請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68569完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳政鴻 | |
| dc.contributor.author | Ching Jung Tang | en |
| dc.contributor.author | 唐靚容 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:25:42Z | - |
| dc.date.available | 2018-08-28 | |
| dc.date.copyright | 2017-08-28 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-18 | |
| dc.identifier.citation | [1] Alstrøm, P., & Madsen, P. (1996). Tracking signals in inventory control systems a simulation study. International Journal of Production Economics, 45(1-3), 293-302. doi:10.1016/0925-5273(95)00120-4
[2] Anderson, E. T., Fitzsimons, G. J., & Simester, D. (2006). Measuring and mitigating the costs of stockouts. Management Science, 52(11), 1751-1763. [3] Bacchetti, A., & Saccani, N. (2012). Spare parts classification and demand forecasting for stock control: Investigating the gap between research and practice. Omega (United Kingdom), 40(6), 722-737. doi:10.1016/j.omega.2011.06.008 [4] Ballou, R. H. (2000). Evaluating inventory management performance using a turnover curve. International Journal of Physical Distribution and Logistics Management, 30(1), 72-85. doi:10.1108/09600030010307993 [5] Barankin, E. (1961). A delivery‐lag inventory model with an emergency provision (the single‐period case). Naval Research Logistics (NRL), 8(3), 285-311. [6] Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial intelligence, 97(1), 245-271. [7] Boyd, L. H., & Cox III, J. F. (1997). A cause-and-effect approach to analyzing performance measures. Production and Inventory Management Journal, 38(3), 25. [8] Boylan, J. E., Syntetos, A. A., & Karakostas, G. (2008). Classification for forecasting and stock control: a case study. Journal of the operational research society, 59(4), 473-481. [9] Chen, F., Drezner, Z., Ryan, J. K., & Simchi-Levi, D. (2000). Quantifying the bullwhip effect in a simple supply chain: The impact of forecasting, lead times, and information. Management Science, 46(3), 436-443. [10] Chen, F., & Zheng, Y. S. (1993). Inventory models with general backorder costs. European Journal of Operational Research, 65(2), 175-186. doi:10.1016/0377-2217(93)90331-G [11] Chiang, C., & Gutierrez, G. J. (1996). A periodic review inventory system with two supply modes. European Journal of Operational Research, 94(3), 527-547. doi:10.1016/0377-2217(95)00151-4 [12] Chockalingam, M. (2007). Forecast Accuracy and Safety Stock Strategies. Demand Planning, 6(11), 2003. [13] Clark, A. J., & Scarf, H. (1960). Optimal policies for a multi-echelon inventory problem. Management Science, 6(4), 475-490. [14] Conway, R., & Maxwell, W. (1967). MLW Theory of scheduling: Addison-Wesley. [15] Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent data analysis, 1(1-4), 131-156. [16] Doganis, P., Aggelogiannaki, E., & Sarimveis, H. (2008). A combined model predictive control and time series forecasting framework for production-inventory systems. International Journal of Production Research, 46(24), 6841-6853. [17] Dohi, T., Kaio, N., & Osaki, S. (1995). Continuous review cyclic inventory models with emergency order. Journal of the Operations Research Society of Japan, 38(2), 212-229. [18] Flores, B., Olson, D., & Pearce, S. (1993). Use of cost and accuracy measures in forecasting method selection: a physical distribution example. THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 31(1), 139-160. [19] Gardner Jr, E. S. (1990). Evaluating forecast performance in an inventory control system. Management Science, 36(4), 490-499. [20] Gerchak, Y., & Wang, Y. (1994). Periodic‐review inventory models with inventory‐level‐dependent demand. Naval Research Logistics (NRL), 41(1), 99-116. [21] Gruen, T. W., & Corsten, D. S. (2007). A comprehensive guide to retail out-of-stock reduction in the fast-moving consumer goods industry. [22] Haberleitner, H., Meyr, H., & Taudes, A. (2010). Implementation of a demand planning system using advance order information. International Journal of Production Economics, 128(2), 518-526. doi:https://doi.org/10.1016/j.ijpe.2010.07.003 [23] Harris, G. A., Sullivan, K. W., Componation, P. J., & Farrington, P. A. (2006). Product characteristics: The establishment of key attributes for product classification. Paper presented at the 2006 IIE Annual Conference and Exhibition. [24] Huang, L. T., Hsieh, I. C., & Farn, C. K. (2011). On ordering adjustment policy under rolling forecast in supply chain planning. Computers and Industrial Engineering, 60(3), 397-410. doi:10.1016/j.cie.2010.07.018 [25] Ishii, R. P., Rios, R. A., & Mello, R. F. (2011). Classification of time series generation processes using experimental tools: A survey and proposal of an automatic and systematic approach. International Journal of Computational Science and Engineering, 6(4), 217-237. doi:10.1504/IJCSE.2011.043919 [26] Johansen, S. G., & Thorstenson, A. (1998). An inventory model with poisson demands and emergency orders. International Journal of Production Economics, 56-57, 275-289. [27] Li, G. G., Zhou, J. Y., & Yang, T. (2014) The research of inventory management based on the supply chain. Vol. 687-691. Applied Mechanics and Materials (pp. 5116-5119). [28] Partovi, F. Y., & Burton, J. (1993). Using the analytic hierarchy process for ABC analysis. International Journal of Operations & Production Management, 13(9), 29-44. [29] Pyke, D. F., & Cohen, M. A. (1994). Multiproduct integrated production—distribution systems. European Journal of Operational Research, 74(1), 18-49. [30] Rabinovich, E., Dresner, M. E., & Evers, P. T. (2003). Assessing the effects of operational processes and information systems on inventory performance. Journal of Operations Management, 21(1), 63-80. [31] Radasanu, A. C. (2016). INVENTORY MANAGEMENT, SERVICE LEVEL AND SAFETY STOCK. Journal of Public Administration, Finance and Law(9), 145-153. [32] Ruiz-Torres, A. J., & Mahmoodi, F. (2010). Safety stock determination based on parametric lead time and demand information. International Journal of Production Research, 48(10), 2841-2857. [33] Sethi, S. P., Yan, H., & Zhang, H. (2003). Inventory models with fixed costs, forecast updates, and two delivery modes. Operations Research, 51(2), 321-328. [34] Tavassoli, M., Faramarzi, G. R., & Farzipoor Saen, R. (2014). Multi-criteria ABC inventory classification using DEA-discriminant analysis to predict group membership of new items. International Journal of Applied Management Science, 6(2), 171-189. [35] Teunter, R. H., Babai, M. Z., & Syntetos, A. A. (2010). ABC classification: service levels and inventory costs. Production and Operations Management, 19(3), 343-352. [36] Teunter, R. H., van der Laan, E., & Inderfurth, K. (2000). How to set the holding cost rates in average cost inventory models with reverse logistics? Omega, 28(4), 409-415. [37] Wang, X., & Petropoulos, F. (2016). To select or to combine? The inventory performance of model and expert forecasts. International Journal of Production Research, 54(17), 5271-5282. [38] Williams, T. (1984). Stock control with sporadic and slow-moving demand. Journal of the Operational Research Society, 35(10), 939-948. [39] Yang, S. (2009). The forecast of power demand cycle turning points based on ARMA. Paper presented at the Proceedings - 2009 2nd International Workshop on Knowledge Discovery and Data Mining, WKKD 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68569 | - |
| dc.description.abstract | 本研究旨在少量多樣生產模式下改善現有的庫存管理模型,由於少量多樣的產品容易受市場波動影響,具有不穩定的需求訂單,常常使庫存數量供需無法達成平衡,且產品種類豐富造成庫存管控較不易。故本研究將開發四種庫存管理模型,分別建立統計需求預測模型和安全庫存做為訂購的參考值,動態調整每一期的訂購數量,並期望以成本的角度選擇庫存風險較低的庫存管理模型,提供企業庫存管控的方針與決策的參考依據。
然而,目前企業對於少量多樣產品的作法是以「分類」的方式處理,根據不同的產品特性給定所屬的類別定義,並執行各類別對應的庫存管理策略,提升庫存管理的運作效率。透過機器學習方法對產品快速執行分類,學習訓練集合的特性並建立分類模型,接著再對測試集合進行類別定義,快速執行產品的分類,簡化少量多樣商品繁複的處理程序。 | zh_TW |
| dc.description.abstract | The research aims to strengthen the recent inventory management model which focus on low-volume and high-mix production. The low-volume and high-mix production method usually couldn’t satisfy the demand on time due to the fluctuation of demand caused by market all the time. According to the high-mix product, it is hard to make material control decision clearly and quickly under abundant barriers.
Therefore, the research formulates four different inventory management model including statistic forecasting model and safety stock, and the cost is the point of view for each product to choose a better management model. However, classification is a common method to manage the inventory in the practice of enterprise nowadays. It conducts different inventory management strategies by considering different categories of products. The categories are based on the product attributes and the operational efficiency. The research classifies rapidly learns the attributes of the training set and constructs the classification model by machine learning. The new model simplifies the complicated procedures of the low-volume and high-mix inventory management in practice. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:25:42Z (GMT). No. of bitstreams: 1 ntu-106-R04546028-1.pdf: 1702830 bytes, checksum: 382cb943fcbc5c71b88bc1e19746f00e (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 中文摘要 I
ABSTRACT II 目錄 III 圖目錄 V 表目錄 VI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究方法與流程 3 第二章 文獻回顧 5 2.1 產品分類相關文獻及應用 5 2.2 統計預測模型 6 2.3 存貨系統模型 7 2.3.1 存貨系統模式 8 2.3.2 服務水準與安全庫存設定 9 2.3.3 存缺貨成本估計 10 2.3.4 庫存管理績效計算式 11 2.4 機器學習式分類器 12 第三章 問題描述與研究方法 13 3.1 問題假設與模型架構 13 3.2 存貨系統模型之計算邏輯 14 3.3 存貨系統成本模型 18 3.4 統計需求預測模型 20 3.5 庫存管理模型 22 3.6 程式設計與使用流程說明 27 3.7 數值案例 31 3.8 參數分析 37 3.8.1 存缺貨成本之參數分析 37 3.8.2 服務水準之參數分析 43 3.9 物料數值分析 48 第四章 機器學習分類器 50 4.1.1 支持向量機 51 4.1.2 數值分析 53 第五章 結論與未來研究方向 59 參考文獻 61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 存貨管理 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 動態規劃 | zh_TW |
| dc.subject | 統計預測 | zh_TW |
| dc.subject | Inventory management | en |
| dc.subject | Statistic forecasting | en |
| dc.subject | Dynamic programming | en |
| dc.subject | Machine learning | en |
| dc.title | 結合機器學習與統計預測之動態庫存管理 | zh_TW |
| dc.title | Dynamic Inventory Management through Machine Learning and Statistics Forecasting Methods | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 洪一薰,黃奎隆,陳文智 | |
| dc.subject.keyword | 統計預測,存貨管理,動態規劃,機器學習, | zh_TW |
| dc.subject.keyword | Statistic forecasting,Inventory management,Dynamic programming,Machine learning, | en |
| dc.relation.page | 63 | |
| dc.identifier.doi | 10.6342/NTU201703092 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 1.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
