請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68635完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳文彬(Wen-Pin Chen) | |
| dc.contributor.author | Wei-Fan Hsiao | en |
| dc.contributor.author | 蕭偉帆 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:28:23Z | - |
| dc.date.available | 2022-09-08 | |
| dc.date.copyright | 2017-09-08 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-18 | |
| dc.identifier.citation | 1. W.H.O, Cardiovascular diseases (CVDs). 2017.
2. Cohn, J.N., Cardiac Remodeling—Concepts and Clinical Implications: A Consensus Paper From an International Forum on Cardiac Remodeling. The American College of Cardiology, 2000. 3. Diwan, A. and G.W.D. II, Decompensation of Cardiac Hypertrophy: Cellular Mechanisms and Novel Therapeutic Targets. PHYSIOLOGY, 2006. 4. Jessup, M. and S. Brozena, Heart failure. N Engl J Med, 2003. 348(20): p. 2007-18. 5. Poss, K.D., Getting to the heart of regeneration in zebrafish. Semin Cell Dev Biol., 2007 6. Bergmann, O., Evidence for Cardiomyocyte Renewal in Humans. SCIENCE, 2009. 7. Burridge, P.W., et al., Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell, 2012. 10(1): p. 16-28. 8. Dowell, J.D., et al., Myocyte and myogenic stem cell transplantation in the heart. Cardiovasc Res, 2003. 58(2): p. 336-50. 9. Laugwitz, K.L., et al., Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 2005. 433(7026): p. 647-53. 10. Oh, H., et al., Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A, 2003. 100(21): p. 12313-8. 11. Beltrami, A.P., et al., Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 2003. 114(6): p. 763-76. 12. Kasahara, H., et al., Cardiac and extracardiac expression of Csx/Nkx2.5 homeodomain protein. Circ Res, 1998. 82(9): p. 936-46. 13. Dimmeler, S., A.M. Zeiher, and M.D. Schneider, Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest, 2005. 115(3): p. 572-83. 14. Mirotsou, M., et al., Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol, 2011. 50(2): p. 280-9. 15. Segers, V.F. and R.T. Lee, Stem-cell therapy for cardiac disease. Nature, 2008. 451(7181): p. 937-42. 16. Laflamme, M.A. and C.E. Murry, Regenerating the heart. Nat Biotechnol, 2005. 23(7): p. 845-56. 17. Hsieh, P.C.e.a., Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. . Nature Med. , 2007. 18. Le, T. and J. Chong, Cardiac progenitor cells for heart repair. Cell Death Discov, 2016. 2: p. 16052. 19. Bolli, R., et al., Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet, 2011. 378(9806): p. 1847-57. 20. Hong, K.U., et al., c-kit+ Cardiac stem cells alleviate post-myocardial infarction left ventricular function despite poor engraftment and negligible retention in the recipient heart. PLoS One, 2014. 9(5): p. e96725. 21. Gnecchi, M., et al., Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res, 2008. 103(11): p. 1204-19. 22. Pfeifer, P., N. Werner, and F. Jansen, Role and Function of MicroRNAs in Extracellular Vesicles in Cardiovascular Biology. Biomed Res Int, 2015. 2015: p. 161393. 23. Sluijter, J.P., et al., Microvesicles and exosomes for intracardiac communication. Cardiovasc Res, 2014. 102(2): p. 302-11. 24. Ottaviani, L., L.J. De Windt, and P.A. da Costa Martins, Exosomes: scytales in the damaged heart. Ann Transl Med, 2016. 4(11): p. 222. 25. Braicu, C., et al., Exosomes as divine messengers: are they the Hermes of modern molecular oncology? Cell Death Differ, 2015. 22(1): p. 34-45. 26. Barile, L., et al., Ultrastructural evidence of exosome secretion by progenitor cells in adult mouse myocardium and adult human cardiospheres. J Biomed Biotechnol, 2012. 2012: p. 354605. 27. Bang, C., et al., Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest, 2014. 124(5): p. 2136-46. 28. Genneback, N., et al., Growth factor stimulation of cardiomyocytes induces changes in the transcriptional contents of secreted exosomes. J Extracell Vesicles, 2013. 2. 29. Gupta, S. and A.A. Knowlton, HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol, 2007. 292(6): p. H3052-6. 30. Yu, X., et al., Mechanism of TNF-alpha autocrine effects in hypoxic cardiomyocytes: initiated by hypoxia inducible factor 1alpha, presented by exosomes. J Mol Cell Cardiol, 2012. 53(6): p. 848-57. 31. Halkein, J., et al., MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Invest, 2013. 123(5): p. 2143-54. 32. Chistiakov, D.A., A.N. Orekhov, and Y.V. Bobryshev, Cardiac Extracellular Vesicles in Normal and Infarcted Heart. Int J Mol Sci, 2016. 17(1). 33. Wang, P., Cardioprotective action of cardiac-progenitor-cell-secreted exosome. Unpublished 2016. 34. Ho, Y.S., et al., Cardioprotective Actions of TGFbetaRI Inhibition Through Stimulating Autocrine/Paracrine of Survivin and Inhibiting Wnt in Cardiac Progenitors. Stem Cells, 2016. 34(2): p. 445-55. 35. Kato, S., et al., Apoptosis, rather than oncosis, is the predominant mode of spontaneous death of isolated adult rat cardiac myocytes in culture. Jpn Circ J, 2001. 65(8): p. 743-8. 36. Bridge, G., et al., The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis. Blood, 2012. 120(25): p. 5063-72. 37. Duisters, R.F., et al., miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res, 2009. 104(2): p. 170-8, 6p following 178. 38. Roca-Alonso, L., et al., Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in beta-adrenergic signaling and enhances apoptosis. Cell Death Dis, 2015. 6: p. e1754. 39. Li, J., et al., miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet, 2010. 6(1): p. e1000795. 40. Wijnen, W.J., et al., Cardiomyocyte-specific miRNA-30c over-expression causes dilated cardiomyopathy. PLoS One, 2014. 9(5): p. e96290. 41. Chen, C., et al., Mir30c Is Involved in Diabetic Cardiomyopathy through Regulation of Cardiac Autophagy via BECN1. Mol Ther Nucleic Acids, 2017. 7: p. 127-139. 42. Raut, S.K., et al., miR-30c and miR-181a synergistically modulate p53-p21 pathway in diabetes induced cardiac hypertrophy. Mol Cell Biochem, 2016. 417(1-2): p. 191-203. 43. Galvez, A.S., et al., Distinct pathways regulate proapoptotic Nix and BNip3 in cardiac stress. J Biol Chem, 2006. 281(3): p. 1442-8. 44. Kubasiak, L.A., et al., Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci U S A, 2002. 99(20): p. 12825-30. 45. Quinsay, M.N., et al., Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy, 2010. 6(7): p. 855-62. 46. Cittadini, A., et al., SOCS1 gene transfer accelerates the transition to heart failure through the inhibition of the gp130/JAK/STAT pathway. Cardiovasc Res, 2012. 96(3): p. 381-90. 47. Goren, Y., et al., Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail, 2012. 14(2): p. 147-54. 48. Song, H., et al., miR-92b regulates glioma cells proliferation, migration, invasion, and apoptosis via PTEN/Akt signaling pathway. J Physiol Biochem, 2016. 72(2): p. 201-11. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68635 | - |
| dc.description.abstract | 根據先前的研究,本實驗團隊發現注射A83-01(乙型轉化生長因子第一型受體抑制劑) 進入心臟衰竭的老鼠,可以防止其心臟功能喪失,一方面透過增加心臟前驅細胞(Nkx2.5+ CPC)數量來增加新生心肌細胞以補償心臟受傷後心肌缺損;另一方面,可增加心臟前驅細胞旁泌支持心肌細胞存活,改善心臟功能。然而其旁泌產生之心臟保護機制尚未明瞭。
本篇研究目的為比較A83-01處理過之心臟前驅細胞分泌的外吐小體和控制組的外吐小體,對於活體或離體心肌細胞存活率以及心臟前驅細胞增生的影響;並鑑別出能增進心肌細胞存活之外吐小體中的微小分子核醣核酸(microRNA);檢驗注射外吐小體進入心臟受損後的老鼠是否能改善心臟功能。 結果顯示在體外試驗中,A83-01處理過之心臟前驅細胞所分泌的外吐小體,在進行分離後直接給予心肌細胞,能夠增加心肌細胞的存活率,並可促進心臟前驅細胞增生。接著檢驗直接給予外吐小體中的微小分子核醣核酸miR-30c-5p, miR-489-5p, miR-92b-3p, miR-98-5p, and mmu-let-7a-5p是否影響離體心肌細胞的存活,結果顯示miR-30c-5p和miR-92b-3p能在體外增加心肌細胞存活率,並具有劑量相關性。動物實驗中,透過連續七天施打異丙腎上腺素(ISO)造成動物心臟受損,並於第八天靜脈注射心臟前驅細胞分泌之外吐小體,實驗證實外吐小體能改善心臟受損後之功能恢復。 總結,本實驗發現A83-01處理過之心臟前驅細胞分泌之外吐小體能夠顯著地增加離體心肌細胞的存活率,並提升離體及活體心臟前驅細胞自我更新,能貢獻在改善受損後心臟之功能失常。 | zh_TW |
| dc.description.abstract | Our previous study found that A83-01, a TGFβ receptor I (TGFβRI) inhibitor, can facilitate cardiac self-repair and improve cardiac function in post-MI mice heart through the mechanisms of expanding Nkx2.5+ cardiac progenitor cells (Nkx2.5+ CPC) to compensate part of the lost myocardium and CPC-mediated paracrine actions. It still remains unclear in the paracrine actions of A83-01-stimulated CPC on cardioprotective mechanism.
In this study, the aims are (1) to compare the different effects of the exosomes secreted from Nkx2.5+ CPC treated with DMSO [Exo(Nkx+/DMSO)] or A83-01 [ Exo(Nkx+/A83) ] in the survival of adult cardiomyocyte and the proliferation of Nkx2.5+ CPC in vitro and in vivo, (2) to identify the exosomal miRNAs that could potentially increase cardiomyocyte viability, and (3) to examine whether the treatment of either Exo(Nkx+/DMSO) or Exo(Nkx+/A83) in post-injured hearts could improve cardiac function. Our results have demonstrated that Exo(Nkx+/A83) could markedly increase cell viability of adult mice cardiomyocyte cultured in vitro for 3 days, and could also increase Nkx2.5+ CPC proliferation. The direct effect of Exo(Nkx+/A83) exosomal miRNAs, including miR-30c-5p, miR-489-5p, miR-92b-3p, miR-98-5p, and mmu-let-7a-5p, in cardiomyocyte viability was further examined in vitro, and found that miR-30c and miR-92b could dose-dependently increase myocyte viability in vitro. In isoprenaline (ISO)-injection induced cardiac injury mice model, it was found that intravenous injection of Exo(Nkx+/A83) on the next day after the last dose of ISO could significantly improve cardiac function at the end point on day 7. In conclusion, the present study found that Exo(Nkx+/A83) could produce significant benefit in supporting myocyte survival and enhancing Nkx2.5+ CPC self-renewal in vitro and in vivo, which may contribute to the amelioration of cardiac dysfunction in post-injured hearts. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:28:23Z (GMT). No. of bitstreams: 1 ntu-106-R04443019-1.pdf: 5410997 bytes, checksum: 7d0ab3483c99772105ef9debfe51eada (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 中文摘要 1
Abstract 2 Index 4 Abbreviation 7 Background 8 Objectives 14 Materials and methods 15 Results 25 Discussion 30 Limitations and preliminary data 34 Reference 36 Table 51 Supplementary data 55 Supplementary Figures 57 | |
| dc.language.iso | zh-TW | |
| dc.subject | 小分子核醣核酸 | zh_TW |
| dc.subject | 外吐小體 | zh_TW |
| dc.subject | 心臟前驅細胞 | zh_TW |
| dc.subject | 心臟保護 | zh_TW |
| dc.subject | Nkx2.5+cell | en |
| dc.subject | exosome | en |
| dc.subject | miRNA | en |
| dc.subject | cardioprotection | en |
| dc.title | 出生後小鼠心臟前驅細胞分泌之外吐小體的功能特性 | zh_TW |
| dc.title | Functional characterization of the exosomes secreted from post-natal cardiac progenitors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇銘嘉(Ming-Jai Su),楊鎧鍵(Kai-Chien Yang),林頌然(Sung-Jan Lin) | |
| dc.subject.keyword | 心臟前驅細胞,外吐小體,小分子核醣核酸,心臟保護, | zh_TW |
| dc.subject.keyword | Nkx2.5+cell,exosome,miRNA,cardioprotection, | en |
| dc.relation.page | 69 | |
| dc.identifier.doi | 10.6342/NTU201703551 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 5.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
