Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68463
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃升龍
dc.contributor.authorTzu-Te Yangen
dc.contributor.author楊子德zh_TW
dc.date.accessioned2021-06-17T02:21:52Z-
dc.date.available2022-08-24
dc.date.copyright2017-08-24
dc.date.issued2016
dc.date.submitted2017-08-20
dc.identifier.citation[1] M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Applied Optics, vol. 49, Issue 16, pp. D30-D61, 2010
[2] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications, ” Reports on Progress in Physics, vol. 66, pp. 239-303, 2003.
[3] C. Grivas, C. Corbari, G. Brambilla, and P. G. Lagoudakis, “Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses,” Optics Letters, vol. 37, pp. 4630-4632, 2012.
[4] P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Optics Letters, vol. 34, pp. 3334-3336, 2009.
[5] Corundum structure. [Online]. Available:
http://en.wikipedia.org/wiki/File:Corundum.GIF [Accessed:27-06-2016]
[6] Al2O3 refractive index. [Online]. Available:
http://refractiveindex.info/?group=CRYSTALS&material=Al2O3 [Accessed:27-06-2016]
[7] K. F. Wall and A. Sanchez, 'Titanium sapphire lasers,' The Lincoln Laboratory Journal, vol. 3, pp. 447-462, 1990.
[8] R. Macfarlane, J. Wong, and M. Sturge, 'Dynamic Jahn-Teller effect in octahedrally coordinated d1 impurity systems,' Physical Review, vol. 166, pp. 250-258, 1968.
[9] R. I. Laming, S. B. Poole, and E. J. Tarbox , “Pump excited-state absorption in erbium-doped fibers”, Optics Letter, vol. 13, no. 12, pp. 1084, 1988.
[10] P. Alberts, 'Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,' Journal of the Optical Society of America B, vol. 3, pp. 134-139, 1986.
[11] R. L. Aggarwal, A. Sanchez, M. Stuppi, R. E. Fahey, A. J. Strauss, W. Rapoport, and C. P. Khattak, 'Residual infrared absorption in as-grown and annealed crystals of Ti:Al2O3,' IEEE Journal of Quantum Electronics, vol. 24, pp. 1003-1008, 1988.
[12] J. Pinto, L. Esterowitz, G. Rosenblatt, M. Kokta, and D. Peressini, 'Improved Ti:sapphire laser performance with new high figure of merit crystals,' IEEE Journal of Quantum Electronics, vol. 30, pp. 2612-2616, 1994.
[13] R.S. Feigelson, 'Growth of fiber crystals,' Crystal Growth of Electronic Materials, pp. 127, 1985.
[14] J. Czochralski, 'A new method for the measurement of the crystallization rate of metals,' Zeitschrift für Physikalische Chemie, vol. 92, pp. 219-221, 1918.
[15] L. Wu, A. Wang, J. Wu, L. Wei, G. Zhu, and S. Ying, “Growth and laser properties of Ti:sapphire single crystal fibres,” Electronic Letters,vol. 31, pp. 1151-1152, 1995.
[16] A. A. Anderson, R. W. Eason, L. M. B. Hickey, M. Jelinek, C. Grivas, D. S. Gill, and N. A. Vainos, “Ti:sapphire planar waveguide laser grown by pulsed laser deposition,” Optics Letters, vol. 22, pp. 1556-1558, 1997.
[17] L. Laversenne, P. Hoffmann, M. Pollnau, P. Moretti, and J. Mugnier, “Designable buried waveguides in sapphire by proton implantation,” Applied Physics Letters, vol. 85, pp. 5167-1569, 2004.
[18] V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, and M. Pollnau, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:sapphire,” Applied Physics Letters, vol. 85, pp. 1122-1124, 2004.
[19] L. M. B. Hickey, V. Apostolopoulos, R. W. Eason, and J. S. Wilkinson, “Diffused Ti:sapphire channel-waveguide lasers,” Journal of the Optical Society of America B, vol. 21, pp. 1452-1462, 2004.
[20] C. Grivas, D. P. Shepherd, R. W. Eason, L. Laversenne, P. Moretti, C. N. Borca, and M. Pollnau, “Room-temperature continuous-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation,” Optics Letters, vol. 31, pp. 3450-3452, 2006.
[21] C. Grivas, C. Corbari, G. Brambilla, and P. G. Lagoudakis, “Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses,” Optics Letters, vol. 37, pp. 4630-4632, 2012.
[22] S. C. Wang, T. I. Yang, D. Y. Jheng, C. Y. Hsu, T. T. Yang, T. S. Ho, and S. L. Huang, “Broadband and high-brightness light source: glass-clad Ti:sapphire crystal fiber,” Optics Letters, vol. 40, pp. 5594-5597, 2015.
[23] D. Y. Jheng, K. Y. Hsu, Y. C. Liang, and S. L. Huang, “Broadly tunable and low-threshold Cr4+:YAG crystal fiber laser,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, pp. 2345559, 2014.
[24] P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” Journal of the Optical Society of America B, vol. 3, pp. 134-139 , 1986.
[25] S. P. S. Porto and R. S. Krishnan, “Raman effect of Corundum,” The Journal of Chemical Physics, vol. 47, pp. 1009-1012, 1967.
[26] W. Jia and W. M. Yen, “Raman scattering from sapphire fibers,” Journal of Raman Spectroscopy, vol. 20, pp. 785-788, 1989.
[27] J. A. Yeung and A. Yariv, “Spontaneous and stimulated Raman scattering in long low loss fibers,” IEEE Journal of Quantum Electronics, QE-14, pp. 347-350, 1978.
[28] N. Noguchi, A. Abduriyim, I. Shimizu, N. Kamegata, S. Odakea, and H. Kagi, “Imaging of internal stress around a mineral inclusion in a sapphire crystal: application of micro-Raman and photoluminescence spectroscopy,” Journal of Raman Spectroscopy, vol. 44, pp.147-154, 2013.
[29] M. S. Dresselhaus, “Solid State Physics Part II Optical Properties of Solids,” 課堂講義, 1999. [Online]. Available:
http://web.mit.edu/course/6/6.732/www/6.732-pt2.pdf [Accessed:27-06-2016]
[30] 李正中, “薄膜光學與鍍膜技術,” 藝軒圖書出版社, 2002.
[31] H. A. Macleod, “Thin film optical filter, third edition,” CRC Press Book, 2001.
[32] JEOL, 電子槍水冷式旋轉坩鍋. [Online]. Available:
http://www.jeol.co.jp/products/detail/BS_JEBG_EBGseries.html [Accessed:27-06-2016]
[33] D. Buttry, “Applications of the QCM to Electrochemistry,” A Series of Advances in Electroanalytical Chemistry, pp. 23-33, 1991.
[34] J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for determination of the optical constant n , k and the thickness of weekly absorbing thin films,” Journal of Physics E: Scientific Instruments, vol. 9, pp. 1002- 1004, 1976.
[35] S. M. Kobtsev and N. A. Sventsitskaya, “Application of birefringent filters in continuous-wave tunable lasers: a review,” Optics and Spectroscopy, vol. 73, pp. 114- 123, 1992.
[36] RefractiveIndex.Info- Quartz refractive index. [Online]. Available:
http://refractiveindex.info/?shelf=main&book=SiO2&page=Ghosh-o [Accessed:27-06-2016]
[37] D. R. Preuss and J. L. Gole, “Three-stage birefringent filter tuning smoothly over the visible region: Theoretical treatment and experimental design,” Applied Optics, vol. 19, no. 5, pp. 702, Mar. 1980.
[38] D. Brewster, “On the laws which regulate the Polarisation of light by Reflexion from transparent bodies,” Philosophical Transactions of the Royal Society of London, vol. 105, no. 0, pp. 125- 159, Jan. 1815.
[39] Thorlabs, grating tutorial. [Online]. Available: http://www.thorlabs.hk/newgrouppage9.cfm?objectgroup_id=8627 [Accessed:27-06-2016]
[40] Richardson grating, 10RG1800-500-1. [Online]. Available:
http://search.newport.com/?q=*&x2=sku&q2=10RG1800-500-1 [Accessed:27-06-2016]
[41] Y. Okabe et al., “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electronics Letters, vol. 48, no. 4, pp. 201, 2012.
[42] S. Trieswasser, “Study of ferroelectric transition of solid-solution single crystals of KNbO3-KTaO3,” Physical Review, vol. 114, no. 1, pp. 63-70, 1959.
[43] K.Nakamura, J.Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1-xNbxO3,” Applied Physics Letters., vol. 89, pp. 131115-1-3, 2006.
[44] G. E. Kugel, M. D. Fontana, and W. Kress, “Lattice dynamics of KTa1-xNbxO3 solid solutions in the cubic phase,” Physical Review’ B, vol. 35, pp. 2, 1987.
[45] T. Imai, S. Yagi, S.i Toyoda, J. Miyazu, K. Naganuma, S. Kawamura, M. Sasaura, and K. Fujiura. “Fast response varifocal lens using KTa1-xNbxO3 crystals and a simulation method with electrostrictive calculations,” Applied Optics, Vol. 51, Iss. 10, pp. 1532–1539, 2012.
[46] J. Miyazu, T. Imai, S. Toyoda, M.Sasaura, S. Yagi, K. Kato, Y. Sasa,ki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 crystals,” Applied Physics Express, vol.4, no.11, pp. 111501, 2011.
[47] S. Yagi and K. Fujiura, “Electro-optic KTN devices,” Physics Procedia, December 2014.[conference invited paper]
[48] NTTAT, KTN deflector module KAC16067, Instruction manual.
[49] Acoustic-optic modulator. [Online]. Available:
https://www.physics.rutgers.edu/grad/506/Acousto-optic%20modulator.pdf [Accessed:27-06-2016]
[50] A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Numerical and experimental analysis of erbium-doped fiber linear cavity lasers,” Optics Communications, vol. 156, no. 4-6, pp. 264–270, Nov. 1998.
[51] S. C. Wang, C. Y. Hsu, T. T. Yang, D. Y. Jheng, T. I. Yang, T. S. Ho, and S. L. Huang, “Laser-Diode pumped glass-clad Ti:sapphire crystal fiber laser,” Optics Letters, 2016. (submitted)
[52] J. Harrison, A. Finch, D. M. Rines, G. A. Rines, and P. F. Moulton, “Low-threshold, cw, all-solid-state Ti:Al2O3 laser,” Optics Letters, vol. 16, no. 8, p. 581, Apr. 1991.
[53] D. Y. Jheng, K. Y. Hsu, Y. C. Liang, and S. L. Huang, “Broadly Tunable and low-threshold Cr4+:YAG crystal fiber laser,” IEEE Journal of Selected Topics in Quantum Electronics, vol 21, pp. 16-23, 2015.
[54] Thorlabs, achromatic lens. [Online]. Available:
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3647 [Accessed:27-06-2016]
[55] P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” Journal of the Optical Society of America B, vol. 3, pp. 125-133, 1986.
[56] L. M. B. Hickey, V. Apostolopoulos, R. W. Eason, and J. S. Wilkinson, “Diffused Ti:sapphire channel-waveguide lasers,” Journal of the Optical Society of America B, vol. 21, pp. 1452-1462, 2004.
[57] J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, and D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE Journal of the Quantum Electronics, vol. 30, pp. 2612-2616, 1994.
[58] T. Danger, K. Petermann, and G. Huber, “Polarized and time-resolved measurements of excited-state absorption and stimulated emission in Ti:YAlO3 and Ti:Al2O3,” Applied Physics A:Materials Science & Processing, vol. 57, pp. 309–313, 1993.
[59] Y. Chen, S. W. Huang, A. D. Aguirre, and J. G. Fujimoto, “High-resolution line-scanning optical coherence microscopy,” Optics Letters, vol. 32, pp. 1971-1973, 2007.
[60] Coherent, “Tunable laser MBR-01,” 2016. [Online]. Available:
https://www.coherent.com/downloads/MBR01_DS_0913revB_1.pdf
[Accessed: 31-05-2016]
[61] C. Grivas, C. Corbari, G. Brambilla, and P. G. Lagoudakis, “Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses,” Optics Letters, vol. 37, no. 22, pp.4630-4632, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68463-
dc.description.abstract摻鈦藍寶石晶體為常見的寬頻雷射材料,其3-dB頻寬可達180 nm,廣泛地使用於寬頻可調波長雷射、鎖模飛秒雷射;而其中心波長為780 nm之螢光波段落在常見的人體組織之低吸收區域,因此被廣泛使用於生物醫學影像量測技術,如光學同調斷層掃描術(OCT)等。使用LHPG法生長纖心直徑為16 μm且低傳輸損耗(0.075 dB/cm)之玻璃包覆摻鈦藍寶石晶體光纖結構作為雷射之增益介質,可以提供高強度幫浦與訊號光,並克服摻鈦藍寶石晶體本質上的兩大缺點: 低吸收截面積與低螢光生命週期,達到低閥值且高效率之摻鈦藍寶石雷射。長度24 mm之玻璃纖衣摻鈦藍寶石晶體光纖經由端面研磨與拋光處理後,利用介電質電子槍蒸鍍系統於晶體光纖端面鍍製設計之光學薄膜後,做為雷射增益材料。以520-nm綠光半導體雷射作為激發光源,無外加散熱系統下,架設內腔式、外腔式與波長可調式雷射。
在內腔式雷射架構中,以20%輸出耦合鏡下,其斜線效率與閥值功率分別為24.9%與140.5 mW,且在1 W幫浦功率下,最高輸出功率為215 mW,其結果同時展現高效率與低閥值雷射特性。在增益波導效應下,其雷射輸出近乎為基模。在外腔式架構中,在高反射輸出耦合鏡下,雷射閥值為37.3 mW,其結果低於文獻所記載值;在17.8%輸出耦合鏡下,雷射斜線效率與雷射閥值分別為18.6%與123.2 mW。以雙折射濾波器或光柵輸出耦合鏡做為波長可調元件,達到波長可調雷射。在雙折射濾波器做為波長調變元件下,其可調範圍為710- 860 nm,共150 nm寬。而輸出功率大於50 mW之可調區間可達130 nm寬,可提供足夠之功率應用。在光柵輸出耦合鏡架構下,可達到波長連續可調,其範圍為693.4- 876.5 nm,共183.1 nm寬,而3 dB可調頻寬為143 nm。其可調雷射特性充分應用摻鈦藍寶石180 nm之寬頻頻寬,而低閥值且高效率之特性,具有相當大的潛力可取代目前的摻鈦藍寶石雷射。
zh_TW
dc.description.abstractTi:sapphire crystal is a widely used material. It has a wide emission spectra with center wavelength located around 780 nm and a 180-nm, 3-dB bandwidth. Due to its broadband emission spectra, there are various applications in wavelength tunable lasers and mode-locked lasers. Since its emission wavelength also sits in the region where there is low tissue absorption, there are also applications in biological imaging technologies, such as optical coherence tomography (OCT).
To solve the two drawbacks of Ti:sapphire crystal: low absorption cross section and low fluorescence lifetime, Ti3+:Al2O3 single-cladding crystal fiber was grown using the LHPG method. As the laser gain material, crystal fiber with length of 24 mm was used. The single crystal core diameter was 16 μm and the glass cladding outer diameter was 320 μm. The Ti3+ doped concentration was 0.049 wt.%, with regarding to a 0.075 dB/cm attenuation coefficient, which is the lowest value recorded for Ti:sapphire waveguide structures. After end face grinding and polishing, the crystal fiber was coating with dielectric coating using thin film E-gun deposition system to form the required optical cavity structure.
By using a 520-nm LD as the pumping source, intra-cavity and external-cavity lasers were constructed. Due to a gain guiding effect, the output mode is near fundamental mode. Under intra-cavity setup, with a 20% output coupler, the laser efficiency and laser threshold were 24.9% and 140.5 mW, respectively. The maximum output power at 1W pumping was 215 mW, achieving high slope efficiency and low threshold simultaneously. Under external-cavity setup, with high reflectance output coupler, the laser efficiency and laser threshold were 18.6% and 123.2 mW, respectively.
With wavelength tuning elements, such as inserting a birefringent filter or using a grating output coupler, tunable laser was achieved. Under birefringent filter setup, the tuning was not continuous. The wavelength tuning range was 710-860 nm, with a 150-nm width. Range of output power exceeding 50 mW was 130 nm, providing sufficient output power for various applications. Under grating setup, continuous wavelength tuning was achieved. Continuous range was 693.4- 876.5 nm, with a 183.1 nm width. With 3-dB tuning bandwidth of 143 nm, the broadband emission properties of Ti:sapphire crystal fiber were demonstrated .
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:21:52Z (GMT). No. of bitstreams: 1
ntu-105-R03941026-1.pdf: 4911073 bytes, checksum: 05ff4f3c41aa8216b605188708e60702 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝.....................................i
中文摘要 ii
Abstract................................iii
目錄.....................................v
圖目錄...................................vii
表目錄...................................xi
第一章 緒論與研究動機 1
第二章 摻鈦藍寶石晶體光纖主動元件 4
2.1 摻鈦藍寶石晶體特性 4
2.1.1 晶體之光學與物理特性 4
2.1.2 晶體電子能階系統 7
2.1.3 吸收光譜與螢光放射光譜 10
2.1.4 晶體缺陷 12
2.2 雷射加熱基座長晶法 15
2.2.1 單晶纖生長 17
2.2.2 玻璃纖衣晶體光纖製備 20
2.3 晶體光纖樣本製備 21
2.4 晶體光纖之光學特性 24
2.4.1 傳輸損耗 24
2.4.2 螢光生命週期 26
第三章 摻鈦藍寶石晶體光纖雷射之光學架構設計 31
3.1晶體光纖端面鍍膜原理以及製備 31
3.1.1 光學鍍膜原理 31
3.1.2 電子槍蒸鍍系統原理 40
3.1.3 晶體光纖鍍膜設計 45
3.2可調波長元件原理與設計 51
3.2.1 雙折射濾波器 51
3.2.2 光柵輸出耦合鏡 56
3.2.3 鉭鈮酸鋰光偏折器 59
第四章 摻鈦藍寶石晶體光纖雷射之量測與分析 62
4.1摻鈦藍寶石晶體光纖之雷射理論模型 62
4.2 腔內式摻鈦藍寶石晶體光纖雷射 67
4.2.1 半導體雷射幫浦之腔內式雷射架構圖 67
4.2.2 不同模態之雷射特性量測與模擬分析 69
4.2.3 腔內式雷射頻譜分析 74
4.3 外腔式摻鈦藍寶石晶體光纖雷射 76
4.3.1半導體雷射幫浦之外腔式雷射架構圖 76
第五章 可調波長之摻鈦藍寶石晶體光纖雷射 82
5.1 雙折射濾波器之可調波長雷射 82
5.2 光柵式輸出耦合鏡之可調波長雷射 89
第六章 總結與未來展望 95
6.1總結 95
6.2未來展望 96
參考文獻 97
附錄1 Birefringent filter simulation...............................105
附錄2 Ti:sapphire external cavity laser simulation...............................109
dc.language.isozh-TW
dc.subjectLHPG長晶zh_TW
dc.subject寬頻波長可調雷射zh_TW
dc.subject晶體光纖zh_TW
dc.subject摻鈦藍寶石zh_TW
dc.subjectTi:sapphireen
dc.subjectcrystal fiberen
dc.subjectLHPGen
dc.subjectbroadband tunable laseren
dc.title半導體雷射幫浦摻鈦藍寶石晶體光纖之可調波長雷射研究zh_TW
dc.titleThe study of laser-diode-pumped tunable Ti:sapphire crystal fiber laseren
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李穎玟,林恭如,羅家堯
dc.subject.keyword摻鈦藍寶石,晶體光纖,LHPG長晶,寬頻波長可調雷射,zh_TW
dc.subject.keywordTi:sapphire,crystal fiber,LHPG,broadband tunable laser,en
dc.relation.page117
dc.identifier.doi10.6342/NTU201602501
dc.rights.note有償授權
dc.date.accepted2017-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved