of p28 (Nas6p) and p40.5 (Nas7p), two novel regulatory subunits of the 26S proteasome. Gene, 216: 113-22. DOI 10.1016/s0378-1119(98)00309-6
İbrahim Haliloǧlu, H., Bayır, A., Necdet Sirkecioǧlu, A., Mevlüt Aras, N. & Atamanalp, M. (2004). Comparison of fatty acid composition in some tissues of rainbow trout (Oncorhynchus mykiss) living in seawater and freshwater. Food Chemistry, 86: 55-59. DOI 10.1016/j.foodchem.2003.08.028
Iwai, A., Marusawa, H., Kiuchi, T., Higashitsuji, H., Tanaka, K., Fujita, J. & Chiba, T. (2003). Role of a novel oncogenic protein, gankyrin, in hepatocyte proliferation. J Gastroenterol, 38: 751-8. DOI 10.1007/s00535-003-1141-8
Jiao, J. & Zhang, Y. (2013). Transgenic biosynthesis of polyunsaturated fatty acids: a sustainable biochemical engineering approach for making essential fatty acids in plants and animals. Chemical reviews, 113: 3799-814. DOI 10.1021/cr300007p
Kabeya, N., Takeuchi, Y., Yamamoto, Y., Yazawa, R., Haga, Y., Satoh, S. & Yoshizaki, G. (2014). Modification of the n-3 HUFA biosynthetic pathway by transgenesis in a marine teleost, nibe croaker. J Biotechnol, 172: 46-54. DOI 10.1016/j.jbiotec.2013.12.004
Kang, J.X., Wang, J., Wu, L. & Kang, Z.B. (2004). Transgenic mice: fat-1 mice convert n-6 to n-3 fatty acids. Nature, 427: 504. DOI 10.1038/427504a
Kasai, T., Ohguchi, K., Nakashima, S., Ito, Y., Naganawa, T., Kondo, N. & Nozawa, Y. (1998). Increased activity of oleate-dependent type phospholipase D during actinomycin D-induced apoptosis in Jurkat T cells. Journal of immunology (Baltimore, Md : 1950), 161: 6469-74.
Kawakami, K. (2005). Transposon tools and methods in zebrafish. Dev Dyn, 234: 244-54. DOI 10.1002/dvdy.20516
Kim, H., Meyer, K., Di Bisceglie, A.M. & Ray, R. (2014). Inhibition of c3 convertase activity by hepatitis C virus as an additional lesion in the regulation of complement components. PloS one, 9: e101422. DOI 10.1371/journal.pone.0101422
Koh, W.P., Dan, Y.Y., Goh, G.B., Jin, A., Wang, R. & Yuan, J.M. (2016). Dietary fatty acids and risk of hepatocellular carcinoma in the Singapore Chinese health study. Liver Int, 36: 893-901. DOI 10.1111/liv.12978
Kourtzelis, I. & Rafail, S. (2016). The dual role of complement in cancer and its implication in anti-tumor therapy. Ann Transl Med, 4: 265. DOI 10.21037/atm.2016.06.26
Labi, V. & Erlacher, M. (2015). How cell death shapes cancer. Cell Death Dis, 6: e1675. DOI 10.1038/cddis.2015.20
Lai, L., Kang, J.X., Li, R., Wang, J., Witt, W.T., Yong, H.Y., Hao, Y., Wax, D.M., Murphy, C.N., Rieke, A., Samuel, M., Linville, M.L., Korte, S.W., Evans, R.W., Starzl, T.E., Prather, R.S. & Dai, Y. (2006). Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol, 24: 435-6. DOI 10.1038/nbt1198
Lee, J.M., Lee, H., Kang, S. & Park, W.J. (2016). Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances. Nutrients, 8. DOI 10.3390/nu8010023
Li, Y., Monroig, O., Zhang, L., Wang, S., Zheng, X., Dick, J.R., You, C. & Tocher, D.R. (2010). Vertebrate fatty acyl desaturase with Delta4 activity. Proceedings of the National Academy of Sciences of the United States of America, 107: 16840-5. DOI 10.1073/pnas.1008429107
Lim, K., Han, C., Xu, L., Isse, K., Demetris, A.J. & Wu, T. (2008a). Cyclooxygenase-2-derived prostaglandin E2 activates beta-catenin in human cholangiocarcinoma cells: evidence for inhibition of these signaling pathways by omega 3 polyunsaturated fatty acids. Cancer Res, 68: 553-60. DOI 10.1158/0008-5472.CAN-07-2295
Lim, K., Han, C., Xu, L., Isse, K., Demetris, A.J. & Wu, T. (2008b). Cyclooxygenase-2–Derived Prostaglandin E<sub>2</sub> Activates β-Catenin in Human Cholangiocarcinoma Cells: Evidence for Inhibition of These Signaling Pathways by ω3 Polyunsaturated Fatty Acids. Cancer Research, 68: 553.
Liu, H.L., Yin, Z.J., Xiao, L., Xu, Y.N. & Qu Le, Q. (2012a). Identification and evaluation of omega-3 fatty acid desaturase genes for hyperfortifying alpha-linolenic acid in transgenic rice seed. J Exp Bot, 63: 3279-87. DOI 10.1093/jxb/ers051
Liu, W., Chen, J.R., Hsu, C.H., Li, Y.H., Chen, Y.M., Lin, C.Y., Huang, S.J., Chang, Z.K., Chen, Y.C., Lin, C.H., Gong, H.Y., Lin, C.C., Kawakami, K. & Wu, J.L. (2012b). A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver. Hepatology, 56: 2268-76. DOI 10.1002/hep.25914
Liu, Y., Higashitsuji, H., Higashitsuji, H., Itoh, K., Sakurai, T., Koike, K., Hirota, K., Fukumoto, M. & Fujita, J. (2013). Overexpression of gankyrin in mouse hepatocytes induces hemangioma by suppressing factor inhibiting hypoxia-inducible factor-1 (FIH-1) and activating hypoxia-inducible factor-1. Biochemical and biophysical research communications, 432: 22-7. DOI 10.1016/j.bbrc.2013.01.093
Mandair, D.S., Rossi, R.E., Pericleous, M., Whyand, T. & Caplin, M. (2014). The impact of diet and nutrition in the prevention and progression of hepatocellular carcinoma. Expert review of gastroenterology & hepatology, 8: 369-82. DOI 10.1586/17474124.2014.894879
Mantovani, A. (2005). Cancer: inflammation by remote control. Nature, 435: 752-3. DOI 10.1038/435752a
Markiewski, M.M., Deangelis, R.A., Strey, C.W., Foukas, P.G., Gerard, C., Gerard, N., Wetsel, R.A. & Lambris, J.D. (2009). The regulation of liver cell survival by complement. Journal of immunology (Baltimore, Md : 1950), 182: 5412-8. DOI 10.4049/jimmunol.0804179
Markiewski, M.M. & Lambris, J.D. (2009). Is complement good or bad for cancer patients? A new perspective on an old dilemma. Trends Immunol, 30: 286-92. DOI 10.1016/j.it.2009.04.002
Markiewski, M.M., Mastellos, D., Tudoran, R., Deangelis, R.A., Strey, C.W., Franchini, S., Wetsel, R.A., Erdei, A. & Lambris, J.D. (2004). C3a and C3b activation products of the third component of complement (C3) are critical for normal liver recovery after toxic injury. Journal of immunology (Baltimore, Md : 1950), 173: 747-54. DOI 10.4049/jimmunol.173.2.747
Morais, S., Mourente, G., Martinez, A., Gras, N. & Tocher, D.R. (2015). Docosahexaenoic acid biosynthesis via fatty acyl elongase and Delta4-desaturase and its modulation by dietary lipid level and fatty acid composition in a marine vertebrate. Biochimica et biophysica acta, 1851: 588-97. DOI 10.1016/j.bbalip.2015.01.014
Morita, M., Kuba, K., Ichikawa, A., Nakayama, M., Katahira, J., Iwamoto, R., Watanebe, T., Sakabe, S., Daidoji, T., Nakamura, S., Kadowaki, A., Ohto, T., Nakanishi, H., Taguchi, R., Nakaya, T., Murakami, M., Yoneda, Y., Arai, H., Kawaoka, Y., Penninger, J.M., Arita, M. & Imai, Y. (2013). The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell, 153: 112-25. DOI 10.1016/j.cell.2013.02.027
Muir, K., Hazim, A., He, Y., Peyressatre, M., Kim, D.Y., Song, X. & Beretta, L. (2013). Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma. Cancer Res, 73: 4722-31. DOI 10.1158/0008-5472.CAN-12-3797
Pang, S.C., Wang, H.P., Li, K.Y., Zhu, Z.Y., Kang, J.X. & Sun, Y.H. (2014). Double transgenesis of humanized fat1 and fat2 genes promotes omega-3 polyunsaturated fatty acids synthesis in a zebrafish model. Mar Biotechnol (NY), 16: 580-93. DOI 10.1007/s10126-014-9577-9
Park, T.J., Kim, H.S., Byun, K.H., Jang, J.J., Lee, Y.S. & Lim, I.K. (2001). Sequential changes in hepatocarcinogenesis induced by diethylnitrosamine plus thioacetamide in Fischer 344 rats: induction of gankyrin expression in liver fibrosis, pRB degradation in cirrhosis, and methylation of p16(INK4A) exon 1 in hepatocellular carcinoma. Molecular carcinogenesis, 30: 138-50.
Patterson, E., Wall, R., Fitzgerald, G.F., Ross, R.P. & Stanton, C. (2012). Health implications of high dietary omega-6 polyunsaturated Fatty acids. J Nutr Metab, 2012: 539426. DOI 10.1155/2012/539426
Pio, R., Ajona, D. & Lambris, J.D. (2013). Complement inhibition in cancer therapy. Semin Immunol, 25: 54-64. DOI 10.1016/j.smim.2013.04.001
Qin, X. & Gao, B. (2006). The complement system in liver diseases. Cell Mol Immunol, 3: 333-40.
Ruiz-Lopez, N., Haslam, R.P., Napier, J.A. & Sayanova, O. (2014). Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J, 77: 198-208. DOI 10.1111/tpj.12378
Ruiz-Lopez, N., Haslam, R.P., Usher, S.L., Napier, J.A. & Sayanova, O. (2013). Reconstitution of EPA and DHA biosynthesis in arabidopsis: iterative metabolic engineering for the synthesis of n-3 LC-PUFAs in transgenic plants. Metab Eng, 17: 30-41. DOI 10.1016/j.ymben.2013.03.001
Sabaliauskas, N.A., Foutz, C.A., Mest, J.R., Budgeon, L.R., Sidor, A.T., Gershenson, J.A., Joshi, S.B. & Cheng, K.C. (2006). High-throughput zebrafish histology. Methods, 39: 246-54. DOI 10.1016/j.ymeth.2006.03.001
Schmitz, G. & Ecker, J. (2008). The opposing effects of n-3 and n-6 fatty acids. Progress in lipid research, 47: 147-55. DOI 10.1016/j.plipres.2007.12.004
Scott, B.L. & Bazan, N.G. (1989). Membrane Docosahexaenoate Is Supplied to the Developing Brain and Retina by the Liver. Proceedings of the National Academy of Sciences of the United States of America, 86: 2903-2907. DOI DOI 10.1073/pnas.86.8.2903
Simopoulos, A.P. (2011). Importance of the omega-6/omega-3 balance in health and disease: evolutionary aspects of diet. World review of nutrition and dietetics, 102: 10-21. DOI 10.1159/000327785
Sprague, M., Dick, J.R. & Tocher, D.R. (2016). Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006-2015. Sci Rep, 6: 21892. DOI 10.1038/srep21892
Strey, C.W., Markiewski, M., Mastellos, D., Tudoran, R., Spruce, L.A., Greenbaum, L.E. & Lambris, J.D. (2003). The proinflammatory mediators C3a and C5a are essential for liver regeneration. The Journal of experimental medicine, 198: 913-23. DOI 10.1084/jem.20030374
Sun, L., Nguyen, A.T., Spitsbergen, J.M. & Gong, Z. (2015). Myc-induced liver tumors in transgenic zebrafish can regress in tp53 null mutation. PloS one, 10: e0117249. DOI 10.1371/journal.pone.0117249
Tat, J., Liu, M. & Wen, X.Y. (2013). Zebrafish cancer and metastasis models for in vivo drug discovery. Drug Discov Today Technol, 10: e83-9. DOI 10.1016/j.ddtec.2012.04.006
Terada, T. & Matsunaga, Y. (2000). Increased mast cells in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Hepatol, 33: 961-6.
Timchenko, N.A. & Lewis, K. (2014). Elimination of Tumor Suppressor Proteins during Liver Carcinogenesis. Cancer Studies and Molecular Medicine - Open Journal, 1: 27-38. DOI 10.17140/csmmoj-1-104
Tonon, F., Zennaro, C., Dapas, B., Carraro, M., Mariotti, M. & Grassi, G. (2016). Rapid and cost-effective xenograft hepatocellular carcinoma model in Zebrafish for drug testing. Int J Pharm, 515: 583-591. DOI 10.1016/j.ijpharm.2016.10.070
Torre, L.A., Siegel, R.L., Ward, E.M. & Jemal, A. (2016). Global Cancer Incidence and Mortality Rates and Trends--An Update. Cancer Epidemiol Biomarkers Prev, 25: 16-27. DOI 10.1158/1055-9965.EPI-15-0578
Tosi, F., Sartori, F., Guarini, P., Olivieri, O. & Martinelli, N. (2014). Delta-5 and delta-6 desaturases: crucial enzymes in polyunsaturated fatty acid-related pathways with pleiotropic influences in health and disease. Adv Exp Med Biol, 824: 61-81. DOI 10.1007/978-3-319-07320-0_7
Turati, F., Trichopoulos, D., Polesel, J., Bravi, F., Rossi, M., Talamini, R., Franceschi, S., Montella, M., Trichopoulou, A., La Vecchia, C. & Lagiou, P. (2014). Mediterranean diet and hepatocellular carcinoma. J Hepatol, 60: 606-11. DOI 10.1016/j.jhep.2013.10.034
Umemura, A., Itoh, Y., Itoh, K., Yamaguchi, K., Nakajima, T., Higashitsuji, H., Onoue, H., Fukumoto, M., Okanoue, T. & Fujita, J. (2008). Association of gankyrin protein expression with early clinical stages and insulin-like growth factor-binding protein 5 expression in human hepatocellular carcinoma. Hepatology, 47: 493-502. DOI 10.1002/hep.22027
Vagner, M. & Santigosa, E. (2011). Characterization and modulation of gene expression and enzymatic activity of delta-6 desaturase in teleosts: A review. Aquaculture, 315: 131-143. DOI 10.1016/j.aquaculture.2010.11.031
Von Schacky, C. (2000). n-3 fatty acids and the prevention of coronary atherosclerosis. The American journal of clinical nutrition, 71: 224S-7S.
Wang, W.P., Yan, X.L., Li, W.M., Ni, Y.F., Zhao, J.B., Lu, Q., Wang, X.J., Sun, Y., Chen, P., Yan, B.Y., Cui, Y., Zhang, Z.P. & Li, X.F. (2015). Clinicopathologic features and prognostic implications of Gankyrin protein expression in non-small cell lung cancer. Pathology, research and practice, 211: 939-47. DOI 10.1016/j.prp.2015.09.010
Wang, X., Jiang, B. & Zhang, Y. (2016). Gankyrin regulates cell signaling network. Tumour Biol, 37: 5675-82. DOI 10.1007/s13277-016-4854-z
Wang, Y.D., Peng, K.C., Wu, J.L. & Chen, J.Y. (2014). Transgenic expression of salmon delta-5 and delta-6 desaturase in zebrafish muscle inhibits the growth of Vibrio alginolyticus and affects fish immunomodulatory activity. Fish Shellfish Immunol, 39: 223-30. DOI 10.1016/j.fsi.2014.04.021
Wirth, T.C. & Vogel, A. (2016). Surveillance in cholangiocellular carcinoma. Best Pract Res Clin Gastroenterol, 30: 987-999. DOI 10.1016/j.bpg.2016.11.001
Xu, C., Chen, Y., Xu, L., Miao, M., Li, Y. & Yu, C. (2016). Serum complement C3 levels are associated with nonalcoholic fatty liver disease independently of metabolic features in Chinese population. Sci Rep, 6: 23279. DOI 10.1038/srep23279
Yim, S.H. & Chung, Y.J. (2010). An Overview of Biomarkers and Molecular Signatures in HCC. Cancers (Basel), 2: 809-23. DOI 10.3390/cancers2020809
Zhang, G.L., Zhang, T., Ye, Y.N., Liu, J., Zhang, X.H., Xie, C., Peng, L. & Gao, Z.L. (2016a). Complement Factor 3 Could Be an Independent Risk Factor for Mortality in Patients with HBV Related Acute-on-Chronic Liver Failure. Biomed Res Int, 2016: 3524842. DOI 10.1155/2016/3524842
Zhang, M., Gu, J. & Zhang, C. (2016b). Hepatitis B virus X protein binding to hepsin promotes C3 production by inducing IL-6 secretion from hepatocytes.
Zhao, X., Fu, J., Xu, A., Yu, L., Zhu, J., Dai, R., Su, B., Luo, T., Li, N., Qin, W., Wang, B., Jiang, J., Li, S., Chen, Y. & Wang, H. (2015). Gankyrin drives malignant transformation of chronic liver damage-mediated fibrosis via the Rac1/JNK pathway. Cell Death Dis, 6: e1751. DOI 10.1038/cddis.2015.120
Zuo, R., Mai, K., Xu, W., Dong, X. & Ai, Q. (2016). Molecular cloning, tissue distribution and nutritional regulation of a Δ6-fatty acyl desaturase-like enzyme in large yellow croaker (Larimichthys crocea). Aquaculture Research, 47: 445-459. DOI 10.1111/are.12505
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68654-
dc.description.abstract肝癌是人類重要的臨床科學問題,也是全球第二大癌症死亡原因。常見的兩種原發性肝癌分別是肝細胞癌(hepatocellular carcinoma,HCC)和肝內膽管癌(intrahepatic cholangiocarcinoma,ICC)。新的研究顯示,在肝癌發展的過程中,腫瘤微環境內的慢性肝臟炎症是個重要的過程並會促進腫瘤惡化。因此,治療慢性肝炎即為預防肝癌的一種可能途徑。在人類健康和發育中,包括ω-6(n-6)和ω-3(n-3)脂肪酸在內的多元不飽和脂肪酸(PUFAs)有著許多關鍵的生物功能,如參與脂質循環及發炎等功能。幾項最近的研究也顯示,食用特定的多元不飽脂肪酸與降低HCC 和ICC 的發生風險是有關的。然而,目前用來研究肝癌和PUFAs 之間調控機制與療效的模式動物仍相當有限。因此,建立這種肝臟疾病動物模式,對於開發新療法所需的基礎和轉譯研究顯得相當重要。我們的目標是探討調節脂肪酸組成是否可以改善gankyrin 所誘發的肝癌生長。由於n-3 PUFAs 的攝取量可能會隨膳食補充差異而有顯著變化,因此我們建立基轉斑馬魚來消除由飼料所引起的飲食干擾因素並進一步增加n-3 多元不飽和脂肪酸含量。
在這裡,我們建立了幾種模式動物,包含一種致癌蛋白gankyrin,肝癌基轉魚和四種單一不飽和脂肪酸合成基因基轉魚,以了解脂肪酸組成變化與肝臟疾病間的相互調控關係。首先,我們試著建立的一種新的斑馬魚肝癌模型,通過致癌蛋白gankyrin 的過量表達於肝細胞來誘導自發的HCC 和ICC 產生,而無須癌細胞接種或藥物處理。在7至12 個月齡時,我們發現gankyrin 基轉魚會發生持續性肝細胞損傷,伴隨著脂肪肝,膽汁鬱積,膽管炎,肝纖維化,肝細胞癌(HCC)和肝內膽管癌(ICC)發生。在7 個月時,經由組織學分析顯示轉基因魚中約有63%(n = 40)的肝細胞癌發生;在12 個月時,於仍存活的魚中有36%(n = 30)的比例產生似ICC 的腫瘤。ICC 是人類第二常見的原發性肝癌,也是首次在這腫瘤模式動物中發生。我們進一步研究了補體系統的中心分子補體 C3 的作用,發現於2,3,4 和6 個月時的基轉魚肝臟中C3a 和C3b mRNA 的表達水平持續下降,蛋白質分析也顯示表現量的降低。這些研究結果表明,gankyrin 可以在持續性肝損傷的背景下促進肝細胞的惡性轉化,這種轉變可能與補償性增殖和持續發炎的微環境有關。我們觀察到的補體C3 減少可用來允許已經癌轉化的細胞逃避其所誘發的免疫反應。在這裡,我們建立了一個優秀的斑馬魚肝癌模型,將有助於研究腫瘤發生的分子機制。接著,我們藉由斑馬魚模式動物來探討三種去飽和酶(FADS)和長鏈不飽和脂肪酸延長酶(ELOVL)在不飽和脂肪酸合成時的效能。我們建立了四個轉基因品系,即Fadsd5 和Fadsd4,Fadsd6 和Elvol5a 單基因基轉斑馬魚,並互相雜交產生雙基因基轉斑馬魚。最終產生三種雙轉基因斑馬魚Fadsd5 /Fadsd6、Fadsd6 / Elvol5a 和Fadsd6 / Fadsd4。脂肪酸分析結果顯示,不僅是單一PUFA合成基因基轉魚或雙PUFA 合成基因基轉魚均增強了n-3 PUFAs 的合成能力。在Fadsd6/Elvol5a 雙轉基因斑馬魚中delta-6 去飽和酶和延長酶的表達將20:5n-3 和22:6n-3含量分別增加至1.27 和2.64 倍。類似地,在Fadsd5 / Fadsd6 雙轉基因斑馬魚中共表達的delta-5 和delta-6 去飽和酶分別將20:5n-3 和22:6n-3 含量分別提高到1.3 和2.87 倍。在Fadsd5 / Fadsd6 雙轉基因斑馬魚中共同表達delta-6 和delta-4 去飽和酶分別使20:5n-3 和22:6n-3 含量分別增加1.5 倍和2.29 倍。
最後,我們研究了Gankyrin 和Elvol5a 雙轉基因魚所引起的脂肪酸組成變化與肝臟疾病之間的關聯。結果表明,雙轉基因魚能顯著降低肝細胞的凋亡和過度增生現象,於12個月時腫瘤發生率從60%降至32%。與對照組相比,gankyrin 基轉魚中的二十碳五烯酸(EPA)和花生四烯酸(ARA)的比值由1.4 降低至0.7 倍,而Gan-Tet-Off/ Elvol5a雙轉魚可以進一步降低百分之五十的ARA 含量。總結,這些初步結果提供了一個相當好的關聯,顯示了控制EPA 和ARA 這兩種脂肪酸間比例,與總體生存率及癌症發病率有關。這些結果可作為一種新穎的策略,在飲食中增加n-3 不飽和脂肪酸的攝取量,可用來預防及調控腫瘤生長。總結而言,由於n-3 脂肪酸在癌症中的作用已經在我們的模型中得到證實,因此可以推斷,進一步透過轉錄組和脂質組學,可以深入了解脂質代謝機制與n-3 LC- PUFA 在肝病的潛在治療效用。
zh_TW
dc.description.abstractLiver cancer is a big clinical problem in humans and was estimated to be the second leading cause of cancer mortality worldwide. The two most common primary liver cancers are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). It is now recognized that chronic liver inflammation in the tumor microenvironment is a hallmark of liver cancer and that promotes tumor progression. Thus, treatment of chronic inflammatory liver diseases is a possible approach to prevent liver cancer. Polyunsaturated fatty acids (PUFAs), including omega-6(n-6) and omega-3(n-3) fatty acids, are playing many crucial biological functions including the circulating lipids and inflammation in human health and development. Several recent studies have reported a correlation between consumption of specific PUFAs diets and reduce the risk of developing HCC and ICC. However, limited data are currently available to address the efficacy and mechanisms between liver cancers and PUFAs in animal model. As such, establishing animal models of this disease is important for both basic and translational studies that move toward developing new therapies. Our objective is to determine whether modulating the fatty acid composition could ameliorate liver cancer formation. Because of dietary intake of n-3 PUFAs may vary significantly as background from diets supplementation. Using transgenic zebrafish model can eliminate the typical confounding factors of diet and future increase omega-3 content. Here, we establish several in vivo models, including one oncoprotein gankyrin, the liver cancer transgenic model and four single PUFA synthesis gene transgenic fish, to understand the relationship of fatty acid composition change in liver diseases. First of all, we try to establish a novel zebrafish model to induce spontaneous HCC and ICC by liver-specific gankyrin overexpression without cancer cell inoculation and drug treatment. At 7 to 12 months of age, we found gankyrin transgenic fish spontaneously incurred persistent hepatocyte damage, steatosis, cholestasis, cholangitis, fibrosis and hepatic tumors. At 7 months of age, histological analysis revealed approximately 63% (n = 40) occurrence of HCC in transgenic fish. And at nearly 1 year of age, tumors that were similar to ICC developed in 36% (n = 30) of surviving fish. ICC is the second most frequent primary liver cancer in human patients and the first to develop in this tumor model. We further investigated the role of complement C3, a central molecule of the complement system, and found the expression levels of both in mRNA levels of C3a and C3b were consistently decreased in transgenic fish liver at 2, 3, 4 and 6 months, and the protein expression was decreased when measured by either Western blot or immunohistochemistry during tumorigenesis.
Together, these findings suggest that gankyrin can promote malignant transformation of liver cells in the context of persistent liver injury. This transformation may be related to compensatory proliferation and the inflammatory microenvironment. The observed decrease in complement C3 may allow transforming cells to escape coordinated induction of the immune response. Herein, we demonstrate an excellent zebrafish model for liver cancers that will be useful for studying the molecular mechanisms of tumorgenesis. Then, we exploit the zebrafish model to identify the effectiveness between three FADS and ELOVL gene’s function in PUFAs synthesis. We establish four single gene transgenic lines, namely the Fadsd5 and Fadsd4, Fadsd6 and Elvol5a transgenic zebrafish, and use to generate double genes transgenic zebrafish. We finally generate three double genes transgenic zebrafish lines, Fadsd5/Fadsd6, Fadsd6/Elvol5a and Fadsd6/Fadsd4. The fatty acid analysis revealed that not only single PUFA gene transgenic zebrafish but also double PUFA genes transgenic zebrafish exhibited enhanced ability to synthesize n-3 PUFAs. Expression of delta-6 desaturase and elongase in Fadsd6/Elvol5a double transgenic zebrafish increased the 20:5n-3 and 22:6n-3 contents to 1.27- and 2.64-fold, respectively. Similarly, co-expression delta-5 and delta-6 desaturase in Fadsd5/Fadsd6 double transgenic zebrafish increased the 20:5n-3 and 22:6n-3 content to 1.3- and 2.87-fold, respectively. And co-expression delta-6 and delta-4 desaturase in Fadsd6/Fadsd4 double transgenic zebrafish increased the 20:5n-3 and 22:6n-3 content to
1.5- and 2.29-fold, respectively.
Finally, we investigated the relationship between the fatty acids composition and liver disease caused by co-expression of Gankyrin and Elvol5a in double transgenic zebrafish. Results showed that double transgenic fish can significantly reduce apoptosis and proliferation activity in hepatocyte and had a significantly reduced tumorigenesis from 60% to 32% in 12 months old. Moreover, the ratio of e eicosapentaenoic acid (EPA) and arachidonic acid (ARA) compared significantly lower in gankyrin transgenic fish when with control fish from 1.4 to 0.7 fold, but ARA was significantly decreased 50 percent in the livers of Gan-Tet-Off / Elvol5a transgenic zebrafish compare to Gan-Tet-Off zebrafish. Collectively, these data provide fascinating preliminary observation that the balance of EPA and ARA content was related to overall survival and cancer incidence. These results give as a novel strategy that increased intake of n-3 fatty acids in our diet could help both in the prevention as well as management of tumor growth. In conclusion, since the role of n-3 FAs in cancer has been demonstrated in our model, it can be inferred that with further incorporate of transcriptome and lipidomics, knowing the underlying molecular during lipid metabolism machinery and the potential of n-3 LC-PUFAs to explore their therapeutic utility.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:29:12Z (GMT). No. of bitstreams: 1
ntu-106-D96b45004-1.pdf: 12589655 bytes, checksum: 24dea11a2200d2c8c560d58d224b31be (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員審定書 I
致謝 Ⅱ
中文摘要 Ⅲ
Abstract Ⅵ
Table of contents Ⅹ
List of figures and tables XIII
List of Abbreviations XV
1. Introduction
1.1 Liver cancers 1
1.2 Liver tumor model and Gankyrin 2
1.3 Omega-3 and omega-6 polyunsaturated fatty acids 3
1.4 Liver cancers and omega 3 polyunsaturated fatty acids 6
2. Materials and Methods
2.1. Zebrafish husbandry and transgenic zebrafish 7
2.2 Western blots and antibodies 8
2.3 Morphogenesis assay of emaciation and liver morphology 8
2.4Analysis of cell death 8
2.5 Zebrafish RNA extraction and quantitative RT-PCR 9
2.6 Construction of Fadsd5, Fadsd6, Elvol5a and Fadsd4 vectors 10
2.7 Fatty acid extraction and Composition analysis of zebrafish 10
2.8 Histology and Immunohistochemistry 11
2.9 Statistical analysis 12
3. Results
3.1 Generation of gankyrin overexpressing zebrafish 13
3.2 Gankyrin accelerates liver steatosis, cholangitis, fibrosis, and hepatocarcinogenesis with persistent damage and proliferation in hepatocytes 14
3.3 Gankyrin increases hepatocyte proliferation and apoptosis 15
3.4 Gankyrin decreases complement C3 expression level during tumorgenesis 15
3.5 Generation of Fadsd5, Fadsd6, Fadsd4 and Elvol5a transgenic zebrafish 16
3.6 Transcription expression of endogenous fadsd2, elovl2and elovl5genes were altered in liver, muscle, intestine and brain tissues of transgenic Zebrafish 17
3.7 Profiling of PUFAs present in whole body of PUFA transgenic zebrafish 18
3.8 Identify the effects of Gankyrin in liver by transcriptome and Ingenuity Pathway Analysis (IPA) analysis 19
3.9 Validation of the DEGs in liver of Gan-Tet-Off (+Dox) control, Gan-Tet-Off, and
Gan-Tet-Off / Elvol5a fish at 4 month 20
3.10 The Gan-Tet-Off / Elvol5a double fish can significant reduced liver disease and the ratio of Eicosanpentaenoic (EPA) and arachidonic acid (ARA) was significant decreased 21
4. Discussion 23
5. References 31
6.Appendix 69
Paper1:Transgenic expression of omega-3 PUFA synthesis genes improves zebrafish survival during Vibrio vulnificus infection 70
Paper2:Inducible liver-specific overexpression of gankyrin in zebrafish results in spontaneous intrahepatic cholangiocarcinoma and hepatocellular carcinoma formation 82
dc.language.isoen
dc.subject肝內膽管癌zh_TW
dc.subject斑馬魚zh_TW
dc.subject多元不飽和脂肪酸zh_TW
dc.subject補體C3zh_TW
dc.subjectzebrafishen
dc.subjectintrahepatic cholangiocarcinoma (ICC)en
dc.subjectComplement C3en
dc.subjectPUFAen
dc.title探討gankyrin誘導肝癌的機制並透過斑馬魚基因轉殖技術提高omega-3脂肪酸以調控腫瘤生長zh_TW
dc.titleMechanism of gankyrin-induced liver cancers and control of tumor growth in elevated omega-3 fatty acids by transgenic technology of zebrafishen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.coadvisor陳志毅(Jyh-Yih Chen)
dc.contributor.oralexamcommittee龔紘毅(Hong-Yi Gong),洪健睿(Jiann-Ruey Hong),耿全福(Chuian-Fu Ken),劉旺達(Wangta Liu)
dc.subject.keyword斑馬魚,肝內膽管癌,補體C3,多元不飽和脂肪酸,zh_TW
dc.subject.keywordzebrafish,intrahepatic cholangiocarcinoma (ICC),Complement C3,PUFA,en
dc.relation.page89
dc.identifier.doi10.6342/NTU201703637
dc.rights.note有償授權
dc.date.accepted2017-08-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
12.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved