Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68558Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 袁小琀 | |
| dc.contributor.author | Chiu-Ju Wu | en |
| dc.contributor.author | 吳秋儒 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:25:17Z | - |
| dc.date.available | 2017-09-12 | |
| dc.date.copyright | 2017-09-12 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-18 | |
| dc.identifier.citation | 第五章 參考文獻
Andersen CB, B.L., Johansen JS, Chamieh H, Nielsen KH, Oliveira CL, Pedersen JS, Séraphin B, Le Hir H, Andersen GR. (2006). Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science 313, 1968-1972. Baginsky S, S.-K.A., Liveanu V, Yehudai-Resheff S, Bellaoui M, Settlage RE, Shabanowitz J, Hunt DF, Schuster G, Gruissem W. (2001). Chloroplast PNPase exists as a homo-multimer enzyme complex that is distinct from the Escherichia coli degradosome. RNA 7, 1464-1475. Bandyra KJ, B.M., Carpousis AJ, Luisi BF. (2013). The social fabric of the RNA degradosome. Biochim Biophys Acta 1829, 514-522. Belasco JG. (2010). All things must pass: contrasts and commonalities in eukaryotic and bacterial mRNA decay. Nat Rev Mol Cell Biol 11, 467-78. Borowski LS, D.A., Hejnowicz MS, Stepien PP, Szczesny RJ. (2013). Human mitochondrial RNA decay mediated by PNPase-hSuv3 complex takes place in distinct foci. Nucleic Acids Res 41, 1223-1240. Borowski LS, S.R., Brzezniak LK, Stepien PP. (2010). RNA turnover in human mitochondria: more questions than answers? Biochim Biophys Acta 1797, 1066-1070. Burger A, W.C., Boshoff A. (2011). Current perspectives of the Escherichia coli RNA degradosome. Biotechnol Lett 33, 2337-2350. Carpousis AJ. (2007). The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. Annu Rev Microbiol 61, 71-87. Carzaniga T, M.E., Nardini M, Regonesi ME, Greco C, Briani F, De Gioia L, Dehò G, Tortora P. (2014). A conserved loop in polynucleotide phosphorylase (PNPase) essential for both RNA and ADP/phosphate binding. Biochimie 97, 49-59. Chen CY, S.A. (2011). Mechanisms of deadenylation-dependent decay. Wiley Interdiscip Rev RNA 2, 167-183. Cheng ZF, D.M. (2005). An important role for RNase R in mRNA decay. Mol Cell 17, 313-318. Domínguez-Malfavón L, I.L., Luisi BF, García-Villegas R, García-Mena J. (2013). The assembly and distribution in vivo of the Escherichia coli RNA degradosome. Biochimie 95, 2034-2041. Halbach F, R.P., Rode M, Conti E (2013). The yeast ski complex: crystal structure and RNA channeling to the exosome complex. Cell 154, 814-826. Hardwick SW, G.T., Hug I, Jenal U, Luisi BF. (2012 ). Crystal structure of Caulobacter crescentus polynucleotide phosphorylase reveals a mechanism of RNA substrate channelling and RNA degradosome assembly. Open Biol 2. Huen J, L.C., Golzarroshan B, Yi WL, Yang WZ, Yuan HS. (2017). Structural insights into a unique dimeric DEAD-Box helicase CshA that promotes RNA decay. Structure 25, 469-481. Jedrzejczak R, W.J., Dauter M, Szczesny RJ, Stepien PP, Dauter Z. (2011). Human Suv3 protein reveals unique features among SF2 helicases. Acta Crystal D, 988-996. Kaberdin VR, S.D., Lin-Chao S (2011). Composition and conservation of the mRNA-degrading machinery in bacteria. J Biomed Sci 18. Khidr L, W.G., Davila A, Procaccio V, Wallace D, Lee WH. (2008). Role of SUV3 helicase in maintaining mitochondrial homeostasis in human cells. J Biol Chem 283, 27064-27073. Klostermeier D, R.M. (2009 ). A novel dimerization motif in the C-terminal domain of the Thermus thermophilus DEAD box helicase Hera confers substantial flexibility. Nucleic Acids Res 37, 421-430. Kowalinski E, K.A., Ebert J, Reichelt P, Stegmann E, Habermann B, Conti E. (2016). Structure of a cytoplasmic 11-subunit RNA exosome complex. Mol Cell 63, 125-134. Liang W, D.M. (2013). Ribosomes regulate the stability and action of the exoribonuclease RNase R. J Biol Chem 288, 34791-34798. Lin CL, W.Y., Yang WZ, Hsiao YY, Yuan HS. (2012). Crystal structure of human polynucleotide phosphorylase: insights into its domain function in RNA binding and degradation. Nucleic Acids Res 40, 4146-4157. Lykke-Andersen S, B.D., Jensen TH. (2009). Origins and activities of the eukaryotic exosome. J Cell Sci 15, 1487-1494. Makino DL, B.M., Conti E. (2013). Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature 495, 70-75. Mallam AL, D.C.M., Gilman B, Sidote DJ, Lambowitz AM. (2012). Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p. Nature 490, 121-125. Palumbo MC, F.L., Paci P. (2015). Kinetics effects and modeling of mRNA turnover. Wiley Interdiscip Rev RNA 6, 327-336. Portnoy V, P.G., Yehudai-Resheff S, Glaser F, Schuster G. (2008 ). Analysis of the human polynucleotide phosphorylase (PNPase) reveals differences in RNA binding and response to phosphate compared to its bacterial and chloroplast counterparts. RNA 14, 297-309. Richards J, S.T., Svetlanov A, Karzai AW. (2008). Quality control of bacterial mRNA decoding and decay. Biochim Biophys Acta 1779, 574-582. Schoenberg DR, M.L. (2012). Regulation of cytoplasmic mRNA decay. Nat Rev Genet 13, 246-259. Shi Z, Y.W., Lin-Chao S, Chak KF, Yuan HS. (2008). Crystal structure of Escherichia coli PNPase: central channel residues are involved in processive RNA degradation. RNA 14, 2361-2371. Slomovic S, P.V., Yehudai-Resheff S, Bronshtein E, Schuster G. (2008). Polynucleotide phosphorylase and the archaeal exosome as poly(A)-polymerases. Biochim Biophys Acta 1779, 247-255. Story RM, L.H., Abelson JN. (2001). Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii. Proc Natl Acad Sci USA 98, 1465-1470. Symmons MF, J.G., Luisi BF. (2000). A duplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity, and regulation. Structure 8, 1215-1226. Synowsky SA, H.A. (2008). The yeast Ski complex is a hetero-tetramer. Protein Science 17, 119-125. Vedrenne V, G.A., De Lonlay P, Nitschke P, Serre V, Boddaert N, Altuzarra C, Mager-Heckel AM, Chretien F, Entelis N, Munnich A, Tarassov I, Rötig A. (2012). Mutation in PNPT1, which encodes a polyribonucleotide nucleotidyltransferase, impairs RNA import into mitochondria and causes respiratory-chain deficiency. Am J Hum Genet 91, 912-918. von Ameln S, W.G., Boulouiz R, Rutherford MA, Smith GM, Li Y, Pogoda HM, Nürnberg G, Stiller B, Volk AE, Borck G, Hong JS, Goodyear RJ, Abidi O, Nürnberg P, Hofmann K, Richardson GP, Hammerschmidt M, Moser T, Wollnik B, Koehler CM, Teitell MA, Barakat A, Kubisch C. (2012). A mutation in PNPT1, encoding mitochondrial-RNA-import protein PNPase, causes hereditary hearing loss. Am J Hum Genet 91, 919-927. Wang DD, S.Z., Lieser SA, Chen PL, Lee WH. (2009). Human mitochondrial SUV3 and polynucleotide phosphorylase form a 330-kDa heteropentamer to cooperatively degrade double-stranded RNA with a 3'-to-5' directionality. J Biol Chem 284, 20812-20821. Wang G, C.H., Oktay Y, Zhang J, Allen EL, Smith GM, Fan KC, Hong JS, French SW, McCaffery JM, Lightowlers RN, Morse HC 3rd, Koehler CM, Teitell MA. (2010). PNPASE regulates RNA import into mitochondria. Cell 142, 456-467. Wang L, L.M., Johnson AW. (2005). Domain interactions within the Ski2/3/8 complex and between the Ski complex and Ski7p. RNA 11, 1291-1302. Worrall JA, H.F., McKay AR, Robinson CV, Luisi BF. (2008). Allosteric activation of the ATPase activity of the Escherichia coli RhlB RNA helicase. J Biol Chem 283, 5567-5576. Yang Q, J.E. (2006). The DEAD-box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases. Nat Struct Mol Biol 13, 981-986. Zhongqi He, C.W.H. (2005). A modified molybdenum blue method for orthophosphate determination suitable for investigating enzymatic hydrolysis of organic phosphates. Comm Soil Sci Plant Anal 36, 1373-1383. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68558 | - |
| dc.description.abstract | 中文摘要
核醣核酸的降解,在基因表現以及核醣核酸品質管控上,扮演著重要的角色。核醣核酸的降解會經由一系列的酵素來進行,包含了核醣核酸內切酶、核醣核酸外切酶以及解旋酶。在核醣核酸的降解過程中,有一個重要的複合體形成,為核醣核酸降解體(RNA degradosome or exosome)。它是一個具有保留性的複合體,在原核生物以及真核生物中皆存在,能降解具有二級結構的核醣核酸。核醣核酸降解體包含由3′端往5′端進行分解核醣核酸的外切酶,以及解開二級結構的解旋酶。在人類線粒體內擔任外切酶的PNPase會和解旋酶Suv3形成線粒體內的核醣核酸降解體。然而在核醣核酸降解體中,我們並不清楚外切酶是如何和解旋酶結合,一起來降解具有二級結構的核醣核酸。所以我們以人類和小鼠的線粒體PNPase和Suv3作為研究的主題,來釐清線粒體內的RNA降解體如何組成降解RNA的複合體。 目前我們已從大腸桿菌中大量表現了老鼠線粒體內mPNPase以及mSuv3,純化的蛋白質能以3比2的比例形成穩定的mPNPase-mSuv3複合體。在人類線粒體內的hPNPase以及hSuv3亦能以3比2的比例形成穩定的複合體。藉由蛋白質刪除區塊實驗,我們發現hPNPase的S1區塊、hSuv3的NTD區塊以及C端區域,對於複合體的結合是重要的,而且hSuv3的C端區域會影響hSuv3是否能形成二聚體。生化分析的結果證實mSuv3藉由水解ATP能鬆開具有二級結構的核醣核酸,並幫助mPNPase分解具有二級結構的核醣核酸。從ATPase活性分析上,我們發現當hPNPase與hSuv3結合後,hSuv3的ATPase活性可被激化,但無論hPNPase是否具有phosphorolysis活性,對於hSuv3的ATPase活性激化上並沒有明顯差異。我們並已篩選出mPNPase的結晶條件,但由於X光繞射後所得的解析度並不高,還需要調整結晶條件。綜合以上的實驗結果,我們可推論哺乳動物線粒體內的PNPase,以S1區塊與Suv3解旋酶直接結合,形成五聚體。而Suv3以NTD區塊以及 C端區域與PNPase結合。Suv3提升PNPase降解具有二級結構的RNA的能力,PNPase亦激化Suv3的解旋酶活性。這兩個蛋白質互相作用,提高彼此的活性,可以快速的合作著來降解線粒體RNA。 | zh_TW |
| dc.description.abstract | Abstract
RNA turnover plays an important role in regulating gene expression and RNA quality surveillance. Many enzymes participate in RNA turnover, including endoribonucleases, exoribonucleases and helicases. In the process of RNA turnover, a protein complex, termed RNA degradosome in prokaryotes or exosome in eukaryotes, degrades RNAs with secondary structures. In human mitochondria, the exoribonuclease PNPase interacts with Suv3 helicase and forms the mitochondrial RNA exosome for RNA degradation. However, it remains unclear how PNPase interacts with Suv3 helicase and how they cooperatively degrade RNA with secondary structures. Here using human and mouse recombinant proteins, including PNPase and Suv3, we investigate how these two proteins are assemble into the mitochondrial exosome for RNA degradation. Both human and mouse PNPase and Suv3 were expressed in E. coli, and the purified proteins formed a stable 3-to-2 pentameric complex in which PNPase was a trimer and Suv3 was a dimer. We constructed the truncated mutants of PNPase and Suv3, and found that the S1 domain of hPNPase, and NTD and C-terminal tail of hSuv3 were involved in hPNPase-hSuv3 complex assembly. Moreover, the C-terminal tail of hSuv3 is critical for hSuv3 dimerization. Our biochemical assays further show that the exoribonuclease activity of mPNPase was promoted by mSuv3 in the presence of ATP in the degradation of structured RNA. Conversely, the ATPase activity of hSuv3 was stimulated not only by ssDNA/ssRNA, but also by hPNPase, suggesting that hPNPase directly interacts with hSuv3 to stimulate its ATPase activity. We also crystallized mPNPase, but its resolution (4.3Å) was not sufficient for structural determination. In summary, our results suggest that in mammals, the S1 domain of PNPase, and NTD and C-terminal tail of Suv3 are involved in mitochondria exosome assembly. The exoribonuclease activity of PNPase is promoted by Suv3 in the presence of ATP, and similarly, the ATPase activity of Suv3 is stimulated by its interaction with PNPase in degrading structured RNA. Bulk RNAs are thus degraded efficiently and cooperatively by the PNPase-Suv3 exosome complex in mitochondria. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:25:17Z (GMT). No. of bitstreams: 1 ntu-106-R04442031-1.pdf: 5626588 bytes, checksum: 5e1d9e2b4595b6232d611a7a192acc09 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 目錄
中文摘要 i Abstract iii 第一章 介紹 1 1.1 背景 1 1.2 大腸桿菌中mRNA降解路徑 1 1.3 真核生物的mRNA降解路徑 2 1.4 PNPase的結構與作用 4 1.5 Suv3的結構與功能 5 1.6 研究目的 5 第二章 材料與方法 7 2.1 蛋白質表現質體建構 7 2.2 重組蛋白的表現與純化 8 2.3 SDS-PAGE分析 9 2.4 外切?活性分析 10 2.5 ATPase活性分析 10 2.6 蛋白質結晶和繞射數據的收集與分析 10 第三章 實驗結果 12 3.1 人類和小鼠PNPase為三聚體(trimer) 12 3.2 人類和小鼠Suv3為二聚體(dimer) 12 3.3 PNPase與Suv3形成五聚體(hetero-pentamer) 13 3.4 PNPase與Suv3互相結合的區域 14 3.5 Suv3在有添加ATP時能促進PNPase對於雙股RNA的降解 15 3.6 PNPase與Suv3的相互作用促進Suv3的ATPase活性 15 3.7 小鼠PNPase的結晶 17 第四章 討論 18 第五章 參考文獻 19 第六章 圖表 24 圖一、大腸桿菌中mRNA降解路徑 24 圖二、大腸桿菌 RNA 降解體(RNA degradosome)的組成蛋白 25 圖三、DEAD-box helicase CshA形成雙聚體的晶體結構 26 圖四、真核生物的mRNA降解路徑 27 圖五、哺乳動物RNA降解體(RNA exosome)與Ski complex形成複合物 28 圖六、PNPase晶體結構顯示環狀結構,具有狹窄的RNA結合通道 29 圖七、Suv3單聚體的晶體結構 30 圖八、RNA降解體是個保留性複合體 31 圖九、小鼠mPNPase重組蛋白純化 32 圖十、人類hPNPase重組蛋白純化 33 圖十一、小鼠mSuv3重組蛋白純化 34 圖十二、人類hSuv3重組蛋白純化 35 圖十三、PNPase形成三聚體 36 圖十四、Suv3形成二聚體 37 圖十五、人類與小鼠的PNPase以及Suv3可結合形成穩定的五聚體複合體 38 圖十六、PNPase與Suv3互相結合的區域 39 圖十七、Suv3在有添加ATP時能促進PNPase對於雙股RNA的降解 40 圖十八、hSuv3的ATPase活性受到DNA、RNA加入的激化分析 41 圖十九、hPNPase對於hSuv3的ATPase活性激化 42 圖二十、小鼠mPNPase晶體及X光繞射結果 43 表一、小鼠mPNPase晶體繞射的統計數據 44 | |
| dc.language.iso | zh-TW | |
| dc.subject | 核醣核酸降解 | zh_TW |
| dc.subject | 線粒體核醣核酸降解體 | zh_TW |
| dc.subject | 核醣核酸外切? | zh_TW |
| dc.subject | 解旋? | zh_TW |
| dc.subject | 蛋白質互相作用 | zh_TW |
| dc.subject | RNA turnover | en |
| dc.subject | mitochondrial RNA exosome | en |
| dc.subject | exoribonuclease | en |
| dc.subject | helicase | en |
| dc.subject | protein-protein interactions | en |
| dc.title | 線粒體RNA降解體的組成與分析 | zh_TW |
| dc.title | Mapping the interaction between PNPase and Suv3 in RNA turnover | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 詹迺立,曾秀如 | |
| dc.subject.keyword | 核醣核酸降解,線粒體核醣核酸降解體,核醣核酸外切?,解旋?,蛋白質互相作用, | zh_TW |
| dc.subject.keyword | RNA turnover,mitochondrial RNA exosome,exoribonuclease,helicase,protein-protein interactions, | en |
| dc.relation.page | 44 | |
| dc.identifier.doi | 10.6342/NTU201703840 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| Appears in Collections: | 生物化學暨分子生物學科研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-106-1.pdf Restricted Access | 5.49 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
