請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68581完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃楓婷 | |
| dc.contributor.author | Hsu-Yuan Wang | en |
| dc.contributor.author | 王栩沅 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:26:10Z | - |
| dc.date.available | 2022-08-28 | |
| dc.date.copyright | 2017-08-28 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-18 | |
| dc.identifier.citation | [1] Kinam Park. (2014). Controlled drug delivery systems: Past forward and future back. Journal of Controlled Release, 190, 3-8. doi: 10.1016/j.jconrel.2014.03.054.
[2] L Hendeles, M Weinberger, G Milavetz, M Hill 3d and L Vaughan. (1985). Food-induced 'dose-dumping' from a once-a-day theophylline product as a cause of theophylline toxicity. Chest, 87(6), 758-765. [3] Gaurav Tiwari, Ruchi Tiwari, Birendra Sriwastawa, L Bhati, S Pandey, P Pandey, Saurabh K Bannerjee. (2012). Drug delivery systems: An updated review. Int J Pharm Investig, 2(1), 2–11. doi: 10.4103/2230-973X.96920 [4] Hyo Jin Kang, Young Ji Kang, Young-Mi Lee, Hyun-Hee Shin, Sang J. Chung, Sebyung Kang. (2012). Developing an antibody-binding protein cage as a molecular recognition drug modular nanoplatform. Biomaterials, 33(21), 5423-5430. doi: 10.1016/j.biomaterials.2012.03.055. [5] Marta Truffi, Luisa Fiandra, Luca Sorrentino, Matteo Monieri, Fabio Corsi, Serena Mazzucchelli. (2016). Ferritin nanocages: A biological platform for drug delivery, imaging and theranostics in cancer. Pharmacological Research. 107, 57-65. doi: 10.1016/j.phrs.2016.03.002. [6] Linhardt RJ. Biodegradable polymers for controlled release of drugs. In: Rosoff M, editor. Controlled Release of Drugs. VCH Publishers; New York: 1989. pp. 53–95. [7] Barbara Haley, M.D., Eugene Frenkel, M.D. (2008). Nanoparticles for drug delivery in cancer treatment. Urologic Oncology: Seminars and Original Investigations. 26(1), 57-64. doi: 10.1016/j.urolonc.2007.03.015. [8] Betageri, G.V., Jenkins, S.A., Parsons, D.L. (Eds.), (1993). Liposome Drug Delivery Systems. Technomic Publishing Co., Pennsylvania, 109–125. [9] Abolfazl Akbarzadeh, Rogaie Rezaei-Sadabady, Soodabeh Davaran, Sang Woo Joo, Nosratollah Zarghami, Younes Hanifehpour, Mohammad Samiei, Mohammad Kouhi and Kazem Nejati-Koshki. (2013). Liposome: classification, preparation, and applications. Nanoscale Res Lett. 8(1), 102. doi: 10.1186/1556-276X-8-102. [10] Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. (2015). Advances and Challenges of Liposome Assisted Drug Delivery. Front Pharmacol. 6, 286. doi: 10.3389/fphar.2015.00286. [11] Himanshu Anwekar, Sitasharan Patel and A.K Singhai. (2011). Liposome- as drug carriers. IJPLS. 2(7), 945–951. [12] H.N. Munro, M.C. Linder. (1978). Ferritin: structure, biosynthesis, and role in iron metabolism, Physiol. Rev. 58, 317–396. [13] V. Laufberger. (1937). Sur la cristallisation de la ferritine. Bull. Soc. Chim. Biol. 19,1575–1582. [14] Lawson DM, Artymiuk PJ, Yewdall SJ, Smith JM, Livingstone JC, Treffry A, Luzzago A, Levi S, Arosio P, Cesareni G, et al. (1991). Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature. 349(6309), 541-4. [15] Dario Finazzi, Paolo Arosio. (2014). Biology of ferritin in mammals: an update on iron storage, oxidative damage and neurodegeneration. Arch Toxicol. 88(10), 1787-802. doi: 10.1007/s00204-014-1329-0. [16] Simon C. Andrews, Pauline M. Harrison, Stephen J. Yewdall. (1992). Structure, function, and evolution of ferritins. Journal of Inorganic Biochemistry. 47(3-4), 161-74. [17] Paolo Arosio, Fernando Carmona, Raffaella Gozzelino, Federica Maccarinelli, Maura Poli. (2015). The importance of eukaryotic ferritins in iron handling and cytoprotection. Biochem. J. 472, 1–15. [18] S. Haldar, L.E. Bevers, T. Tosha, E.C. Theil. (2011). Moving Iron through ferritin protein nanocages depends on residues throughout each four α-helix bundle subunit. J. Biol. Chem. 286, 25620–25627. [19] W. Bu, R. Liu, J.C. Cheung-Lau, I.J. Dmochowski, P.J. Loll, R.G. Eckenhoff. (2012). Ferritin couples iron and fatty acid metabolism. FASEB J. 26, 2394–2400. [20] Kourosh Honarmand Ebrahimi, Peter-Leon Hagedoorn, Wilfred R. Hagen. (2014). Unity in the Biochemistry of the Iron-Storage Proteins Ferritin and Bacterioferritin. Chem Rev. 115(1), 295-326. doi: 10.1021/cr5004908. [21] Crichton RR, Bryce CF. (1973). Subunit interactions in horse spleen apoferritin. Dissociation by extremes of pH. Biochem J. 133(2), 289-99. [22] Stefanini S, Cavallo S, Wang CQ, Tataseo P, Vecchini P, Giartosio A, Chiancone E. (1996). Thermal Stability of Horse Spleen Apoferritin and Human Recombinant H Apoferritin. Arch Biochem Biophys. 325(1), 58-64. [23] L. Li, C.J. Fang, J.C. Ryan, E.C. Niemil, J.A. Lebrón, P.J. Björkman, H. Arase, F.M.Torti, S.V. Torti, M.C. Nakamura, W.E. Seaman. (2010). Binding and uptake ofH-ferritin are mediated by human transferring receptor-1, Proc. Natl. Acad.Sci. U. S. A. 107,3505–3510. [24] Zipeng Zhen, Wei Tang, Hongmin Chen, Xin Lin, Trever Todd, Geoffrey Wang, Taku Cowger, Xiaoyuan Chen, Jin Xie. (2013). RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano. 7 (6), 4830–4837 [25] Rehman Ata and Costin N. Antonescu. (2017). Integrins and cell metabolism: An intimate relationship impacting cancer. Int J Mol Sci. 18(1), 189. [26] Caswell, P.T.; Vadrevu, S.; Norman, J.C. (2009). Integrins: Masters and slaves of endocytic transport. Nat. Rev. Mol.Cell Biol. 10, 843–853. [27] Arnaout MA, Goodman SL, Xiong JP. (2007). Structure and mechanics of integrin-based cell adhesion. Curr Opin Cell Biol. 19(5), 495-507. [28] Campbell ID, Humphries MJ. (2011). Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol. 3(3). pii: a004994. doi: 10.1101/cshperspect.a004994. [29] Sharon Israeli-Rosenberg, Ana Maria Manso, Hideshi Okada, Robert S. Ross. (2014). Integrins and Integrin-Associated Proteins in the Cardiac Myocyte. Circ Res. 114(3), 572–586. [30] Hood JD, Cheresh DA. (2002). Role of integrins in cell invasion and migration. Nat Rev Cancer. 2(2), 91-100. [31] Jay S. Desgrosellier and David A. Cheresh. (2010). Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 10(1), 9-22. [32] Huang CW, Li Z, Cai H, Chen K, Shahinian T, Conti PS. (2011). Design, synthesis and validation of integrin α2β1-targeted probe for microPET imaging of prostate cancer. Eur J Nucl Med Mol Imaging. 38(7), 1313-1322. [33] Bellini M, Mazzucchelli S, Galbiati E, Sommaruga S, Fiandra L, Truffi M, Rizzuto MA, Colombo M, Tortora P, Corsi F, Prosperi D. (2014). Protein nanocages for self-triggered nuclear delivery of DNA-targeted chemotherapeutics in Cancer Cells. J Control Release. 196, 184-96. doi: 10.1016/j.jconrel.2014.10.002. [34] K.J. Thompson, M.G. Fried, Z. Ye, P. Boyer, J.R. Connor. J. Cell Sci. (2002), 115, 2165-2177. [35] C. Dingwall, R.A. Laskey, Trends Biochem. Sci. (1991), 16, 475–481. [36] N. Surguladze, S. Patton, A. Cozzi, M.G. Fried, J.R. Connor. Biochem. J. (2005), 388, 731-740. [37] C.X. Cai, T.F. Linsenmayer. J. Cell Sci. (2001), 114, 2327-2334. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68581 | - |
| dc.description.abstract | 在傳統治療癌症方面,藥物都是屬於傾瀉系統。因此近年來人們致力於發展藥物載體來應用在癌症治療。最廣為人知的藥物載體就是微脂體,但它也存在某些缺點。 在近幾年陸續有許多研究尋找新的藥物載體,而鐵蛋白就是其中之一。
鐵蛋白質是由24個單元所組成外直徑為12奈米而內直徑為8奈米的球狀蛋白。而鐵蛋白質表面能夠經由化學或是基因學的方式進行修飾,使得鐵蛋白質能夠帶有發光物質、抗體、小片段RNA以及短胜肽等等,另一方面在球狀的中空部分也能夠將藥物放置於內,因此作為一個新興的藥物載體是非常有潛力的。 近來有研究建構出帶有RGD胜肽的鐵蛋白質應用在分子影像以及癌症治療方面。RGD胜肽有高度專一性與癌細胞表面上大量表現的integrin αVβ3結合的能力,但RGD胜肽在臨床上也會與正常內皮細胞結合導致促進癌細胞生長及促進血管新生作用。 所以本實驗中我們將利用另一種胜肽DGEA,能夠與癌細胞表面上另一種高度表現的Integrin α2β1結合,進而製作出一種新的、不同的藥物載體,使得在分子影像檢測或是癌症治療上可以有更進一步的發展。除了帶有DGEA胜肽,也嘗試使得鐵蛋白質能夠帶有兩段重複的DGEA胜肽,提升結合Integrin α2β1的能力。透過螢光標定蛋白質來確定經過胜肽修飾的鐵蛋白質能夠與癌細胞表面上的Integrin α2β1結合後,進一步將化療藥物阿黴素包裹在內並且對癌細胞進行測試,發現透過帶有胜肽的鐵蛋白質包裹藥物能夠提升藥物的治療能力,且能夠使用更少的濃度來達到與化療藥物直接作用的相同效果。未來我們會更進一步進行動物實驗來驗證其發展的可能性。甚至透過鐵蛋白質的特性做出帶有多種標靶的藥物載體使得在應用分子影像上能夠更廣泛更全面,或者是包裹其他不同的藥物來達到治療不同癌症的目的。 | zh_TW |
| dc.description.abstract | In tradition, drugs for cancer treatment always belong to a dump release system. Furthermore, people are devoted to developing the new drug delivery for cancer therapy. Recently, liposomes, primarily composed of phospholipids, are the major drug delivery system. However, liposomes still have some disadvantages as follows. In recent years, there are many research for find new drug delivery, and the ferritin is the one of them.
Ferritin is composed of 24 subunits and able to self-assemble to form a nanocage structure with external and internal diameters of 12 and 8 nm, respectively. Ferritin can be easily modified and conjugated with various molecules onto the surface, including dye, peptides, siRNA or antibodies etc. the cavity of ferritin can be loaded drugs. Recent studies demonstrated RGD-modified ferritin had potential in cancer diagnosis and therapy. The RGD peptide has high affinity to integrin αVβ3, a tumor angiogenesis biomarker, and is currently applied to clinical cancer imaging. However, the RGD peptide has disadvantages that the peptide also targets to endothelial cells, leading to stimulation of tumor growth and angiogenesis. Hence, in this study, we wanted to construct a new drug delivery and applied on molecular imaging and cancer therapy. We intended to set up the integrin-targeted ferritin with the DGEA (Asp-Gly-Glu-Ala) peptide which has high affinity to integrin α2β1. In the thesis, we not only made the construct of DGEA-ferritin but also tried the 2xDGEA-ferritin to assess the effect of increasing the copy number of DGEA on the surface of ferritins. Next, we estimated the tumor targeting ability of DGEA-ferritin and 2xDGEA-ferritin on U-87 MG, glioblastoma cell line, or PC-3, human prostate cancer cell line, by incubating cells with FITC-labeled protein. After confirming that proteins could recognize cancer cells through the DGEA peptide, we loaded the doxorubicin into 2xDGEA-ferritin. Through the MTT assay, we demonstrated that the 2xDGEA-ferritin could kill cancer cells and improved drug efficiency, which could use less amount of doxorubicin than free doxorubicin to achieve the same cellular toxicity effect. In the future, we will do in vivo experiments to confirm the potential of developing this drug delivery. If the system succeeds, it will be a new, safe and efficient technology and has great potential in clinical application. Furthermore, multiple peptides could be constructed on the ferritin or other drugs be loaded into the ferritin, and apply these modified-ferritins on molecular imaging and cancer therapy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:26:10Z (GMT). No. of bitstreams: 1 ntu-106-R04b22028-1.pdf: 3399958 bytes, checksum: 9468e6d78f9b66d94883c74534dfce6d (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
謝辭 i 中文摘要 ii Abstract iii Abbreviations v Table of contents vi Chapter 1 Introduction 1 1.1 Current approach for drug delivery 1 1.2 Liposome 3 1.3 Ferritin 4 1.3.1 Ferritin structure 4 1.3.2 Ferritin function 7 1.3.3 Ferritin nanoparticle as drug delivery 7 1.4 Integrin 8 1.4.1 Integrin structure 8 1.4.2 Integrin function 10 1.4.3 Integrin in cancer 11 1.5 Molecular imaging 12 1.6 Research purpose 12 Chapter 2 Materials and methods 14 2.1 Expression and purification of recombinant human ferritin (FRT), RGD-ferritin (RFRT), DGEA-ferritin (DFRT) and 2xDGEA-ferritin (2DFRT) 14 2.1.1 Construction of TA-ferritin and TA-peptide-modified ferritin 14 2.1.2 Construction of pET28b-ferritin plasmid and pET28b-peptide-modified ferritin 15 2.1.3 Transformation of the pET28b-ferritin plasmid and pET28b- peptide-modified ferritin into BL21(DE3) 15 2.1.4 IPTG induction and purification 16 2.1.5 Concentration 17 2.1.6 Endotoxin remove 17 2.1.7 Endotoxin quantification 17 2.2 Protein analysis 18 2.2.1 Gel electrophoresis 18 2.2.2 CBR staining 18 2.3 Protein nanoparticle size analysis 18 2.3.1 Dynamic light scattering (DLS) 18 2.3.2 Transmission electron microscope (TEM) 18 2.3.3 Gel electrophoresis (NATIVE-PAGE) 19 2.3.4 pH-dependent dissociation experiments 19 2.4 Preparation of drug-loaded proteins 20 2.4.1 Encapsulation of doxorubicin within ferritin and peptide-modified ferritin 20 2.4.2 Determination of drug content 20 2.5 In vitro experiment 21 2.5.1 Cell lines 21 2.5.2 Preparation of FITC-labeled protein 21 2.5.3 Cellular uptake 22 2.5.3.1 Cell culture 22 2.5.3.2 Confocal microscopy 22 2.5.4 Antiproliferative effects in Vitro. 22 2.5.4.1 Cell culture 22 2.5.4.2 MTT assay 23 Chapter 3 Results 24 3.1 Expression and purification of recombinant human ferritin (FRT), RGD-ferritin (RFRT), DGEA-ferritin (DFRT) and 2xDGEA-ferritin (2DFRT) 24 3.2 Analysis of the nanoparticle size of purified proteins by Dynamic light scattering (DLS) and Transmission electron microscope (TEM) 25 3.3 Characterization of pH-dependent self-assembly 25 3.4 Binding of ferritin and peptide-modified ferritin to U-87 MG and PC-3 27 3.5 Drug loading 28 3.5.1 Doxorubicin (Dox) encapsulation in ferritin and integrin-targeted ferritin nanocarriers 28 3.6 The effect of Dox-encapsulated protein nanocarriers on U-87 MG and PC-3 28 3.6.1 The cell viability of U-87 MG and PC-3 cells treated with Dox- encapsulated proteins 28 Chapter 4 Discussion 31 4.1 Ferritin internalization and nuclear translocation 31 4.2 Drug release 32 4.3 Removed the triton X-100 of proteins 32 4.4 The effect of drug loading protein on normal cells 32 Chapter 5 Summary and future prospects 33 Chapter 6 Reference list 35 Figure and tables 40 Appendixes 63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鐵蛋白 | zh_TW |
| dc.subject | RGD胜? | zh_TW |
| dc.subject | DGEA胜? | zh_TW |
| dc.subject | 阿黴素 | zh_TW |
| dc.subject | 藥物載體 | zh_TW |
| dc.subject | 分子影像 | zh_TW |
| dc.subject | drug delivery | en |
| dc.subject | ferritin | en |
| dc.subject | RGD peptide | en |
| dc.subject | DGEA peptide | en |
| dc.subject | doxorubicin | en |
| dc.subject | molecular imaging | en |
| dc.title | 以Integrin為目標之標靶鐵蛋白應用於腫瘤分子影像與藥物載體之可行性研究 | zh_TW |
| dc.title | Integrin-targeting ferritin nanoparticles for tumor imaging and drug delivery | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊健志,廖憶純,林晉玄 | |
| dc.subject.keyword | 鐵蛋白,RGD胜?,DGEA胜?,阿黴素,藥物載體,分子影像, | zh_TW |
| dc.subject.keyword | ferritin,RGD peptide,DGEA peptide,doxorubicin,drug delivery,molecular imaging, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU201703622 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-19 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
