Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68606
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁文傑(Man-kit Leung)
dc.contributor.author"Ieong, Hio-Tong"en
dc.contributor.author楊曉彤zh_TW
dc.date.accessioned2021-06-17T02:27:10Z-
dc.date.available2022-08-28
dc.date.copyright2017-08-28
dc.date.issued2017
dc.date.submitted2017-08-18
dc.identifier.citation1. 黃孝文, 陳金鑫, OLED-夢幻顯示器.
2. Pope, M.; Kallmann, H.; Magnante, P., Electroluminescence in organic crystals. The Journal of Chemical Physics 1963, 38 (8), 2042-2043.
3. Tang, C. W.; VanSlyke, S. A., Organic electroluminescent diodes. Applied Physics Letters 1987, 51 (12), 913.
4. Tang, C.; VanSlyke, S.; Chen, C., Electroluminescence of doped organic thin films. Journal of Applied Physics 1989, 65 (9), 3610-3616.
5. Burroughes, J. H. B., D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B., Light-emitting diodes based on conjugated polymers. Nature. 1990, 347, 539-541.
6. Dodabalapur, A., Highlights in Condensed Matter Physics and Materials ScienceOrganic light emitting diodes. Solid State Communications 1997, 102 (2), 259-267.
7. O’Brien, D. F.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Improved energy transfer in electrophosphorescent devices. Applied Physics Letters 1999, 74 (3), 442-444.
8. Holmes, R. J.; Forrest, S. R.; Tung, Y. J.; Kwong, R. C.; Brown, J. J.; Garon, S.; Thompson, M. E., Blue organic electrophosphorescence using exothermic host–guest energy transfer. Applied Physics Letters 2003, 82 (15), 2422-2424.
9. Holmes, R. J.; D’Andrade, B. W.; Forrest, S. R.; Ren, X.; Li, J.; Thompson, M. E., Efficient, deep-blue organic electrophosphorescence by guest charge trapping. Applied Physics Letters 2003, 83 (18), 3818-3820.
10. Baldo, M. A.; Adachi, C.; Forrest, S. R., Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Physical Review B 2000, 62 (16), 10967-10977.
11. Forster, T., 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discussions of the Faraday Society 1959, 27 (0), 7-17.
12. Dexter, D. L., A Theory of Sensitized Luminescence in Solids. The Journal of Chemical Physics 1953, 21 (5), 836-850.
13. Kim, J. S.; Granström, M.; Friend, R. H.; Johansson, N.; Salaneck, W. R.; Daik, R.; Feast, W. J.; Cacialli, F., Indium–tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance. Journal of Applied Physics 1998, 84 (12), 6859-6870.
14. Mason, M. G.; Hung, L. S.; Tang, C. W.; Lee, S. T.; Wong, K. W.; Wang, M., Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices. Journal of Applied Physics 1999, 86 (3), 1688-1692.
15. Van Slyke, S. A.; Chen, C. H.; Tang, C. W., Organic electroluminescent devices with improved stability. Applied Physics Letters 1996, 69 (15), 2160-2162.
16. Shirota, Y.; Kuwabara, Y.; Inada, H.; Wakimoto, T.; Nakada, H.; Yonemoto, Y.; Kawami, S.; Imai, K., Multilayered organic electroluminescent device using a novel starburst molecule, 4,4’,4‘‐tris(3‐methylphenylphenylamino)triphenylamine, as a hole transport material. Applied Physics Letters 1994, 65 (7), 807-809.
17. Heithecker, D.; Kammoun, A.; Dobbertin, T.; Riedl, T.; Becker, E.; Metzdorf, D.; Schneider, D.; Johannes, H.-H.; Kowalsky, W., Low-voltage organic electroluminescence device with an ultrathin, hybrid structure. Applied Physics Letters 2003, 82 (23), 4178-4180.
18. Kraft, A.; Grimsdale, A. C.; Holmes, A. B., Electroluminescent Conjugated Polymers—Seeing Polymers in a New Light. Angewandte Chemie International Edition 1998, 37 (4), 402-428.
19. Lüssem, G.; Wendorff, J. H., Liquid crystalline materials for light-emitting diodes. Polymers for Advanced Technologies 1998, 9 (7), 443-460.
20. VanSlyke, S. A. T., C. W, US Patent 5 1991, 061, 569.
21. Shirota, Y., Organic materials for electronic and optoelectronic devices. Journal of Materials Chemistry 2000, 10 (1), 1-25.
22. Adachi, C.; Tsutsui, T.; Saito, S., Organic electroluminescent device having a hole conductor as an emitting layer. Applied Physics Letters 1989, 55 (15), 1489-1491.
23. Junji, K.; Chikau, O.; Kenichi, H.; Katsuro, O.; Katsutoshi, N., 1,2,4-Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Devices. Japanese Journal of Applied Physics 1993, 32 (7A), L917.
24. Shi, J. T., C. W.; Chen, C. H., US Patent 5 1997, 646, 948.
25. Wakimoto, T.; Fukuda, Y.; Nagayama, K.; Yokoi, A.; Nakada, H.; Tsuchida, M., Organic EL cells using alkaline metal compounds as electron injection materials. IEEE Transactions on Electron Devices 1997, 44 (8), 1245-1248.
26. Yang, J.; Huang, J.; Li, Q.; Li, Z., Blue AIEgens: approaches to control the intramolecular conjugation and the optimized performance of OLED devices. J. Mater. Chem. C 2016, 4 (14), 2663-2684.
27. Lee, J.H.; Huang, C.L.; Hsiao, C.H.; Leung, M.K.; Yang, C.C.; Chao, C.C., Blue phosphorescent organic light-emitting device with double emitting layer. Applied Physics Letters 2009, 94 (22), 223301.
28. Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Applied Physics Letters 2001, 79 (13), 2082-2084.
29. Suzuki, A., Cross-Coupling Reactions Of Organoboranes: An Easy Way To Construct C-C Bonds (Nobel Lecture). Angewandte Chemie International Edition 2011, 50 (30), 6722-6737.
30. Campbell, P. G.; Marwitz, A. J. V.; Liu, S.Y., Recent Advances in Azaborine Chemistry. Angewandte Chemie (International ed. in English) 2012, 51 (25), 6074-6092.
31. Stock, A.; Pohland, E., Borwasserstoffe, VIII. Zur Kenntnis des B2H6 und des B5H11. Berichte der deutschen chemischen Gesellschaft (A and B Series) 1926, 59 (9), 2210-2215.
32. Islas, R.; Chamorro, E.; Robles, J.; Heine, T.; Santos, J. C.; Merino, G., Borazine: to be or not to be aromatic. Structural Chemistry 2007, 18 (6), 833-839.
33. Davies, K. M.; Dewar, M. J. S.; Rona, P., New heteroaromatic compounds. XXVI. Synthesis of borazarenes. Journal of the American Chemical Society 1967, 89 (24), 6294-6297.
34. Bosdet, M. J. D.; Piers, W. E., B-N as a C-C substitute in aromatic systems. Canadian Journal of Chemistry 2009, 87 (1), 8-29.
35. Pauling, L.; Brockway, L. O., Carbon-Carbon Bond Distances. The Electron Diffraction Investigation of Ethane, Propane, Isobutane, Neopentane, Cyclopropane, Cyclopentane, Cyclohexane, Allene, Ethylene, Isobutene, Tetramethylethylene, Mesitylene, and Hexamethylbenzene. Revised Values of Covalent Radii. Journal of the American Chemical Society 1937, 59 (7), 1223-1236.
36. Ashe, A. J.; Fang, X.; Fang, X.; Kampf, J. W., Synthesis of 1,2-Dihydro-1,2-azaborines and Their Conversion to Tricarbonyl Chromium and Molybdenum Complexes. Organometallics 2001, 20 (25), 5413-5418.
37. Dewar, M. J. S.; Dietz, R., 546. New heteroaromatic compounds. Part III. 2,1-Borazaro-naphthalene (1,2-dihydro-1-aza-2-boranaphthalene). Journal of the Chemical Society (Resumed) 1959, (0), 2728-2730.
38. Dewar, M.; Jones, R., New Heteroaromatic Compounds. XXVIII. Preparation and Properties of 10,9-Borazaronaphthalene. Journal of the American Chemical Society 1968, 90 (8), 2137-2144.
39. Westwood, A. V. K.; Brydson, R.; Coult, R.; Fox, M. A.; Rand, B.; Wade, K., Carbon–boron–nitrogen alloys from borazarene-derived mesophase pitches. Carbon 2002, 40 (12), 2157-2167.
40. Velinova, M.; Georgiev, V.; Todorova, T.; Madjarova, G.; Ivanova, A.; Tadjer, A., Boron–nitrogen- and boron-substituted anthracenes and -phenanthrenes as models for doped carbon-based materials. Journal of Molecular Structure: THEOCHEM 2010, 955 (1), 97-108.
41. Dewar, M. J. S.; Poesche, W. H., New Heteroaromatic Compounds. XXI.1 Some Tetracyclic Systems2. The Journal of Organic Chemistry 1964, 29 (7), 1757-1762.
42. Saif, M.; Widom, J. R.; Xu, S.; Abbey, E. R.; Liu, S.Y.; Marcus, A. H., Electric Dipole Transition Moments and Solvent-Dependent Interactions of Fluorescent Boron–Nitrogen Substituted Indole Derivatives. The Journal of Physical Chemistry B 2015, 119 (25), 7985-7993.
43. Abbey, E. R.; Liu, S.Y., BN Isosteres of Indole. Organic & biomolecular chemistry 2013, 11 (13), 2060-2069.
44. Ulmschneider, D.; Goubeau, J., Reaktionen des Trimethylbors. Chemische Berichte 1957, 90 (12), 2733-2738.
45. Abbey, E. R.; Zakharov, L. N.; Liu, S.Y., Electrophilic Aromatic Substitution of a BN Indole. Journal of the American Chemical Society 2010, 132 (46), 16340-16342.
46. Maruyama, S.; Kawanishi, Y., Syntheses and emission properties of novel violet-blue emissive aromatic bis(diazaborole)s. Journal of Materials Chemistry 2002, 12 (8), 2245-2249.
47. Weber, L.; Werner, V.; Fox, M. A.; Marder, T. B.; Schwedler, S.; Brockhinke, A.; Stammler, H.G.; Neumann, B., Synthetic, structural, photophysical and computational studies of [small pi]-conjugated bis- and tris-1,3,2-benzodiazaboroles and related bis(boryl) dithiophenes. Dalton Transactions 2009, (8), 1339-1351.
48. Li, G.; Zhao, Y.; Li, J.; Cao, J.; Zhu, J.; Sun, X. W.; Zhang, Q., Synthesis, Characterization, Physical Properties, and OLED Application of Single BN-Fused Perylene Diimide. The Journal of Organic Chemistry 2015, 80 (1), 196-203.
49. Zhang, W.; Zhang, F.; Tang, R.; Fu, Y.; Wang, X.; Zhuang, X.; He, G.; Feng, X., Angular BN-Heteroacenes with syn-Structure-Induced Promising Properties as Host Materials of Blue Organic Light-Emitting Diodes. Organic Letters 2016, 18 (15), 3618-3621.
50. Pan, B.; Wang, B.; Wang, Y.; Xu, P.; Wang, L.; Chen, J.; Ma, D., A simple carbazole-N-benzimidazole bipolar host material for highly efficient blue and single layer white phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C 2014, 2 (14), 2466-2469.
51. Huang, J.J.; Yun, L.K.; Kung, T.J.; Chen, C.L.; Lee, J.H.; Wu, Y.R.; Chiu, T.L.; Chou, P.T.; Leung, M.k., Networking hole and electron hopping paths by Y-shaped host molecules: promoting blue phosphorescent organic light emitting diodes. Journal of Materials Chemistry C 2017, 5 (14), 3600-3608.
52. Huang, J.J.; Hung, Y.H.; Ting, P.L.; Tsai, Y.N.; Gao, H.J.; Chiu, T.L.; Lee, J.H.; Chen, C.L.; Chou, P.T.; Leung, M.k., Orthogonally Substituted Benzimidazole-Carbazole Benzene As Universal Hosts for Phosphorescent Organic Light-Emitting Diodes. Organic Letters 2016, 18 (4), 672-675.
53. Davies, G. H. M.; Molander, G. A., Synthesis of Functionalized 1,3,2-Benzodiazaborole Cores Using Bench-Stable Components. The Journal of Organic Chemistry 2016, 81 (9), 3771-3779.
54. Gong, S.; He, X.; Chen, Y.; Jiang, Z.; Zhong, C.; Ma, D.; Qin, J.; Yang, C., Simple CBP isomers with high triplet energies for highly efficient blue electrophosphorescence. Journal of Materials Chemistry 2012, 22 (7), 2894-2899.
55. Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S.; Hoshino, M.; Ueno, K., Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode. Journal of the American Chemical Society 2003, 125 (42), 12971-12979.
56. Tokito, S.; Iijima, T.; Suzuri, Y.; Kita, H.; Tsuzuki, T.; Sato, F., Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices. Applied Physics Letters 2003, 83 (3), 569-571.
57. Su, S.J.; Cai, C.; Kido, J., Three-carbazole-armed host materials with various cores for RGB phosphorescent organic light-emitting diodes. Journal of Materials Chemistry 2012, 22 (8), 3447-3456.
58. Weber, L.; Halama, J.; Hanke, K.; Bohling, L.; Brockhinke, A.; Stammler, H.G.; Neumann, B.; Fox, M. A., On the ambiguity of 1,3,2-benzodiazaboroles as donor/acceptor functionalities in luminescent molecules. Dalton Transactions 2014, 43 (8), 3347-3363.
59. Dewar, M. J. S.; Kubba, V. P.; Pettit, R., 624. New heteroaromatic compounds. Part I. 9-Aza-10-boraphenanthrene. Journal of the Chemical Society (Resumed) 1958, (0), 3073-3076.
60. Sarmah, G.; Mondal, M.; Bora, U., Alcoholic solvent-assisted ligand-free room temperature Suzuki-Miyauracross-coupling reaction. Applied Organometallic Chemistry 2015, 29 (8), 495-498.
61. Secci, D.; Bolasco, A.; D'Ascenzio, M.; della Sala, F.; Yáñez, M.; Carradori, S., Conventional and Microwave-Assisted Synthesis of Benzimidazole Derivatives and Their In Vitro Inhibition of Human Cyclooxygenase. Journal of Heterocyclic Chemistry 2012, 49 (5), 1187-1195.
62. Dawson, W. R.; Windsor, M. W., Fluorescence yields of aromatic compounds. The Journal of Physical Chemistry 1968, 72 (9), 3251-3260.
63. D’Andrade, B. W.; Datta, S.; Forrest, S. R.; Djurovich, P.; Polikarpov, E.; Thompson, M. E., Relationship between the ionization and oxidation potentials of molecular organic semiconductors. Organic Electronics 2005, 6 (1), 11-20.
64. Rausch, A. F.; Thompson, M. E.; Yersin, H., Matrix Effects on the Triplet State of the OLED Emitter Ir(4,6-dFppy)2(pic) (FIrpic): Investigations by High-Resolution Optical Spectroscopy. Inorganic Chemistry 2009, 48 (5), 1928-1937.
65. Tsuboi, T.; Murayama, H.; Yeh, S.J.; Wu, M.F.; Chen, C.T., Photoluminescence characteristics of blue phosphorescent Ir3+-compounds FIrpic and FIrN4 doped in mCP and SimCP. Optical Materials 2008, 31 (2), 366-371.
66. He, J.; Liu, H.; Dai, Y.; Ou, X.; Wang, J.; Tao, S.; Zhang, X.; Wang, P.; Ma, D., Nonconjugated Carbazoles: A Series of Novel Host Materials for Highly Efficient Blue Electrophosphorescent OLEDs. The Journal of Physical Chemistry C 2009, 113 (16), 6761-6767.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68606-
dc.description.abstract隨着藍光材料快速的發展,介於有機材料和無機材料之間的含硼化合物也引起廣泛的討論。因此,我們引入等電子體的概念,設計了一系列以1,3,2-苯並二氮雜硼為中心的分子。
我們成功克服立體障礙的限制,以取代基位置分為鄰位及間位系列,合成了具有不同的官能基的衍生物。因1,3,2-苯並二氮雜硼具有10個π電子及硼原子的空pz軌域,展示了獨特的光電性質,且其具有高三重態能階。故我們引入咔唑基團,以提高其熱穩定性,以及調整其傳電洞的能力,應用於藍色磷光有機發光二極體元件的製作。
元件部分以本系列熱穩定性最佳的dCb作為主發光材料,FIrpic為客發光材料之元件,最大亮度為11680 cd/m2,最大發光效率為18.07 Cd/A,最大發光功率為13.23 lm/W,最大外部量子效率為8.25%。以dCb作為電子阻擋層,最大亮度為20890 cd/m2,最大發光效率為51.66 Cd/A,最大發光功率為39.10 lm/W,最大外部量子效率為25.35%。
同時,我們也把本系列化合物應於陰離子檢測,對於F-及OH-最為明顯,於10-5M可以肉眼辦別。以目前初步的測試,此系列化合物具有作為多重離子偵離器的潛力。
zh_TW
dc.description.abstractFor blue light emissing materials developed rapidly, not only the classic organic molecule, but also a new trend of organoboron draws attendion. We induce the concept of isostere of boron-nitrogen and carbon-carbon of indole to form B-N indole.
This thesis reports a synthesis method of a series of 1,3,2-benzodiazaborole derivatives which is at the interface between organic and inorganic chemistry. Overcoming the steric effect, we achieved ortho substituted series and meta substituted series. With 10 π electrons and the empty p orbital of boron, these molecules show special photoproperties. The emission spectra reveal that 1,3,2-benzodiazaborole derivatives maintain high triplet energy. We induce carbazole to increase the thermal stability and adjust the hole transport ability for the application in blue phosphorescent organic light emitting diode(PhOLED).
The PhOLED device with dCb as host, exhibits maximum luminance of 11680 cd/m2, maximum current efficiency of 18.07 cd/A, the maximum power efficiency of 13.23 lm/W, the maximum external quantum efficiency of 8.25%. The PhOLED device with dCb as electron blocking layer, shows maximum luminance of 20890 cd/m2, maximum current efficiency of 51.66 cd/A, the maximum power efficiency 39.10 lm/W, the maximum external quantum efficiency of 25.35%.
In the anion detection experiment, we find out fluoride ion and hydroxide ion can be dectected by naked eye in 10-5M. These molecules have the potential application in sensor array for multianion detection.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:27:10Z (GMT). No. of bitstreams: 1
ntu-106-R04223182-1.pdf: 15620658 bytes, checksum: 4dba3f22a5d6125636eeb0ae164b0f82 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents目錄 I
中文摘要 III
Abstract IV
化合物結構及編號命名 V
圖目錄 VIII
表目錄 XIV
流程目錄 XV
第一章 緒論 1
1.1 前言 1
1.2 有機發光二極體之發展歷史 2
1.3 有機分子發光機制 3
1.4 有機發光二極體之工作原理 5
1.5 有機發光二極體各層材料之介紹 8
第二章 研究動機 15
2.1 文獻回顧 15
2.2 分子設計 21
2.3 合成策略及方法 24
第三章 結果與討論 31
3.1晶體結構分析 31
3.2 熱性質分析 38
3.3 光物理分析 40
3.4 電化學分析 46
3.5 能量轉移實驗 52
3.6 有機電致發光元件表現 54
3.7 陰離子偵測實驗 61
第四章 結論 67
第五章 實驗部分 68
5.1 實驗儀器與試劑 68
5.2 合成步驟 70
第六章 參考資料 98
第七章 附錄 104
7.1 化合物的1H及13C核磁共振光譜 104
7.2 化合物TGA跟DSC圖 160
7.3 化合物ACII圖及薄膜態紫外-可見光吸收光譜 162
7.4 參考物之電化學分析 164
7.5 化合物X-ray晶體參數表、鍵長與鍵角數據 165
dc.language.isozh-TW
dc.subject陰離子偵測zh_TW
dc.subjectOLEDzh_TW
dc.subject2-苯並二氮雜硼zh_TW
dc.subject有機含硼化合物zh_TW
dc.subject硼氮??zh_TW
dc.subjectB-N indoleen
dc.subjectorganoboronen
dc.subjectOLEDen
dc.subjectanion detectionen
dc.subject2-benzodiazaboroleen
dc.title"1,3,2-苯並二氮雜硼衍生物之合成、性質探討及其在藍色磷光有機發光二極體及陰離子偵測之應用"zh_TW
dc.titleSynthesis and Characterization of Substituted 1,3,2-Benzodiazaborole and Their Applications in Blue Phosphorescent Organic Light Emitting Diodes and Anion Detectionen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林萬寅(Wann-Yin Lin),陳錦地(Chin-Ti Chen)
dc.subject.keyword硼氮??,有機含硼化合物,1,3,2-苯並二氮雜硼,陰離子偵測,OLED,zh_TW
dc.subject.keywordB-N indole,organoboron,1,3,2-benzodiazaborole,anion detection,OLED,en
dc.relation.page224
dc.identifier.doi10.6342/NTU201703805
dc.rights.note有償授權
dc.date.accepted2017-08-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
15.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved