Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68492
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李坤彥
dc.contributor.authorChiao Fuen
dc.contributor.author傅喬zh_TW
dc.date.accessioned2021-06-17T02:22:52Z-
dc.date.available2020-08-25
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-19
dc.identifier.citation[1] D.-H. Kim, and J. Kim, “Synthesis of LiFePO4 Nanoparticles in Polyol Medium and Their Electrochemical Properties,” Electrochemical and Solid-State, vol. 9, no. 9, pp. 439-442, 2006.
[2] L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, “A review on the key issues for lithium-ion battery management in electric vehicles,” Journal of Power Sources, vol. 226, pp. 272-288, Mar 15, 2013.
[3] J. Molenda, W. Ojczyk, and J. Marzec, “Electrical conductivity and reaction with lithium of LiFe1-yMnyPO4 olivine-type cathode materials,” Journal of Power Sources, vol. 174, no. 2, pp. 689-694, 2007.
[4] M. Koltypin, D. Aurbach, L. Nazar, and B. Ellis, “On the Stability of LiFePO4 Olivine Cathodes under Various Conditions (Electrolyte Solutions and Temperatures),” Electrochemical and Solid-State, vol. 10, no. 2, pp. 40-44, 2007.
[5] L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang, and J. B. Goodenough, “Development and challenges of LiFePO4 cathode material for lithium-ion batteries,” Energy and Environmental Science vol. 4, pp. 269-284, 2010.
[6] B. Kang, and G. Ceder, “Battery materials for ultrafast charging and discharging,” Nature, vol. 458, pp. 190-193, 2009.
[7] A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, “Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries,” Journal of The Electrochemical Society, vol. 144, no. 4, pp. 1188-1194, 1997.
[8] W. A. van Schalkwijk, and B. Scrosati, Advances in Lithium-Ion Batteries, pp. 345-392, NY: Kluwer Academic Publishers, 2002.
[9] M. S. Whittingham, “Lithium Batteries and Cathode Materials,” Chemical Reviews, vol. 104, no. 10, pp. 4271-4302, 2004.
[10] A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, and J. B. Goodenough, “Effect of Structure on the Fe3+and Fe2+ Redox Couple in Iron Phosphates,” Journal of Electrochemical Society, vol. 144, no. 5, pp. 1609-1613, 1997.
[11] N. N. Shiha, C. Shivakumara, and N. Munichandraiah, “High Rate Capability of a Dual-Porosity LiFePO4 and C Composite,” Applied Materials and Interfaces, vol. 2, no. 7, pp. 2031-2038, 2010.
[12] C. M. Julien, K. Zaghib, A. Mauger, and H. Groult, “Enhanced Electrochemical Properties of LiFePO4 as Positive Electrode of Li-Ion Batteries for HEV Application,” Advances in Chemical Engineering and Science, vol. 2, pp. 321-329, 2012.
[13] S. M, M. R, and S. R, “Synthesis of surface modified LiFePO4 cathode material via polyol technique for high rate lithium secondary battery,” Applied Surface Science, vol. 337, pp. 234-240, 2015.
[14] W. Yang, Z. Zhuang, X. Chen, M. Zou, G. Zhao, Q. Feng, J. Li, Y. Lin, and Z. Huang, “A simple and novel Si surface modification on LiFePO4@C electrode and its suppression of degradation of lithium ion batteries ” Applied Surface Science, vol. 359, pp. 875-882, 2015.
[15] J. Feng, and Y. Wang, “High-rate and ultralong cycle-life LiFePO4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries,” Applied Surface Science, vol. 390, pp. 481-488, 2016.
[16] M. N. V Suryanarayanan, “Role of carbon host lattices in Li-ion intercalation/de-intercalation processes,” Journal of Power Sources, vol. 111, no. 2, pp. 193-209, 2002.
[17] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, and C. Capiglia, “Review on recent progress of nanostructured anode materials for Li-ion batteries,” Journal of Power Sources, vol. 257, pp. 421-443, 2014.
[18] B. Scrosati, and J. Garche, “Lithium batteries: Status, prospects and future,” Journal of Power Sources, vol. 195, no. 9, pp. 2419-2430, 2010.
[19] V. Srinivasan, and J. Newman, “Discharge Model for the Lithium Iron-Phosphate Electrode,” Journal of The Electrochemical Society, vol. 151, no. 10, pp. A1517, 2004.
[20] A. Dannier, L. Ferraro, R. Miceli, L. Piegari, and R. Rizzo, “Numerical and experimental validation of a LiFePO4 battery model at steady state and transient operations,” in 8th International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, 2013.
[21] A. Bard, and L. Faulkner, ELectrochemical Methods, 2 ed., New York: Wiley, 1980.
[22] D. N. Rakhmatov, and S. B. K. Vrudhula, “An Analytical High-Level Battery Model for Use in Energy Management of Portable Electronic Systems,” Computer Aided Design, pp. 488-493, 2001.
[23] M. Chen, and G. A. Rincon-Mora, “Accurate Electrical Battery Model Capable of Predicting Runtime and I–V Performance,” IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 504-511, 2006.
[24] B. Schweighofer, K. M. Raab, and G. Brasseur, “Modeling of high power automotive batteries by the use of an automated test system,” IEEE Transactions on Intrumentation and Measurement, vol. 52, no. 4, pp. 1087-1097, 2003.
[25] S. Flandrois, and B. Simon, “Carbon materials for lithium-ion rechargeable batteries,” Carbon, vol. 37, no. 2, pp. 165-180, 1999.
[26] H. Li, and H. Zhou, “Enhancing the performances of Li-ion batteries by carbon-coating: present and future,” Chemical Communications, vol. 48, pp. 1201-1217, 2012.
[27] J. Vetter, P. Novák, M. R. Wagner, C. Veit, K. C. Möller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, and A. Hammouche, “Ageing mechanisms in lithium-ion batteries,” Journal of Power Sources, vol. 147, no. 1-2, pp. 269-281, 2005.
[28] R. Spotnitz, and J. Franklin, “Abuse behavior of high-power, lithium-ion cells,” Journal of Power Sources, vol. 113, no. 1, 2003.
[29] P. Arora, R. E. White, and M. Doyle, “Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries,” Journal of Electrochemical Society, vol. 145, no. 10, pp. 3647-3667, 1998.
[30] C. Wang, X.-w. Zhang, A. J. Appleby, X. Chen, and F. E. Little, “Self-discharge of secondary lithium-ion graphite anodes ” Journal of Power Sources, vol. 112, pp. 98-104, 2002.
[31] D. Aurbach, E. Zinigrad, Y. Cohen, and H. Teller, “A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions,” Solid State Ionics, vol. 148, no. 405-416, 2002.
[32] R. Imhof, and P. Novak, “In Situ Investigation of the Electrochemical Reduction of Carbonate Electrolyte Solutions at Graphite Electrodes,” Journal of Electrochemical Society, vol. 145, no. 4, pp. 1081-1087, 1998.
[33] P. Novak, F. Joho, M. Lanz, B. Rykart, J.-C. Panitz, D. Alliata, R. Kotz, and O. Hass, “The complex electrochemistry of graphite electrodes in lithium-ion batteries,” Journal of Power Sources, vol. 97-98, pp. 39-46, 2001.
[34] J. Li, E. Murphy, J. Winnick, and P. A. Kohi, “The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries,” Journal of Power Sources, vol. 102, no. 1-2, pp. 302-309, 2001.
[35] G. Wang, H. Liu, J. Liu, S. Qiao, G. M. Lu, P. Munroe, and H. Ahn, “Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance,” Adv Mater, vol. 22, no. 44, pp. 4944-8, Nov 24, 2010.
[36] A. Ait Salah, P. Jozwiak, K. Zaghib, J. Garbarczyk, F. Gendron, A. Mauger, and C. M. Julien, “FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries,” Science Direct, vol. 65, no. 5, pp. 1007-1013, 2006.
[37] M. M. Doeff, Y. Hu, F. McLarnon, and R. Kostecki, “Effect of Surface Carbon Structure on the Electrochemical Performance of LiFePO4,” Electrochemical and Solid State Letters, vol. 6, no. 10, pp. A207-A209, 2003.
[38] A. A. Salah, A. Mauger, C. M. Julien, and F. Gendron, “Nano-sized impurity phases in relation to the mode of preparation of LiFePO4,” Materials Science and Engineering: B, vol. 129, no. 1-3, pp. 232-244, 2006.
[39] M. Wohlfahrt-Mehrens, C. Vogler, and J. Garche, “Aging mechanisms of lithium cathode materials,” Journal of Power Sources, vol. 127, no. 1-2, pp. 58-64, 2004.
[40] C. M. Burba, and R. Frech, “Raman and FTIR Spectroscopic Study of LixFePO4,” Journal of The Electrochemical Society, vol. 151, no. 7, pp. A1032-A1038, 2004.
[41] C. M. F. Burba, Roger, “Local structure in the Li-ion battery cathode material Lix(MnyFe1-y)PO4 for 0 < x ≤ 1 and y = 0.0, 0.5 and 1.0,” Journal of Power Sources, vol. 172, no. 2, pp. 870-876, 2007.
[42] N. N. Greenwood, Spectroscopic Properties of Inorganic and Organometallic Compounds: Royal Society of Chemistry, 2007.
[43] A. A. Salah, P. Jozwiak, K. Garbarczyk, K. Benkhouja, K. Zaghib, F. Gendron, and C. M. Julien, “Local structure and redox energies of lithium phosphates with olivine- and Nasicon-like structures,” Journal of Power Sources, vol. 140, no. 2, pp. 370-375, 2005.
[44] T. M. Bandhauer, S. Garmella, and T. F. Fuller, “A Critical Review of Thermal Issues in Lithium-Ion Batteries,” Journal of Electrochemical Society, vol. 158, no. 3, pp. R1-R25, 2011.
[45] M. N. Richard, and J. R. Dahn, “Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. II. Modeling the Results and Predicting Differential Scanning Calorimeter Curves,” Journal of Electrochemical Society, vol. 146, no. 6, pp. 2078-2084, 1999.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68492-
dc.description.abstract人類生活極度仰賴石油,但因地球石油儲量有限,人類開始重視綠色經濟並致力開發其他綠色能源,電動車與電動相關載具開始取代傳統石油消耗機械趨勢已然確立。磷酸鋰鐵電池為一種具有高功率、高循環數、高容量、高安全性等優點的二次電池,廣泛運用於攜帶式電子載具、電動車、太陽能儲能裝置等等。因此,研究磷酸鋰鐵電池安全性與健康程度更顯重要。
本論文將電容量10Ah、額定電壓3.3V的磷酸鋰鐵電池在不同老化條件下放電(如:不同環境溫度、不同負載電流、不同充放電循環等),直到電池達到截止電壓2V,並在放電過程中使用Virtual Bench 連接電腦人機介面LabVIEW程式即時紀錄電池放電電壓。電池達到目標之老化程度後,對不同老化情況之電池進行電性分析,電性分析完成後將電池拆解並做電化學SEM、XRD及FT-IR檢測,歸納不同老化狀態下的電池電性與電化學特性。
zh_TW
dc.description.abstractHuman life depends on fossils in past decades due to the advances in industries and engineering. Because the amount of fuels is limited, people have begun to pay attention to green economy and been committed to developing alternative energy. Electric vehicles and electric portable devices became a trend and started to replace the traditional machines with oil consumption. Lithium iron phosphate (LiFePO4) battery is a secondary battery with advantages of high power, cycle number, capacity, and safety. It’s widely used in portable electronic devices, electric vehicles, and solar energy storage. Therefore, the study about safety and health of LiFePO4 batteries is extremely important.
In this paper, LiFePO4 batteries with capacity of 10Ah and nominal voltage of 3.3V were discharged under different aging conditions (such as different experimental temperature, C-rate, and charge/discharge cycles) until batteries reached cut-off voltage of 2.0V. The electrical data was collected by Virtual Bench and recorded by LabVIEW program in the computer. After LiFePO4 batteries reached the target aging conditions and the electrical analysis was completed, LiFePO4 batteries were then dismantled and examined by electrochemical detections such as SEM, XRD and FT-IR in order to analyze correlations between electrical and electrochemical performances of LiFePO4 batteries under different aging conditions. Thermal analysis was also conducted to ensure surface temperatures of batteries didn’t exceed the suitable operating temperature for LiFePO4 batteries.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:22:52Z (GMT). No. of bitstreams: 1
ntu-106-R04525045-1.pdf: 7001877 bytes, checksum: 0ac49b8f6bcb2027607d283e2d73ba36 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Thesis Structure 2
Chapter 2 Introduction of LiFePO4 Batteries 5
2.1 Introduction of lithium ion batteries 5
2.2 Structure and electrochemical operation of LiFePO4 batteries 7
2.2.1 Structure of LiFePO4 batteries 7
2.2.2 Electrochemical operation of LiFePO4 batteries 9
2.3 Characteristics analysis of the battery models 11
2.3.1 Electrochemical model 11
2.3.2 Diffusion model 12
2.3.3 Adopted electric circuit model 13
Chapter 3 Experiment Methods 14
3.1 Experimental set up and procedure 14
3.1.1 Tested batteries and experiment aging factors 14
3.1.2 Experimental procedure 16
3.2 Charge and discharge procedure of the LiFePO4 batteries 17
3.2.1 CC-CV Charging 17
3.2.2 CC Discharge 18
3.3 Available capacity (Capacity calculation) 21
Chapter 4 Electrical Results and Analysis 23
4.1 Voltage-time analysis 23
4.1.1 Discharge voltage curve of LiFePO4 batteries under different experimental temperature 23
4.1.2 Discharge voltage curve of LiFePO4 batteries under different C-rate 26
4.1.3 Discharge voltage curve of LiFePO4 batteries under different charge and discharge cycles 30
4.2 Voltage Deviation analysis 31
4.2.1 Voltage deviations of LiFePO4 batteries under different experimental temperatures 31
4.2.2 Voltage deviations of LiFePO4 batteries under different C-rates 34
4.2.3 Voltage deviations of LiFePO4 batteries under different charge and discharge cycles 38
4.3 Capacity analysis 40
4.3.1 Capacity of LiFePO4 batteries under different experimental temperatures 40
4.3.2 Capacity of LiFePO4 batteries under different C-rates 42
4.3.3 Capacity of LiFePO4 batteries under different charge/discharge cycles 46
4.4 State of health (SOH) analysis 48
4.4.1 Introduction of SOH 48
4.4.2 SOH analysis of LiFePO4 batteries under different aging conditions 49
Chapter 5 Electrochemical Results and Analysis 52
5.1 Aging mechanism in LiFePO4 batteries 52
5.1.1 Aging mechanisms of anode 52
5.1.2 Aging mechanism of cathode 54
5.2 Scanning electron microscope (SEM) 55
5.2.1 Introduction and sample preparation of SEM 55
5.2.2 SEM analysis of LiFePO4 batteries under different aging conditions 56
5.3 Fourier-transform infrared spectrometer (FR-IR) 59
5.3.1 Introduction and sample preparation of FT-IR 59
5.3.2 FT-IR analysis of LiFePO4 batteries under different aging conditions 60
5.4 X-ray diffraction (XRD) 65
5.4.1 Introduction and sample preparation of XRD 65
5.4.2 XRD analysis of LiFePO4 batteries under different aging conditions 66
Chapter 6 Thermal Results and Analysis 72
6.1 Introduction 72
6.2 Temperature Variation 72
6.3 Trend of temperature variation related with SOH 74
Chapter 7 Summary and Future Work 75
7.1 Summary 75
7.2 Future work 78
REFERENCE 79
dc.language.isoen
dc.subject磷酸鋰鐵電池zh_TW
dc.subject電化學分析zh_TW
dc.subject電性分析zh_TW
dc.subjectLiFePO4 batteriesen
dc.subjectelectrical analysisen
dc.subjectelectrochemical analysisen
dc.subjectSEMen
dc.subjectFT-IRen
dc.subjectXRDen
dc.title磷酸鋰鐵電池在不同老化情況下之電性與電化學關係探討zh_TW
dc.titleCorrelations Between Electrical and Electrochemical Analysis of LiFePO4 Batteries Under Different Aging Conditionsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee施武陽,李佳翰,邱逢琛
dc.subject.keyword磷酸鋰鐵電池,電性分析,電化學分析,zh_TW
dc.subject.keywordLiFePO4 batteries,electrical analysis,electrochemical analysis,SEM,FT-IR,XRD,en
dc.relation.page81
dc.identifier.doi10.6342/NTU201703855
dc.rights.note有償授權
dc.date.accepted2017-08-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
6.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved