Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68518
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李佳翰
dc.contributor.authorJun-Fu Zhangen
dc.contributor.author張鈞富zh_TW
dc.date.accessioned2021-06-17T02:23:47Z-
dc.date.available2022-08-25
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-18
dc.identifier.citation[1] Philip Richard Wallace, “The band theory of graphite,” Physical Review 71, 622 (1947).
[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197-200 (2005).
[3] J.-C. Charlier, J.-P. Michenaud, and X. Gonze, “First-principles study of the electronic properties of simple hexagonal graphite,” Phys. Rev. B 46, 4531 (1992).
[4] S. Reich, J. Maultzsch, and C. Thomsen, “Tight-binding description of graphene,” Phys. Rev. B 66, 035412 (2002).
[5] J.-K. Lee et al., “The growth of AA graphite on (111) diamond,” J. Chem. Phys. 129, 234709 (2008).
[6] R. Haag and F. K. Angew, “Polymer Therapeutics: Concepts and Applications,” Chem. Int. Ed. Engl. 45, 1198-1215 (2006).
[7] A. A. Blumberg, S. S. Pollack, C. A. J. Hoeve, “A poly (ethylene oxide)–mercuric chloride complex,” J. Polym. Sci., Part A 2, pp. 2499-2502 (1964).
[8] H. Tadokoro, “Structure of crystalline polyethers,” J. Polym. Sci. Macromol. Rev. 1, 119 (1967).
[9] I. Hamerton, B. J. Howlin, P. Klewpatinond, H. J. Shortley, S. Takeda, “Developing predictive models for polycyanurates through a comparative study of molecular simulation and empirical thermo-mechanical data,” Polymer 47, 690–698 (2006).
[10] T. L. Chantawansri, I.-C. Yeh, A. J. Hsieh, “Investigating the glass transition temperature at the atom-level in select model polyamides: A molecular dynamics study,” Polymer 81, 50–61 (2015).
[11] T. Liang, X. Yang, X. J. Zhang, “Prediction of polyimide materials with high glass-transition temperatures,” Polym. Sci., Part B: Polym. Phys. 39, 2243−2251 (2001).
[12] C. Wu, “Glass transition in single poly (ethylene oxide) chain: A molecular dynamics simulation study,” J. Polym. Sci. Part B: Polym. Phys. 55, 178-188 (2017).
[13] C. Wu, “Simulated Glass Transition of Poly (ethylene oxide) Bulk and Film: A Comparative Study,” J. Phys. Chem. B 115, 11044-11052 (2011).
[14] A. Srikanth, J. Vergara, G. Palmese, and C. F. Abrams, “The effect of alkyl chain length on material properties of fatty-acid-functionalized amidoamine-epoxy systems,” European Polymer Journal 89, 1-12 (2017).
[15] K. Vollmayr, W. Kob, and K. Binder, “How do the properties of a glass depend on the cooling rate? A computer simulation study of a Lennard-Jones system,” J. Chem. Phys. 105, 4714 (1996).
[16] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Physical review 140, A1133 (1965).
[17] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).
[18] P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953 (1994).
[19] G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758 (1999).
[20] H. Ehrenreich and M. H. Cohen, “Self-consistent field approach to the many-electron problem,” Physical Review 115, 786 (1959).
[21] S.L. Adler, “Quantum theory of the dielectric constant in real solids,” Physical Review 126, 413 (1962).
[22] N. Wiser, “Dielectric constant with local field effects included,” Physical Review 129, 62 (1963).
[23] W. C. Swope, H. C. Andersen, P. H. Berens, K. R. Wilson, “A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters,” J. Chem. Phys. 76, 637 (1982).
[24] M. P. Allen and D. J. Tildesley, “Computer simulation of liquids,” Oxford university press (1989).
[25] W. D. Cornell, et al., “A second generation force field for the simulation of proteins, nucleic acids, and organic molecules,” J. Am. Chem. Soc. 117, 5179-5197 (1995).
[26] H. Sun, “COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds,” J. Phys. Chem. B 102, 7338-7364 (1998).
[27] H. Sun, S. J. Mumby, J. R. Maple, A. T. Hagler, “An ab initio CFF93 all-atom force field for polycarbonates,” J. Am. Chem. Soc. 116, 2978-2987 (1994).
[28] J. R. Maple, U. Dinur, and A.T. Hagler, “Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces,” Proc. Nati. Acad. Sci. 85, 5350-5354 (1988).
[29] S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys. 81, 511-519 (1984).
[30] W. G. Hoover, “Canonical dynamics: equilibrium phase-space distributions,” Phys. Rev. A 31, 1695 (1985).
[31] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science 6, 15-50 (1996).
[32] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169 (1996).
[33] L. A. Falkovsky, “Optical properties of graphene,” J. Phys.: Conf. Ser. 129 012004 (2008).
[34] K. Niedzwiedz, A. Wischnewski, W. Pyckhout-Hintzen, J. Allgaier, D. Richer, A. Faraone, “Chain Dynamics and Viscoelastic Properties of Poly (ethylene oxide),” Macromolecules 41, 4866–4872 (2008).
[35] J. E. Mark, “Polymer Data Handbook,” Oxford University Press, Inc.: Oxford (1999).
[36] J. A. Faucher, J. V. Koleske, E. R. Santee, J. J. Stratta, and C. W. Wilson III, “Glass Transitions of Ethylene Oxide Polymers” J. Appl. Phys. 37, 3962–3964 (1966).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68518-
dc.description.abstract電腦建模已經成為模擬複雜系統的強大且可靠的一項工具。本論文使用密度泛函理論探討單層和AA堆疊之雙層石墨烯之間的電子和光學性質之差異。發現了AA堆疊的雙層石墨烯具有能帶,而單層石墨烯不具有能隙。隨著內層之間距越大,能隙值隨之降低。此外,亦發現了AA堆疊的雙層石墨烯的各向異性介電常數。除了探討複合材料的熱力學和機械性質,分子動力學被用於研究聚環氧乙烷。使用聚環氧乙烷模擬單體、冷卻速率、鏈數的現象。發現了高分子材料對於系統原子數與結構弛豫時間有高度的相依性。最後,本論文探討了聚環氧乙烷和石墨烯的複合材料,並從中瞭解差異性。zh_TW
dc.description.abstractComputer modeling has become a powerful and reliable tool for simulating complex systems. In this thesis, density functional theory is used for realizing the difference of electronic and optical properties between single layer and AA-stacked bilayer graphene. It is found out that AA-stacked bilayer graphene has band gap but single layer graphene doesn’t. The larger distance between interlayer is, the smaller bandgap value is. Also, the anisotropic permittivities of AA-stacked bilayer graphene are demonstrated. In addition, to understand the thermal and mechanical properties of composite material, molecular dynamics are used for studying on poly (ethylene oxide) and monomer layer graphene. The monomer, cooling rate, chain number effects are demonstrated using pristine poly (ethylene oxide). It is found out that the polymer system is strongly depended on both number of atoms and structural relaxation time. Finally, the composite material of poly (ethylene oxide) and graphene is discussed and realized the differences.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:23:47Z (GMT). No. of bitstreams: 1
ntu-106-R04525087-1.pdf: 2632929 bytes, checksum: bba615e2de177766613bd252e375f241 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
Contents iv
List of Figure vi
List of Table viii
Chapter 1 Introduction 1
Chapter 2 Theory 5
2.1 Density Functional Theory 5
2.1.1 Kohn-Sham Equation 5
2.1.2 Generalized Gradient Approximation 6
2.1.3 Linear density response function 6
2.2 Molecular Dynamics 8
2.2.1 Newton’s equation of motion 8
2.2.2 Numerical method of Newton’s equation 8
2.2.3 Ensembles 11
2.2.4 Material properties 11
Chapter 3 Electronic and Optical Properties of Graphene 13
3.1 Simulation Model 13
3.2 Geometric Optimizations of AA-stacked Bilayer Graphene 14
3.3 Electronic Band Structure of AA-stacked Bilayer Graphene 16
3.4 Optical Properties of AA-stacked Bilayer Graphene 19
Chapter 4 Thermal Properties of Poly (ethylene oxide) 25
4.1 Simulation Model 25
4.2 Monomers 29
4.3 Cooling Rates 33
4.4 Chain Number Effect 37
Chapter 5 Conclusions 40
Reference 42
dc.language.isoen
dc.subject分子動力學zh_TW
dc.subject密度泛函理論zh_TW
dc.subject墨烯zh_TW
dc.subject玻璃轉移溫度zh_TW
dc.subject熱膨脹係數zh_TW
dc.subject聚環氧乙烷zh_TW
dc.subject介電常數zh_TW
dc.subjectthermal expansion coefficienten
dc.subjectmolecular dynamicsen
dc.subjectgrapheneen
dc.subjectpoly (ethylene oxide)en
dc.subjectpermittivityen
dc.subjectglass transition temperatureen
dc.subjectdensity functional theoryen
dc.title利用第一原理計算AA堆疊石墨烯之光學性質與分子動力學計算聚氧乙烯之熱學性質zh_TW
dc.titleStudies on Optical Properties of AA-Stacked Bilayer Graphene using First Principle and on Thermal Properties of Poly (ethylene oxide) using Molecular Dynamicsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許文翰,陳詩雯,李玟頡,王耀?
dc.subject.keyword密度泛函理論,分子動力學,墨烯,聚環氧乙烷,介電常數,玻璃轉移溫度,熱膨脹係數,zh_TW
dc.subject.keyworddensity functional theory,molecular dynamics,graphene,poly (ethylene oxide),permittivity,glass transition temperature,thermal expansion coefficient,en
dc.relation.page45
dc.identifier.doi10.6342/NTU201703339
dc.rights.note有償授權
dc.date.accepted2017-08-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved