Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68645
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉瑞芬
dc.contributor.authorWei-Che Shihen
dc.contributor.author施維哲zh_TW
dc.date.accessioned2021-06-17T02:28:49Z-
dc.date.available2022-08-28
dc.date.copyright2017-08-28
dc.date.issued2017
dc.date.submitted2017-08-18
dc.identifier.citation 黃俊慈,2014 以蛋白體學分析菸草中參與Elicitin作用之SlSOBIR1交互作用蛋白,臺灣大學植物病理與微生物學研究所學位論文
 Adachi H, Nakano T, Miyagawa N, et al., 2015. WRKY Transcription Factors Phosphorylated by MAPK Regulate a Plant Immune NADPH Oxidase in Nicotiana benthamiana. Plant Cell 27, 2645-63.
 Albert I, Bohm H, Albert M, et al., 2015a. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity. Nat Plants 1, 15140.
 Arthur JS, Ley SC, 2013. Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 13, 679-92.
 Asai T, Tena G, Plotnikova J, et al., 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977-83.
 Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF, 2000. A Kingdom-Level Phylogeny of Eukaryotes Based on Combined Protein Data. Science 290, 972.
 Bohm H, Albert I, Fan L, Reinhard A, Nurnberger T, 2014. Immune receptor complexes at the plant cell surface. Curr Opin Plant Biol 20, 47-54.
 Bonza MC, Morandini P, Luoni L, Geisler M, Palmgren MG, De Michelis MI, 2000. ACA8 Encodes a Plasma Membrane-Localized Calcium-ATPase of Arabidopsis with a Calmodulin-Binding Domain at the N Terminus. Plant Physiol 123, 1495.
 Boudsocq M, Willmann MR, Mccormack M, et al., 2010. Differential innate immune signalling via Ca(2+) sensor protein kinases. Nature 464, 418-22.
 Bulgarelli D, Biselli C, Collins NC, et al., 2010. The CC-NB-LRR-type Rdg2a resistance gene confers immunity to the seed-borne barley leaf stripe pathogen in the absence of hypersensitive cell death. PLoS One 5.
 Carvalho HH, Silva PA, Mendes GC, et al., 2014. The endoplasmic reticulum binding protein BiP displays dual function in modulating cell death events. Plant Physiol 164, 654-70.
 Chang Y-H, Yan H-Z, Liou R-F, 2015. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance. Mol Plant Pathol 16, 123-36.
 Chaparro-Garcia A, Wilkinson RC, Gimenez-Ibanez S, et al., 2011. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen phytophthora infestans in Nicotiana benthamiana. PLoS One 6, e16608.
 Chinchilla D, Zipfel C, Robatzek S, et al., 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497-500.
 Coll NS, Epple P, Dangl JL, 2011. Programmed cell death in the plant immune system. Cell Death Differ 18, 1247-56.
 Couto D, Zipfel C, 2016. Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol 16, 537-52.
 Dardick C, Schwessinger B, Ronald P, 2012. Non-arginine-aspartate (non-RD) kinases are associated with innate immune receptors that recognize conserved microbial signatures. Curr Opin Plant Biol 15, 358-66.
 Denecke J, 1996. Soluble endoplasmic reticulum resident proteins and their function in protein synthesis and transport. Plant physiology and biochemistry 34, 197-205.
 Derevnina L, Dagdas YF, De La Concepcion JC, et al., 2016. Nine things to know about elicitins. New Phytologist 212, 888-95.
 Dokladal L, Oboril M, Stejskal K, et al., 2012. Physiological and proteomic approaches to evaluate the role of sterol binding in elicitin-induced resistance. J Exp Bot 63, 2203-15.
 Domazakis E, Du J, Liebrand T, et al. Potato SOBIR1 and SOBIR1-like interact with the elicitin-response receptor (ELR) of potato and are involved in the response to INF1 elicitin of Phytophthora infestans. Proceedings of the Book of Abstracts XVI International Congress on Molecular Plant-Microbe Interactions, 2014, 117-.
 Du J, Verzaux E, Chaparro-Garcia A, et al., 2015. Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. 1, 15034.
 Genre A, Bonfante P, 2007. Check-In Procedures for Plant Cell Entry by Biotrophic Microbes. Molecular Plant-Microbe Interactions 20, 1023-30.
 Hardham AR, Takemoto D, White RG, 2008. Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack. BMC Plant Biology 8, 63-.
 Hayafune M, Berisio R, Marchetti R, et al., 2014. Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proc Natl Acad Sci U S A 111, E404-13.
 Hendrix JW, 1970. Sterols in Growth and Reproduction of Fungi. Annual Review of Phytopathology 8, 111-30.
 Ho C-Min k, Paciorek T, Abrash E, Bergmann Dominique c, 2016. Modulators of Stomatal Lineage Signal Transduction Alter Membrane Contact Sites and Reveal Specialization among ERECTA Kinases. Developmental Cell 38, 345-57.
 Huitema E, Smoker M, Kamoun S, 2011. A Straightforward Protocol for Electro-transformation of Phytophthora capsici Zoospores. In: Mcdowell JM, ed. Plant Immunity: Methods and Protocols. Totowa, NJ: Humana Press, 129-35.
 Jiang RH, Tyler BM, Whisson SC, Hardham AR, Govers F, 2006. Ancient origin of elicitin gene clusters in Phytophthora genomes. Mol Biol Evol 23, 338-51.
 Jing M, Guo B, Li H, et al., 2016. A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins. 7, 11685.
 Jones JDG, Dangl JL, 2006. The plant immune system. Nature 444, 323-9.
 Kadota Y, Sklenar J, Derbyshire P, et al., 2014. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol Cell 54, 43-55.
 Kaku H, Nishizawa Y, Ishii-Minami N, et al., 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A 103, 11086-91.
 Karimi M, Inzé D, Depicker A. GATEWAY™ vectors for <em>Agrobacterium</em>-mediated plant transformation. Trends in Plant Science 7, 193-5.
 Kiraly Z, Barna B, Ersek T, 1972. Hypersensitivity as a Consequence, Not the Cause, of Plant Resistance to Infection. Nature 239, 456-8.
 Korner CJ, Du X, Vollmer ME, Pajerowska-Mukhtar KM, 2015. Endoplasmic Reticulum Stress Signaling in Plant Immunity--At the Crossroad of Life and Death. Int J Mol Sci 16, 26582-98.
 Lacombe S, Rougon-Cardoso A, Sherwood E, et al., 2010. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol 28, 365-9.
 Larkin MA, Blackshields G, Brown NP, et al., 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-8.
 Lehti-Shiu MD, Zou C, Hanada K, Shiu S-H, 2009. Evolutionary History and Stress Regulation of Plant Receptor-Like Kinase/Pelle Genes. Plant Physiol 150, 12.
 Lherminier J, Benhamou N, Larrue J, et al., 2003. Cytological Characterization of Elicitin-Induced Protection in Tobacco Plants Infected by Phytophthora parasitica or Phytoplasma. Phytopathology 93, 1308-19.
 Liebrand TW, Van Den Burg HA, Joosten MH, 2014. Two for all: receptor-associated kinases SOBIR1 and BAK1. Trends Plant Sci 19, 123-32.
 Liebrand TWH, Van Den Berg GCM, Zhang Z, et al., 2013. Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proceedings of the National Academy of Sciences 110, 10010-5.
 Liu Z, Wu Y, Yang F, et al., 2013. BIK1 interacts with PEPRs to mediate ethylene-induced immunity. Proc Natl Acad Sci U S A 110, 6205-10.
 Lu D, Wu S, Gao X, Zhang Y, Shan L, He P, 2010. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc Natl Acad Sci U S A 107, 496-501.
 Lynes EM, Simmen T, 2011. Urban planning of the endoplasmic reticulum (ER): how diverse mechanisms segregate the many functions of the ER. Biochim Biophys Acta 1813, 1893-905.
 Ma Z, Song T, Zhu L, et al., 2015. Phytophthora sojae Glycoside Hydrolase 12 Protein Is a Major Virulence Factor during Soybean Infection and Is Recognized as a PAMP. Plant Cell 27, 2057.
 Meng X, Zhang S, 2013. MAPK Cascades in Plant Disease Resistance Signaling. Annual Review of Phytopathology 51, 245-66.
 Mikes V, Milat ML, Ponchet M, Panabieres F, Ricci P, Blein JP, 1998. Elicitins, proteinaceous elicitors of plant defense, are a new class of sterol carrier proteins. Biochem Biophys Res Commun 245, 133-9.
 Mur LA, Kenton P, Lloyd AJ, Ougham H, Prats E, 2008. The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot 59, 501-20.
 Nelson BK, Cai X, Nebenführ A, 2007. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. The Plant Journal 51, 1126-36.
 Peng KC, Wang CW, Wu CH, Huang CT, Liou RF, 2015. Tomato SOBIR1/EVR Homologs Are Involved in Elicitin Perception and Plant Defense Against the Oomycete Pathogen Phytophthora parasitica. Mol Plant Microbe Interact 28, 913-26.
 Perez Sancho J, Vanneste S, Lee E, et al., 2015. The Arabidopsis SYT1 is enriched in ER-PM contact sites and confers cellular resistance to mechanical stresses. Plant Physiol.
 Postma J, Liebrand TWH, Bi G, et al., 2016. Avr4 promotes Cf-4 receptor-like protein association with the BAK1/SERK3 receptor-like kinase to initiate receptor endocytosis and plant immunity. New Phytologist 210, 627-42.
 Qutob D, Kamoun S, Gijzen M, 2002. Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy. Plant J 32, 361-73.
 Ricci P, Bonnet P, Huet JC, et al., 1989. Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Eur J Biochem 183, 555-63.
 Senthil-Kumar M, Mysore KS, 2014. Tobacco rattle virus–based virus-induced gene silencing in Nicotiana benthamiana. Nat. Protocols 9, 1549-62.
 Shaw D, 1998. Phytophthora Diseases Worldwide by D. C. Erwin & O. K. Ribeiro, xii+562 pp. St Paul, Minnesota: The American Phytopathological Society (1996). US $145 or $180.00 (elsewhere) (hardback). ISBN 0 89054 212 0. The Journal of Agricultural Science 131, 245-9.
 Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH, 2004. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16, 1220-34.
 Stong RA, Kolodny E, Kelsey RG, Gonzalez-Hernandez MP, Vivanco JM, Manter DK, 2013. Effect of plant sterols and tannins on Phytophthora ramorum growth and sporulation. J Chem Ecol 39, 733-43.
 Takemoto D, Hayashi M, Doke N, Mishimura M, Kawakita K, 2000. Isolation of the gene for EILP, an elicitor-inducible LRR receptor-like protein, from tobacco by differential display. Plant Cell Physiol 41, 458-64.
 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S, 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30, 2725-9.
 Tavernier E, Wendehenne D, Blein JP, Pugin A, 1995. Involvement of Free Calcium in Action of Cryptogein, a Proteinaceous Elicitor of Hypersensitive Reaction in Tobacco Cells. Plant Physiol 109, 1025-31.
 Tintor N, Saijo Y, 2014. ER-mediated control for abundance, quality, and signaling of transmembrane immune receptors in plants. Frontiers in Plant Science 5, 65.
 Vauthrin S, Mikes V, Milat ML, et al., 1999. Elicitins trap and transfer sterols from micelles, liposomes and plant plasma membranes. Biochim Biophys Acta 1419, 335-42.
 Xu G, Li S, Xie K, et al., 2012. Plant ERD2-like proteins function as endoplasmic reticulum luminal protein receptors and participate in programmed cell death during innate immunity. Plant J 72, 57-69.
 Yamaguchi K, Yamada K, Kawasaki T, 2013. Receptor-like cytoplasmic kinases are pivotal components in pattern recognition receptor-mediated signaling in plant immunity. Plant Signaling & Behavior 8, e25662.
 Yoshioka H, Numata N, Nakajima K, et al., 2003. Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15, 706-18.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68645-
dc.description.abstract植物藉由位於細胞膜之pattern-recognition receptor (PRR) 辨認環境中微生物的保守性構造(microbe-associated molecular pattern, MAMP),而引發Pattern-triggered immunity (PTI)。 近年研究發現PRR的作用尚須其他PRR交互作用蛋白的參與,例如細胞膜蛋白BRI1-associated receptor kinase (BAK1)與Suppressor of BIR1-1 (SOBIR1)等。疫病菌(Phytophtora parasitica)是植物重要病原菌,目前已有elicitin ParA1 (P. parasitica elicitin)等多種疫病菌的MAMP被發現。Elicitin能在多種茄科植物引起植物組織壞疽(necrosis),BAK1與 SOBIR1皆被發現在elicitin引發植物細胞死亡過程扮演不可或缺的角色。SlSOBIR1原本位於細胞膜,以ParA1處理植物後,會被胞吞進入胞內體(endosome)。為瞭解相關作用機制,黃(2014)以SlSOBIR1進入胞內體的時機點進行共免疫沉澱及質譜分析,發現菸草NbRLP1可能為SlSOBIR1的交互作用蛋白。本研究進一步分析其特性,發現接種疫病菌後24小時,疫病菌在菸草引發的水浸狀壞疽病斑開始擴大,NbRLP1的基因表現量也大幅提升。以agrobacterium-mediated transient expression過量表現 NbRLP1能加劇ParA1 在菸草葉片引發組織壞疽,而靜默NbRLP1的基因表現則會抑制疫病菌於菸草的病程發展。以共軛焦顯微鏡觀察NbRLP1-GFP在菸草葉片表皮細胞的分佈情形,發現NbRLP1-GFP位於內質網膜,且因應ParA1的處理會集中分佈於內質網與細胞膜接觸點 (endoplasmic reticulum-plasma membrane contact site, EPCS) ,進一步將SOBIR1-mCherry與NbRLP1-GFP 共同表現於菸草葉片發現,因應ParA1處理,SOBIR1-mCherry所標記的胞內體會緊靠著NbRLP1-GFP所標示的內質網與EPCS構造分佈。這些結果顯示NbRLP1位於內質網膜,但可能在EPCS與SOBIR1產生交互作用;此外,NbRLP1也在植物與疫病菌的交互作用及植物對ParA1的反應扮演重要角色,但相關詳細機制尚待深入探討。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-17T02:28:49Z (GMT). No. of bitstreams: 1
ntu-106-R03633004-1.pdf: 43980672 bytes, checksum: 2db85211ff0c081d64875969dc0ee281 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents摘要 I
Abstract III
前言 1
一、植物防禦反應 1
1.3先天性免疫反應 (innate immunity) 1
1.2、Pattern-recognition receptor (PRR) 2
1.3、PRR 交互作用蛋白 3
二、疫病菌 5
2.1、 疫病菌生活史和發病生態 5
2.2、 疫病菌侵染模式 6
2.3、 疫病菌的 Microbe-associated molecular pattern (MAMP) 6
2.4、Elicitin 7
三、內質網與植物抗病 8
3.1、內質網壓力 (ER stress) 8
3.2 、內質網壓力與病原引起之計畫性細胞死亡(Program cell death, PCD) 9
3.3、細胞膜與內質網連結 (ER-PM contact site, EPCS) 10
四、研究動機及策略 11
貳、材料與方法 12
ㄧ、供試植物與生長條件 12
二、疫病菌侵染實驗 12
2.1 菌株來源與保存 12
2.2 疫病菌產孢與游走子收集 12
2.3 疫病菌的接種 13
2.4 菸草病害指數評分 13
三、植物基因的表現量分析 14
3.1 收集植物組織樣本 14
3.2 RNA萃取 與製備 cDNA 14
3.3 即時定量聚合酶鏈鎖反應 (quantitative RT-PCR) 14
四、運用Tobacco rattle virus (TRV)靜默 NbRLP1表現 15
4.1 靜默載體構築 15
4.2 農桿菌轉殖 16
4.3 農桿菌感染法(Agroinfection) 16
五、分析 NbRLP1 於細胞中的分佈 17
5.1 NbRLP1 C端融合 GFP的重組載體構築 17
5.2 ER-PM contact site (EPCS) 標定基因 SYT1與 VAP27 之融合蛋白載體構築 17
5.3 在菸草葉片以農桿菌短暫大量表現重組蛋白 18
5.4 疫病菌 ParA1 的處理 18
5.5 以雷射掃描式共軛焦螢光顯微鏡 (Confocal microscope) 進行觀察 19
六、 親緣性分析 19
6.1 NbRLP1的胺基酸序列分析 19
參、結果 20
ㄧ、NbRLP1序列分析 20
二、NbRLP1之親緣關係分析 21
三、菸草接種疫病菌後 NbRLP1 表現量大幅提升 21
四、增強NbRLP1之基因表現加劇ParA1造成之細胞壞疽 22
五、靜默NbRLP1之基因表現能抑制疫病菌侵染菸草之病徵 23
六、NbRLP1-GFP 分佈於內質網且其分佈情形因應 ParA1 處理產生變化 24
七、NbRLP1-GFP 所標示之內質網串珠狀構造為內質網—細胞膜接觸位置(endoplasmic reticulum-plasma membrane contact site, EPCS) 25
八、SlSOBIR1-mCherry 聚集於 NbRLP1-GFP 分佈之內質網構造和 EPCS 旁 26
肆、討論 27
一、NbRLP1參與菸草-疫病菌的交互作用 27
二、NbRLP1參與 eilcitin 於茄科作物引發之 細胞壞疽 27
三、NbRLP1 為內質網膜蛋白且其分佈因應 ParA1 處理發生改變。 29
四、植物內質網於病原菌侵染時之動態變化 30
五、EPCS 參與於植物接受胞外訊息後的向內傳遞中 31
六、HR 於菸草與疫病菌之互動中所扮演的角色。 31
七、結語 32
伍、參考文獻 33
陸、附表 41
七、附圖 43
捌、補充資料 55
dc.language.isozh-TW
dc.subject圓葉菸草zh_TW
dc.subject疫病菌zh_TW
dc.subjectElicitinzh_TW
dc.subjectPTIzh_TW
dc.subjectNbRLP1zh_TW
dc.subjectSlSOBIR1zh_TW
dc.subjectPhytophthora parasiticaen
dc.subjectSlSOBIRen
dc.subjectNicotiana benthamianaen
dc.subjectelicitinen
dc.subjectPTIen
dc.subjectNbRLP1en
dc.title探討基因NbRLP1 在圓葉菸草與疫病菌交互作用的角色zh_TW
dc.titleThe Role of NbRLP1 in the Response of Nicotiana benthamiana to the Elicitin ParA1en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王昭雯,鄭秋萍,趙光裕
dc.subject.keyword圓葉菸草,疫病菌,Elicitin,PTI,NbRLP1,SlSOBIR1,zh_TW
dc.subject.keywordNicotiana benthamiana,Phytophthora parasitica,PTI,NbRLP1,SlSOBIR,elicitin,en
dc.relation.page58
dc.identifier.doi10.6342/NTU201703717
dc.rights.note有償授權
dc.date.accepted2017-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
42.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved