Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68622
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光
dc.contributor.authorJun-Yi Keen
dc.contributor.author柯君逸zh_TW
dc.date.accessioned2021-06-17T02:27:51Z-
dc.date.available2019-08-28
dc.date.copyright2017-08-28
dc.date.issued2017
dc.date.submitted2017-08-17
dc.identifier.citation[1] J. C. Yeo and C. T. Lim, 'Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications,' Microsystems & Nanoengineering, vol. 2, p. 16043, 2016.
[2] R.-H. Kim, et al., 'Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,' Nature materials, vol. 9, no. 11, pp. 929-937, 2010.
[3] Y. K. Fuh and B. S. Wang, 'Near field sequentially electrospun three-dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition,' Nano Energy vol. 30, pp. 677-683, 2016.
[4] D.-H. Kim, et al., 'Epidermal electronics,' Science, vol. 333, no. 6044, pp. 838-843, 2011.
[5] G. Cai, M. Yang, Z. Xu, J. Liu, B. Tang, and X. Wang, 'Flexible and wearable strain sensing fabrics,' Chemical Engineering Journal, vol. 325, pp. 396-403, 2017.
[6] T. Yamada et al., 'A stretchable carbon nanotube strain sensor for human-motion detection,' Nature nanotechnology, vol. 6, no. 5, pp. 296-301, 2011.
[7] G. Schwartz et al., 'Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring,' Nature communications, vol. 4, p. 1859, 2013.
[8] W. H. Statistics. 'The top 10 causes of death,' Web page, 2017. Available: http://www.who.int/mediacentre/factsheets/fs310/en/
[9] J. Y. Lim and S. Y. Kim, 'Yield strain behavior of poly (ethylene terephthalate),' Polymer journal, vol. 36, no. 9, pp. 769-773, 2004.
[10] S. Khan, L. Lorenzelli, and R. S. Dahiya, 'Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review,' IEEE Sensors Journal, vol. 15, no. 6, pp. 3164-3185, 2015.
[11] H.-Y. Mi, Z. Li, L.-S. Turng, Y. Sun, and S. Gong, 'Silver nanowire/thermoplastic polyurethane elastomer nanocomposites: Thermal, mechanical, and dielectric properties,' Materials & Design vol. 56, pp. 398-404, 2014.
[12] E. Roh, B.-U. Hwang, D. Kim, B.-Y. Kim, and N.-E. Lee, 'Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human–Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers,' ACS Nano, vol. 9, no. 6, pp. 6252-6261, 2015.
[13] S. Gong et al., 'A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,' Nature communications, vol. 5, p. 3132, 2014.
[14] C.-Y. Wu, W.-H. Liao, and Y.-C. Tung, 'Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems,' Lab on a Chip, vol. 11, no. 10, pp. 1740-1746, 2011.
[15] J. Park et al., 'Tactile-Direction-Sensitive and Stretchable Electronic Skins Based on Human-Skin-Inspired Interlocked Microstructures,' ACS Nano, vol. 8, no. 12, pp. 12020-12029, 2014.
[16] N. Luo et al., 'Flexible Piezoresistive Sensor Patch Enabling Ultralow Power Cuffless Blood Pressure Measurement,' Advanced Functional Materials, vol. 26, no. 8, pp. 1178-1187, 2016.
[17] J. Di et al., 'Stretch-Triggered Drug Delivery from Wearable Elastomer Films Containing Therapeutic Depots,' ACS Nano, vol. 9, no. 9, pp. 9407-9415, 2015.
[18] J. Booth, 'A short history of blood pressure measurement,' Proceedings of the Royal Society of Medicine, vol. 70, pp. 793-799, 1977.
[19] N. Korotkoff, 'On methods of studying blood pressure,' Bull Imperial Mil Med Acad, vol. 11, pp. 365-367, 1905.
[20] L. Peter, N. Noury, and M. Cerny, 'A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?,' IRBM, vol. 35, no. 5, pp. 271-282, 2014.
[21] T. Furukawa, 'Ferroelectric properties of vinylidene fluoride copolymers,' Phase Transitions, vol. 18, no. 3-4, pp. 143-211, 1989.
[22] R. R. Knight, C. Mo, and W. W. Clark, 'MEMS interdigitated electrode pattern optimization for a unimorph piezoelectric beam,' Journal of Electroceramics, vol. 26, no. 1, pp. 14-22, 2011.
[23] V. Gibbs, D. Cole, and A. Sassano, Ultrasound Physics and Technology E-Book: How, Why and When. Elsevier Health Sciences, 2011.
[24] D. Brewster, 'Observations of the pyro-electricity of minerals,' The Edinburgh Journal of Science, vol. 1, pp. 208–215, 1824.
[25] J. C. a. P. Curie, 'Development by pressure of polar electricity in hemihedral crystals with inclined faces,' Bull. soc. min. de France, vol. 3, p. 90, 1880.
[26] G. Lippmann, 'Principe de la conservation de l'électricité, ou second principe de la théorie des phénomènes électriques,' (in French), J. Phys. Theor. Appl., vol. 10, no. 1, pp. 381-394, 1881.
[27] A. Manbachi and R. S. C. Cobbold, 'Development and Application of Piezoelectric Materials for Ultrasound Generation and Detection,' Ultrasound, vol. 19, no. 4, pp. 187-196, 2011.
[28] W. P. Mason, Physical Acoustics and the Properties of Solids. Van Nostrand, 1958.
[29] S. Roberts, 'Dielectric and Piezoelectric Properties of Barium Titanate,' Physical Review, vol. 71, no. 12, p. 890, 1947.
[30] R. C. Smith, Smart Material Systems: Model Development. Society for Industrial and Applied Mathematics, 2005.
[31] E. Fukada and T. Sakurai, 'Piezoelectricity in Polarized Poly(vinylidene fluoride) Films,' Polym J, vol. 2, no. 5, pp. 656-662, 1971.
[32] Z. Sergey, F. Sergey, and S. Heinz von, 'Piezoelectrets from sandwiched porous polytetrafluoroethylene (ePTFE) films: influence of porosity and geometry on charging properties,' Journal of Physics D: Applied Physics, vol. 44, no. 10, p. 105501, 2011.
[33] J. F. Legrand, 'Structure and ferroelectric properties of P(VDF-TrFE) copolymers,' Ferroelectrics, vol. 91, no. 1, pp. 303-317, 1989.
[34] T. Furukawa, 'Piezoelectricity and pyroelectricity in polymers,' IEEE Transactions on Electrical Insulation, vol. 24, no. 3, pp. 375-394, 1989.
[35] S. B. Lang, 'Pyroelectricity: From Ancient Curiosity to Modern Imaging Tool,' Physics Today, vol. 58, no. 8, pp. 31-36, 2005.
[36] M. Stewart, M. G. Cain, D. A. Hall, N. P. L. C. f. M. Measurement, and Technology, Ferroelectric Hysteresis Measurement and Analysis. National Physical Laboratory. Great Britain, Centre for Materials Measurement and Technology, 1999.
[37] L. Yang, X. Li, E. Allahyarov, P. L. Taylor, Q. M. Zhang, and L. Zhu, 'Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect,' Polymer, vol. 54, no. 7, pp. 1709-1728, 2013.
[38] A. H. Meitzler, 'IEEE Standard on Piezoelectricity,' ANSI/IEEE Std 176-1987, 1988.
[39] K. Uchino, Advanced Piezoelectric Materials: Science and Technology. Elsevier Science, 2010.
[40] A. J. Lovinger, 'Annealing of poly(vinylidene fluoride) and formation of a fifth phase,' Macromolecules, vol. 15, no. 1, pp. 40-44, 1982.
[41] A. J. Lovinger, 'Ferroelectric Polymers,' Science, vol. 220, no. 4602, pp. 1115-1121, 1983.
[42] P. Martins, A. C. Lopes, and S. Lanceros-Mendez, 'Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications,' Progress in Polymer Science, vol. 39, no. 4, pp. 683-706, 2014.
[43] M. Kazumi, N. Kiyofumi, and T. Tetuo, 'Direct Observation of Crystal Transformation Process of Poly (vinylidene fluoride) under High Pressure by PSPC X-Ray System,' Japanese Journal of Applied Physics, vol. 17, no. 3, p. 467, 1978.
[44] G. T. Davis, J. E. McKinney, M. G. Broadhurst, and S. C. Roth, 'Electric‐field‐induced phase changes in poly(vinylidene fluoride),' Journal of Applied Physics, vol. 49, no. 10, pp. 4998-5002, 1978.
[45] B. Servet and J. Rault, 'Polymorphism of poly(vinylidene fluoride) induced by poling and annealing,' J. Phys. France, vol. 40, no. 12, pp. 1145-1148, 1979.
[46] H. S. Nalwa, Ferroelectric Polymers: Chemistry: Physics, and Applications. Taylor & Francis, 1995.
[47] T. Yagi, M. Tatemoto, and J.-i. Sako, 'Transition behavior and dielectric properties in trifluoroethylene and vinylidene fluoride copolymers,' Polymer Journal, vol. 12, no. 4, pp. 209-223, 1980.
[48] T. Yamada, 'Piezoelectricity of a vinylidene fluoride‐trifluoroethylene copolymer,' Journal of Applied Physics, vol. 53, no. 9, pp. 6335-6339, 1982.
[49] O. Hiroji and K. Keiko, 'Ferroelectric Copolymers of Vinylidenefluoride and Trifluoroethylene with a Large Electromechanical Coupling Factor,' Japanese Journal of Applied Physics, vol. 21, no. 8A, p. L455, 1982.
[50] D. Mao, B. E. Gnade, and M. A. Quevedo-Lopez, Ferroelectric Properties and Polarization Switching Kinetic of Poly (vinylidene Fluoride-trifluoroethylene) Copolymer. INTECH Open Access Publisher, 2011.
[51] L. Rayleigh, 'XX. On the equilibrium of liquid conducting masses charged with electricity,' Philosophical Magazine Series 5, vol. 14, no. 87, pp. 184-186, 1882.
[52] J. Zeleny, 'The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces,' Physical Review, vol. 3, no. 2, pp. 69-91, 1914.
[53] F. Anton, 'Method and apparatus for spinning,' U.S. Patent No. 2,349,950, 1944.
[54] F. Anton, 'Production of artificial fibers from fiber forming liquids,' U.S. Patent No. 2,323,025, 1943.
[55] F. Anton, 'Artificial thread and method of producing same,' U.S. Patent No. 2,187,306, 1940.
[56] F. Anton, 'Method and apparatus for spinning,' U.S. Patent No. 2,349,950, 1939.
[57] F. Anton, 'Process and apparatus for preparing artificial threads,' U.S. Patent No. 1,975,504, 1934.
[58] B. Vonnegut and R. L. Neubauer, 'Production of monodisperse liquid particles by electrical atomization,' Journal of Colloid Science, vol. 7, no. 6, pp. 616-622, 1952.
[59] V. G. Drozin, 'The electrical dispersion of liquids as aerosols,' Journal of colloid science, vol. 10, no. 2, pp. 158-164, 1955.
[60] G. Taylor, 'Disintegration of water drops in an electric field,' in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1964, vol. 280, no. 1382, pp. 383-397.
[61] P. K. Baumgarten, 'Electrostatic spinning of acrylic microfibers,' Journal of colloid and interface science, vol. 36, no. 1, pp. 71-79, 1971.
[62] J. Doshi and D. H. Reneker, 'Electrospinning process and applications of electrospun fibers,' Journal of Electrostatics, vol. 35, no. 2, pp. 151-160, 1995.
[63] H. Fong and D. H. Reneker, 'Elastomeric nanofibers of styrene–butadiene–styrene triblock copolymer,' Journal of Polymer Science Part B: Polymer Physics, vol. 37, no. 24, pp. 3488-3493, 1999.
[64] Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, 'A review on polymer nanofibers by electrospinning and their applications in nanocomposites,' Composites science and technology, vol. 63, no. 15, pp. 2223-2253, 2003.
[65] J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck Tan, 'The effect of processing variables on the morphology of electrospun nanofibers and textiles,' Polymer, vol. 42, no. 1, pp. 261-272, 2001.
[66] X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, 'Structure and process relationship of electrospun bioabsorbable nanofiber membranes,' Polymer, vol. 43, no. 16, pp. 4403-4412, 2002.
[67] K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, and S. G. Lee, 'The change of bead morphology formed on electrospun polystyrene fibers,' Polymer, vol. 44, no. 14, pp. 4029-4034, 2003.
[68] G. Taylor, 'Electrically Driven Jets,' Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 313, no. 1515, pp. 453-475, 1969.
[69] C. S. Kong, S. J. Choi, H. S. Lee, and H. S. Kim, 'Observation of Electrospinning Behavior of Nanoscale Fibers by a High-Speed Camera,' Journal of Macromolecular Science, Part B, vol. 55, no. 2, pp. 201-210, 2016.
[70] M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, 'Electrospinning and electrically forced jets. I. Stability theory,' Physics of fluids, vol. 13, no. 8, pp. 2201-2220, 2001.
[71] 朱信融, '以靜電紡絲研製高排列性聚(偏氟乙烯-三氟乙烯)薄膜及相關複合膜應用之研究,' 臺灣大學應用力學研究所學位論文, 2016.
[72] 丁嘉展, '電紡成形條件對紡絲之形貌與直徑之影響,' 交通大學機械工程研究所學位論文, 2010.
[73] W. E. Teo and S. Ramakrishna, 'A review on electrospinning design and nanofibre assemblies,' Nanotechnology, vol. 17, no. 14, p. R89, 2006.
[74] H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, 'A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering,' Biomaterials, vol. 24, no. 12, pp. 2077-2082, 2003.
[75] J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, 'Electrospinning of Collagen Nanofibers,' Biomacromolecules, vol. 3, no. 2, pp. 232-238, 2002.
[76] D. Li, Y. Wang, and Y. Xia, 'Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays,' Nano Letters, vol. 3, no. 8, pp. 1167-1171, 2003.
[77] C. Y. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, 'Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering,' Biomaterials, vol. 25, no. 5, pp. 877-886, 2004.
[78] P. D. Dalton, D. Klee, and M. Möller, 'Electrospinning with dual collection rings,' Polymer, vol. 46, no. 3, pp. 611-614, 2005.
[79] M. A. Barique and H. Ohigashi, 'Annealing effects on the Curie transition temperature and melting temperature of poly(vinylidene fluoride/trifluoroethylene) single crystalline films,' Polymer, vol. 42, no. 11, pp. 4981-4987, 2001.
[80] B.-E. El Mohajir and N. Heymans, 'Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure,' Polymer, vol. 42, no. 13, pp. 5661-5667, 2001.
[81] D. Mao, M. A. Quevedo-Lopez, H. Stiegler, B. E. Gnade, and H. N. Alshareef, 'Optimization of poly(vinylidene fluoride-trifluoroethylene) films as non-volatile memory for flexible electronics,' Organic Electronics, vol. 11, no. 5, pp. 925-932, 2010.
[82] Y. Jiang et al., 'Study of thermally poled and corona charged poly (vinylidene fluoride) films,' Polymer Engineering & Science, vol. 47, no. 9, pp. 1344-1350, 2007.
[83] 謝仁豪, '同軸式壓電暨駐極體自感應致動器之研製,' 臺灣大學應用力學研究所學位論文, 2016.
[84] J. A. Giacometti and O. N. Oliveira, 'Corona charging of polymers,' IEEE Transactions on Electrical Insulation, vol. 27, no. 5, pp. 924-943, 1992.
[85] W. Grassi and D. Testi, 'Induction of waves on a horizontal water film by an impinging corona wind,' IEEE Transactions on Dielectrics and Electrical Insulation, vol. 16, no. 2, 2009.
[86] D. Das Gupta and K. Doughty, 'Changes in x‐ray diffraction patterns of polyvinylidene fluoride due to corona charging,' Applied Physics Letters, vol. 31, no. 9, pp. 585-587, 1977.
[87] A. Kumar and M. M. Periman, 'Simultaneous stretching and corona poling of PVDF and P(VDF-TriFE) films. II,' Journal of Physics D: Applied Physics, vol. 26, no. 3, p. 469, 1993.
[88] L. Persano et al., 'High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene),' vol. 4, p. 1633, 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68622-
dc.description.abstract本論文旨在開發高靈敏度之可撓式壓電薄膜感測器,以應用在穿戴式血壓計。為了達到高靈敏度且具可撓性,選用聚(偏氟乙烯-三氟乙烯)(polyvinylidene fluoride/trifluoroethylene, P(VDF-TrFE))高分子壓電材料,並使用滾筒式靜電紡絲製程,製作出具排列性的絲線壓電薄膜,可做為具有可撓性和感測能力的壓力感測器。然而,因為薄膜厚度與絲線間具有孔隙,使用夾層式電極容易短路,因此採用指叉式電極設計,並對不同指叉間距電極之感測薄膜作彎曲訊號測試,另外,本研究亦探討絲線排列方向與指叉方向對靈敏度影響。而為了提升訊號靈敏度,利用X光繞射儀量測薄膜晶相,證明經最佳化退火和電暈極化製程所得薄膜具有較佳之β相晶相,達成壓電性質之製程之最佳化開發。並利用高壓交流電設備量測電滯曲線,證明退火後之薄膜鐵電性質有顯著提升。最後,所得最佳化的指叉設計,量測其彎曲訊號靈敏度15.21 nA/g,所能測定之最小重量為0.1 g,並驗證在2 mm指叉間距時訊號由靜電效應主導,而0.5 mm指叉間距時訊號由壓電效應主導。本研究並應用所開發的絲線壓電薄膜壓力感應器量測到頸動脈之血壓訊號。zh_TW
dc.description.abstractThe goal of this thesis is to develop a highly sensitive and flexible piezoelectric pressure sensor for the application of wearable blood pressure. To create a high sensitivity and flexibility piezoelectric pressure sensor, the polymer-based piezoelectric P(VDF-TrFE) was chosen in this study. Electrospinning process was applied to electrospun P(VDF-TrFE) into an ultra-flexible thin-film like structure. Using electrospinning process with a rotating drum collector, fibers with different levels of alignment are created and studied. In order to enhance the sensitivity and prevent shortage between electrodes, inter-digitated electrodes (IDEs) were developed. Design parameters include gaps distance between electrodes, and orientations between IDEs and the direction of fiber alignments. Furthermore, the β crystal phase of P(VDF-TrFE) is optimized by studying its X-ray Diffraction (XRD) patterns under the conditions of annealing and corona discharge poling processes. It was found that the β phase can be enhanced and the sensitivity can be much improved by 1.92 ~ 5.84 times. Measurements of P-E curves are also conducted to verified the experimental findings. The maximum sensitivity was 15.21 nA/g by using bending test, and the lightest weight that can be measured is 0.1 g. Finally, it is verified that the developed thin-film piezoelectric pressure sensor can be used to measure the blood pressure signal on the skin near the carotid artery.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:27:51Z (GMT). No. of bitstreams: 1
ntu-106-R04543020-1.pdf: 6646890 bytes, checksum: 44d58f9e301701cd4b8117ec1a7401a8 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 4
1-2-1 可撓式壓力感測器 4
1-2-2 血壓計 7
1-3 研究目標 8
1-4 論文架構 10
第二章 壓電材料 11
2-1 壓電材料簡介 11
2-1-1 壓電材料研究背景 11
2-1-2 壓電材料種類 12
2-1-3 壓電、焦電、鐵電效應 13
2-1-4 壓電本構方程式 18
2-2 高分子鐵電材料 21
2-2-1 聚偏氟乙烯 21
2-2-2 聚(偏氟乙烯-三氟乙烯) 23
第三章 薄膜製程原理 25
3-1 靜電紡絲 25
3-1-1 研究背景 25
3-1-2 作用原理 27
3-1-3 靜電紡絲參數 30
3-1-4 靜電紡絲收集器 31
3-2 退火與極化製程 35
3-2-1 退火 35
3-2-2 極化 35
第四章 壓電薄膜製程與特性 39
4-1 靜電紡絲 39
4-2 退火與極化 41
4-2-1 退火 41
4-2-2 極化 42
4-3 指叉式電極製程 43
4-3-1 指叉尺寸 44
4-3-2 製程 45
4-4 薄膜性質 46
4-4-1 表面形貌 46
4-4-2 晶相 49
4-4-3 鐵電特性 51
第五章 壓電訊號量測 54
5-1 彎曲受力訊號量測 54
5-1-1 實驗架設 54
5-1-2 訊號量測結果與討論 55
5-2 四點彎曲應變量測 65
5-3 薄膜感測器比較 67
5-4 人體血壓量測 69
第六章 結論及未來展望 71
6-1 結論 71
6-2 未來展望 71
附錄 73
參考文獻 76
dc.language.isozh-TW
dc.subject血壓量測zh_TW
dc.subject聚(偏氟乙烯-三氟乙烯)zh_TW
dc.subject靜電紡絲zh_TW
dc.subject可撓式感測器zh_TW
dc.subject壓電材料zh_TW
dc.subjectblood pressure measurementen
dc.subjectelectrospinningen
dc.subjectflexible sensoren
dc.subjectpiezoelectric materialen
dc.subjectP(VDF-TrFE)en
dc.title以靜電紡絲研製高排列性壓電薄膜壓力感測器及其指叉式電極之最佳化研究及開發zh_TW
dc.titleDevelopment of a piezoelectric pressure sensor based on highly aligned electrospun fibers and the optimization of Interdigitated Electrodesen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.coadvisor許聿翔
dc.contributor.oralexamcommittee李世仁,謝宗霖,林致廷
dc.subject.keyword聚(偏氟乙烯-三氟乙烯),靜電紡絲,可撓式感測器,壓電材料,血壓量測,zh_TW
dc.subject.keywordP(VDF-TrFE),electrospinning,flexible sensor,piezoelectric material,blood pressure measurement,en
dc.relation.page82
dc.identifier.doi10.6342/NTU201703757
dc.rights.note有償授權
dc.date.accepted2017-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
6.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved