請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68459完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊汶博 | |
| dc.contributor.author | Tzu-Wei Guo | en |
| dc.contributor.author | 郭子薇 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:21:44Z | - |
| dc.date.available | 2022-08-18 | |
| dc.date.copyright | 2017-08-24 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-20 | |
| dc.identifier.citation | Acosta-Gallegos JA, Kelly JD, Gepts P. 2007. Prebreeding in common bean and use of genetic diversity from wild germplasm. Crop Science 47: 44-59.
Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55(1): 373-399. Atkinson NJ, Lilley CJ, Urwin PE. 2013. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiology 162(4): 2028-2041. Awmack CS, Leather SR. 2002. Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology 47(1): 817-844. Ballaré CL. 2011. Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends in Plant Science 16(5): 249-257. Bodenhausen N, Reymond P. 2007. Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Molecular Plant-Microbe Interactions 20(11): 1406-1420. Bonaventure G. 2012. Perception of insect feeding by plants. Plant Biology 14(6): 872-880. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1): 248-254. Bruce RJ, West CA. 1989. Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiology 91(3): 889-897. Chai H-N, Du Y-Z, Zhai B-P. 2012. Characterization of the complete mitochondrial genomes of Cnaphalocrocis medinalis and Chilo suppressalis (Lepidoptera: Pyralidae). International Journal of Biological Sciences 8(4): 561-579. Chao L-L, Wu W-J, Shih C-M. 2011. Species identification of Ixodes granulatus (Acari: Ixodidae) based on internal transcribed spacer 2 (ITS2) sequences. Experimental and Applied Acarology 54(1): 51-63. Chen H, Wilkerson CG, Kuchar JA, Phinney BS, Howe GA. 2005. Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. PNAS 102(52): 19237-19242. Chen M-S. 2008. Inducible direct plant defense against insect herbivores: A review. Insect Science 15(2): 101-114. Chen Y-L, Lee C-Y, Cheng K-T, Chang W-H, Huang R-N, Nam HG, Chen Y-R. 2014. Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato. The Plant Cell 26(10): 4135-4148. Cheng C, Chang W. 1979. Studies on varietal resistance to the brown planthopper in Taiwan. Brown planthopper: Threat to rice production in Asia: 251-271. Cheng X, Chang C, Dai S-M. 2010. Responses of striped stem borer, Chilo suppressalis (Lepidoptera: Pyralidae), from Taiwan to a range of insecticides. Pest Management Science 66(7): 762-766. Cho JR, Choi KS, Park HH, Lee S, Yum KH, Jung JK, Seo BY, Lee M. 2013. Electroantennogram and field responses of korean population of the rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Crambidae), to sex attractant candidates. Journal of Asia-Pacific Entomology 16(1): 61-66. Choudhury FK, Rivero RM, Blumwald E, Mittler R. 2017. Reactive oxygen species, abiotic stress and stress combination. The Plant Journal 90(5): 856-867. Constabel CP, Ryan CA. 1998. A survey of wound- and methyl jasmonate-induced leaf polyphenol oxidase in crop plants. Phytochemistry 47(4): 507-511. Dar TA, Uddin M, Khan MMA, Hakeem KR, Jaleel H. 2015. Jasmonates counter plant stress: A review. Environmental and Experimental Botany 115: 49-57. De Kraker J, Van Huis A, Heong K, Van Lenteren J, Rabbinge R. 1999. Population dynamics of rice leaffolders (lepidoptera: Pyralidae) and their natural enemies in irrigated rice in the Philippines. Bulletin of Entomological Research 89(5): 411-421. Diezel C, Dahl CCv, Gaquerel E, Baldwin IT. 2009. Different lepidopteran elicitors account for cross-talk in herbivory-induced phytohormone signaling. Plant Physiology 150: 1576-1586. Dogimont C, Bendahmane A, Chovelon V, Boissot N. 2010. Host plant resistance to aphids in cultivated crops: genetic and molecular bases, and interactions with aphid populations. Comptes Rendus Biologies 333(7): 566-573. Dowd PF, Lagrimini LM. 2006. Examination of the biological effects of high anionic peroxidase production in tobacco plants grown under field conditions. I. insect pest damage. Transgenic Research 15(2): 197-204. Doyle JJ. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19: 11-15. Duan C, Yu J, Bai J, Zhu Z, Wang X. 2014. Induced defense responses in rice plants against small brown planthopper infestation. The Crop Journal 2(1): 55-62. Dunse KM, Stevens JA, Lay FT, Gaspar YM, Heath RL, Anderson MA. 2010. Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field. PNAS 107(34): 15011-15015. Ehler LE. 2006. Integrated pest management (IPM): definition, historical development and implementation, and the other IPM. Pest Management Science 62(9): 787-789. Fürstenberg-Hägg J, Zagrobelny M, Bak S. 2013. Plant defense against insect herbivores. International Journal of Molecular Sciences 14(5): 10242-10297. FAO 2014. FAOSTAT Online statistical service. Available from: http://faostat.fao.org FAO, Rome. Farrar RR, Barbour JD, Kennedy GG. 1989. Quantifying food consumption and growth in insects. Ann. Entomol. Soc. Am. 82(5): 593-598. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4): 783-791. Felton GW. 2005. Indigestion is a plant's best defense. PNAS 102(52): 18771-18772. Felton GW, Donato KK, Broadway RM, Duffey SS. 1992. Impact of oxidized plant phenolics on the nutritional quality of dietar protein to a noctuid herbivore, Spodoptera exigua. Journal of Insect Physiology 38(4): 277-285. Fraenkel G, Fallil F, Kumarasinghe KS. 1981. The feeding behaviour of the rice leaf folder, Cnaphalocrocis Medinalis. Entomol. Exp. Appl. 29(2): 147-161. Fu XW, Li C, Feng HQ, Liu ZF, Chapman JW, Reynolds DR, Wu KM. 2014. Seasonal migration of Cnaphalocrocis medinalis (Lepidoptera: Crambidae) over the Bohai Sea in northern China. Bulletin of Entomological Research 104(5): 601-609. Garnas JR, Auger-Rozenberg M-A, Roques A, Bertelsmeier C, Wingfield MJ, Saccaggi DL, Roy HE, Slippers B. 2016. Complex patterns of global spread in invasive insects: eco-evolutionary and management consequences. Biological Invasions 18(4): 935-952. Geml J, Laursen GA, Timling INA, McFarland JM, Booth MG, Lennon N, Nusbaum C, Taylor DL. 2009. Molecular phylogenetic biodiversity assessment of arctic and boreal ectomycorrhizal Lactarius Pers. (Russulales; Basidiomycota) in Alaska, based on soil and sporocarp DNA. Molecular Ecology 18(10): 2213-2227. Gols R, Bukovinszky T, van Dam NM, Dicke M, Bullock JM, Harvey JA. 2008. Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica Populations. Journal of Chemical Ecology 34(2): 132-143. Guedes RNC, Cutler GC. 2014. Insecticide-induced hormesis and arthropod pest management. Pest Management Science 70(5): 690-697. Guo H-M, Li H-C, Zhou S-R, Xue H-W, Miao X-X. 2014. Cis-12-oxo-phytodienoic acid stimulates rice defense response to a piercing-sucking insect. Molecular Plant 7(11): 1683-1692. Hackett BJ, Gimnig J, Guelbeogo W, Costantini C, Koekemoer LL, Coetzee M, Collins FH, Besansky NJ. 2000. Ribosomal DNA internal transcribed spacer (ITS2) sequences differentiate Anopheles funestus and An. rivulorum, and uncover a cryptic taxon. Insect Molecular Biology 9(4): 369-374. Hajek AE. 2004. Natural enemies: an introduction to biological control: Cambridge University Press. Han Y, Wang Y, Bi J-L, Yang X-Q, Huang Y, Zhao X, Hu Y, Cai Q-N. 2009. Constitutive and induced activities of defense-related enzymes in aphid-resistant and aphid-susceptible cultivars of wheat. Journal of Chemical Ecology 35(2): 176-182. He J, Chen F, Chen S, Lv G, Deng Y, Fang W, Liu Z, Guan Z, He C. 2011. Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. Journal of Plant Physiology 168(7): 687-693. Heinrichs E. 1985. Genetic evaluation for insect resistance in rice: IRRI. Heinrichs EA, Camanag E, Romena A. 1985. Evaluation of rice cultivars for resistance to Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae). Journal of Economic Entomology 78(1): 274-278. Heong KL. 2009. Are planthopper problems caused by a breakdown in ecosystem services? Planthoppers: new threats to the sustainability of intensive rice production systems in Asia. Los Banos: International Rice Research Institute: 221-232. Huang S-H, Cheng C-H, Wu W-J. 2010. Possible impacts of climate change on rice insect pests and management tactics in Taiwan. Crop, Environment & Bioinformatics 7: 269-279. Iwen PC, Hinrichs SH, Rupp ME. 2002. Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens. Medical Mycology 40(1): 87-109. Jaiti F, Verdeil JL, El Hadrami I. 2009. Effect of jasmonic acid on the induction of polyphenoloxidase and peroxidase activities in relation to date palm resistance against Fusarium oxysporum f. sp. albedinis. Physiol. Mol. Plant Pathol. 74(1): 84-90. Ji Y-J, Zhang D-X, He L-J. 2003. Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. Molecular Ecology Notes 3(4): 581-585. Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA. 2008. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. PNAS 105(19): 7100-7105. Kawano T. 2003. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Reports 21(9): 829-837. Kawazu K, Hasegawa J-i, Honda H, Ishikawa Y, Wakamura S, Sugie H, Kamiwada H, Kamimuro T, Yoshiyasu Y, Tatsuki S. 2000. Geographical variation in female sex pheromones of the rice leaffolder moth, Cnaphalocrocis medinalis: identification of pheromone components in Japan. Entomologia Experimentalis et Applicata 96(2): 103-109. Khan ZR, Barrion AT, Litsinger JA, Castilla NP, Joshi RC. 1988. A bibliography of rice leaffolders (Lepidoptera: Pyralidae). Insect Science and its Application 9(2): 129-174. Kim Y-H, Kim CY, Song W-K, Park D-S, Kwon S-Y, Lee H-S, Bang J-W, Kwak S-S. 2008. Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 227(4): 867-881. Koga H, Dohi K, Mori M. 2004. Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of Magnaporthe grisea. Physiol. Mol. Plant Pathol. 65(1): 3-9. Komazaki S, Toda S. 2008. Differences in host preference, life cycle pattern, and insecticide susceptibility among Aphis gossypii clones and genetic relationships inferred from internal transcribed spacer 2 sequences of rDNA. Ann. Entomol. Soc. Am. 101(3): 565-572. Kroes A, Stam JM, David A, Boland W, van Loon JJA, Dicke M, Poelman EH. 2016. Plant-mediated interactions between two herbivores differentially affect a subsequently arriving third herbivore in populations of wild cabbage. Plant Biology 18(6): 981-991. Li L, Steffens JC. 2002. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215(2): 239-247. Li Y, Zhou XIN, Feng GUI, Hu H, Niu L, Hebert PDN, Huang D. 2010. COI and ITS2 sequences delimit species, reveal cryptic taxa and host specificity of fig-associated Sycophila (Hymenoptera, Eurytomidae). Molecular Ecology Resources 10(1): 31-40. Litsinger JA, Bandong JP, Canapi BL, Dela Cruz CG, Pantua PC, Alviola AL, Batay-An EH. 2006. Evaluation of action thresholds for chronic rice insect pests in the Philippines. III. Leaffolders. International Journal of Pest Management 52(3): 181-194. Lombardo L, Coppola G, Zelasco S. 2016. New technologies for insect-resistant and herbicide-tolerant plants. Trends in Biotechnology 34(1): 49-57. Maher EA, Bate NJ, Ni W, Elkind Y, Dixon RA, Lamb CJ. 1994. Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. PNAS 91(16): 7802-7806. Marinho MAT, Junqueira ACM, Azeredo-Espin AML. 2011. Evaluation of the internal transcribed spacer 2 (ITS2) as a molecular marker for phylogenetic inference using sequence and secondary structure information in blow flies (Diptera: Calliphoridae). Genetica 139(9): 1189-1207. Mithöfer A, Boland W. 2012. Plant defense against herbivores: chemical aspects. Annual Review of Plant Biology 63(1): 431-450. Mitsuhara I, Iwai T, Seo S, Yanagawa Y, Kawahigasi H, Hirose S, Ohkawa Y, Ohashi Y. 2008. Characteristic expression of twelve rice pr1 family genes in response to pathogen infection, wounding, and defense-related signal compounds Molecular Genetics and Genomics 279(4): 415-427. Nguyen D, Rieu I, Mariani C, van Dam NM. 2016. How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Molecular Biology 91(6): 727-740. Niu Y, Figueroa P, Browse J. 2011. Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis. Journal of Experimental Botany 62(6): 2143-2154. Orians CM, Pomerleau J, Ricco R. 2000. Vascular architecture generates fine scale variation in systemic induction of proteinase inhibitors in tomato. Journal of Chemical Ecology 26(2): 471-485. Padmavathi C, Katti G, Padmakumari AP, Voleti SR, Subba Rao LV. 2013. The effect of leaffolder Cnaphalocrocis medinalis (Guenee) [Lepidoptera: Pyralidae] injury on the plant physiology and yield loss in rice. Journal of Applied Entomology 137(4): 249-256. Painter RH. 1951. Insect Resistance in Crop Plants. Soil Science 72(6): 481. Pathak MD, Khan ZR. 1994. Insect pests of rice: Int. Rice Res. Inst. Ramm C, Wachholtz M, Amundsen K, Donze T, Heng-Moss T, Twigg P, Palmer NA, Sarath G, Baxendale F. 2015. Transcriptional profiling of resistant and susceptible buffalograsses in response to Blissus occiduus (Hemiptera: Blissidae) feeding. Journal of Economic Entomology 108(3): 1354-1362. Ranga Rao GV, Kumari BR, Sahrawat KL, Wani SP 2015. Integrated pest management (IPM) for reducing pesticide residues in crops and natural resources. In: Chakravarthy AK ed. New Horizons in Insect Science: Towards Sustainable Pest Management. New Delhi: Springer India, 397-412. Ranger CM, Singh AP, Frantz JM, Cañas L, Locke JC, Reding ME, Vorsa N. 2009. Influence of silicon on resistance of Zinnia elegans to Myzus persicae (Hemiptera: Aphididae). Environmental Entomology 38(1): 129-136. Rausher MD. 2001. Co-evolution and plant resistance to natural enemies. Nature 411(6839): 857-864. Rayapuram C, Baldwin IT. 2007. Increased SA in NPR1-silenced plants antagonizes JA and JA-dependent direct and indirect defenses in herbivore-attacked Nicotiana attenuata in nature. The Plant Journal 52(4): 700-715. Rekha lR, Ram Singh and Ram Singh. 2001. Sources and mechanisms of resistance in rice against rice leaffolder Cnaphalocrocis medinalis(Guenee) - A review. Agricultural Reviews 22(1): 1-12. Rodriguez-Saona C, Chalmers JA, Raj S, Thaler JS. 2005. Induced plant responses to multiple damagers: differential effects on an herbivore and its parasitoid. Oecologia 143(4): 566-577. Sabzalian MR, Saeidi G, Mirlohi A, Hatami B. 2010. Wild safflower species (Carthamus oxyacanthus): A possible source of resistance to the safflower fly (Acanthiophilus helianthi). Crop Protection 29(6): 550-555. Savary S, Willocquet L, Elazegui FA, Castilla NP, Teng PS. 2000. Rice pest constraints in tropical asia: Quantification of yield losses due to rice pests in a range of production situations. Plant Disease 84(3): 357-369. Saxena RC, Barrion AA. 2011. Biotypes of insect pests of agricultural crops. International Journal of Tropical Insect Science 8(4-5-6): 453-458. Scott IM, Tolman JH, MacArthur DC. 2015. Insecticide resistance and cross-resistance development in Colorado potato beetle Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) populations in Canada 2008–2011. Pest Management Science 71(5): 712-721. Senthilkumar R, Cheng C-P, Yeh K-W. 2010. Genetically pyramiding protease-inhibitor genes for dual broad-spectrum resistance against insect and phytopathogens in transgenic tobacco. Plant Biotechnology Journal 8(1): 65-75. Senthilraja G, Anand T, Kennedy JS, Raguchander T, Samiyappan R. 2013. Plant growth promoting rhizobacteria (PGPR) and entomopathogenic fungus bioformulation enhance the expression of defense enzymes and pathogenesis-related proteins in groundnut plants against leafminer insect and collar rot pathogen. Physiol. Mol. Plant Pathol. 82: 10-19. Shadle GL, Wesley SV, Korth KL, Chen F, Lamb C, Dixon RA. 2003. Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. Phytochemistry 64(1): 153-161. Shinya T, Hojo Y, Desaki Y, Christeller JT, Okada K, Shibuya N, Galis I. 2016. Modulation of plant defense responses to herbivores by simultaneous recognition of different herbivore-associated elicitors in rice. Scientific Reports 6: 32537. Shono Y, Hirano M. 1989. Improved mass-rearing of the rice leaffolder, Cnaphalocrocis medinalis (Guenee) (Lepidoptera : Pyralidae) using corn seedlings. Applied Entomology and Zoology 24(3): 258-263. Shufran KA, Payton TL. 2009. Limited genetic variation within and between russian wheat aphid (Hemiptera: Aphididae) biotypes in the united states. Journal of Economic Entomology 102(1): 440-445. Smith CM 2005. Arthropod biotypes. In: Smith CM ed. Plant Resistance to Arthropods: Molecular and Conventional Approaches. Dordrecht: Springer Netherlands, 345-379. Soffan A, Alghamdi SS, Aldawood AS. 2014. Peroxidase and polyphenol oxidase activity in moderate resistant and susceptible Vicia faba induced by Aphis craccivora (Hemiptera: Aphididae) infestation. Journal of Insect Science 14(1): 285-285. Stout M, Davis J 2009. Keys to the increased use of host plant resistance in integrated pest management. In: Peshin R, Dhawan AK eds. Integrated Pest Management: Innovation-Development Process: Volume 1. Dordrecht: Springer Netherlands, 163-181. Stout MJ. 2013. Reevaluating the conceptual framework for applied research on host-plant resistance. Insect Science 20(3): 263-272. Sujana G, Sharma HC, Manohar Rao D. 2012. Pod surface exudates of wild relatives of pigeonpea influence the feeding preference of the pod borer, Helicoverpa armigera. Arthropod-Plant Interactions 6(2): 231-239. Tabashnik BE, Brevault T, Carriere Y. 2013. Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotech 31(6): 510-521. Tamayo MC, Rufat M, Bravo JM, San Segundo B. 2000. Accumulation of a maize proteinase inhibitor in response to wounding and insect feeding, and characterization of its activity toward digestive proteinases of Spodoptera littoralis larvae. Planta 211(1): 62-71. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12): 2725-2729. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J. 2007. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448(7154): 661-665. Thipyapong P, Steffens JC. 1997. Tomato polyphenol oxidase (differential response of the polyphenol oxidase F promoter to injuries and wound signals). Plant Physiology 115(2): 409-418. Tonnessen BW, Manosalva P, Lang JM, Baraoidan M, Bordeos A, Mauleon R, Oard J, Hulbert S, Leung H, Leach JE. 2015. Rice phenylalanine ammonia-lyase gene OsPAL4 is associated with broad spectrum disease resistance. Plant Molecular Biology 87(3): 273-286. Toon A, Daglish GJ, Ridley AW, Emery RN, Holloway JC, Walter GH. 2016. Random mating between two widely divergent mitochondrial lineages of Cryptolestes ferrugineus (Coleoptera: Laemophloeidae): A test of species limits in a phosphine-resistant stored product pest. Journal of Economic Entomology 109(5): 2221-2228. Ueno Y, Yoshida R, Kishi-Kaboshi M, Matsushita A, Jiang C-J, Goto S, Takahashi A, Hirochika H, Takatsuji H. 2015. Abiotic stresses antagonize the rice defence pathway through the tyrosine-dephosphorylation of OsMPK6. PLOS Pathogens 11(10): e1005231. Ullrich B, Reinhold K, Niehuis O, Misof B. 2010. Secondary structure and phylogenetic analysis of the internal transcribed spacers 1 and 2 of bush crickets (Orthoptera: Tettigoniidae: Barbitistini). Journal of Zoological Systematics and Evolutionary Research 48(3): 219-228. Van Emden HF. 2004. Pest and vector control: Cambridge University Press. Vila L, Quilis J, Meynard D, Breitler JC, Marfà V, Murillo I, Vassal JM, Messeguer J, Guiderdoni E, San Segundo B. 2005. Expression of the maize proteinase inhibitor (mpi) gene in rice plants enhances resistance against the striped stem borer (Chilo suppressalis): effects on larval growth and insect gut proteinases. Plant Biotechnology Journal 3(2): 187-202. Wada T, Kobayashi M, Shimazu M. 1980. Seasonal changes of the proportions of mated females in the field population of the rice leaf roller, Cnaphalocrocis medinalis Guenee (Lepidoptera : Pyralidae). Applied Entomology and Zoology 15(1): 81-89. Waldbauer GP. 1968. The consumption and utilization of food by insects. Advances in Insect Physiology 5: 229-288. Wan X, Li J, Kim MJ, Kang TH, Jin BR, Kim I. 2011. Population genetic structure of the migratory rice leaf roller, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), inferred from the mitochondrial A+T-rich region and nuclear ITS2 sequences. Genet Mol Res 10(1): 273-294. Wang F-Y, Yang F, Lu M-H, Luo S-Y, Zhai B-P, Lim K-S, McInerney CE, Hu G. 2017. Determining the migration duration of rice leaf folder (Cnaphalocrocis medinalis (Guenée)) moths using a trajectory analytical approach. Scientific Reports 7: 39853. Wang J, Constabel CP. 2004. Three polyphenol oxidases from hybrid poplar are differentially expressed during development and after wounding and elicitor treatment. Physiologia Plantarum 122(3): 344-353. War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC. 2012. Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior 7(10): 1306-1320. War AR, Paulraj MG, Ignacimuthu S, Sharma HC. 2013. Defensive responses in groundnut against chewing and sap-sucking insects. Journal of Plant Growth Regulation 32(2): 259-272. Wei D-D, Yuan M-L, Wang Z-Y, Wang D, Wang B-J, Dou W, Wang J-J. 2011. Sequence analysis of the ribosomal internal transcribed spacers region in Psocids (Psocoptera: Liposcelididae) for phylogenetic inference and species discrimination. Journal of Economic Entomology 104(5): 1720-1729. Wu J, Baldwin IT. 2010. New insights into plant responses to the attack from insect herbivores. Annual Review of Genetics 44(1): 1-24. Xu H-X, Zheng X-S, Yang Y-J, Tian J-C, Lu Y-H, Tan K-H, Heong K-L, Lu Z-X. 2015. Methyl eugenol bioactivities as a new potential botanical insecticide against major insect pests and their natural enemies on rice (Oriza sativa). Crop Protection 72: 144-149. Yang Y, Wu Z, Xu H, Zheng X, Lu Z. 2017. Structural characterization and applications of ITS2 from rice leaffolders Cnaphalocrocis medinalis and Marasmia patnalis (Lepidoptera: Pyralidae). Journal of Asia-Pacific Entomology 20(2): 313-318. Ye M, Luo SM, Xie JF, Li YF, Xu T, Liu Y, Song YY, Zhu-Salzman K, Zeng RS. 2012. Silencing COI1 in rice increases susceptibility to chewing insects and impairs inducible defense. PLOS ONE 7(4): e36214. Yoshida K, Kaothien P, Matsui T, Kawaoka A, Shinmyo A. 2003. Molecular biology and application of plant peroxidase genes. Applied Microbiology and Biotechnology 60(6): 665-670. Zhu-Salzman K, Luthe DS, Felton GW. 2008. Arthropod-inducible proteins: Broad spectrum defenses against multiple herbivores. Plant Physiology 146(3): 852-858. 黃守宏, 鄭清煥, 陳秋男, 吳文哲. 2009. 台灣水稻害蟲發生趨勢與防治展望. 台灣水稻保護成果及新展望研討會專刊: 131-147. 廖君達, 洪巧珍. 2008. 水稻瘤野螟合成性費洛蒙田間評估. 臺中區農業改良場研究彙報 101: 45-55 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68459 | - |
| dc.description.abstract | 水稻是世界上重要的作物之一。水稻作為地球三分之一人口的主要糧食,其栽培過程常遭受病蟲害的影響,導致產量嚴重減損。瘤野螟(Cnaphalocrocismedinalis)又稱為水稻縱捲葉蟲,藉由咬食導致水稻減產而被視為台灣近幾年水稻害蟲之一。為了要預防瘤野螟持續對水稻的危害,發展抗蟲品種成為主要的研究方向之一。然而,先前研究發現昆蟲生物小種(biotype)會影響作物抗蟲品種的抗蟲能力,也就是說不同生物小種對抗蟲品種的表現亦不同。因此我們利用兩個分子標誌:粒線體 AT-rich 和核內 internal transcribed spacer 2 來檢測瘤野螟在台灣的族群,研究結果顯示瘤野螟在台灣只有一個族群。進一步,我們利用具有抗蟲潛力的五種水稻及一種感性水稻(台中在來一號)作為研究材料,分析水稻體內防禦蛋白質,如:多酚氧化酶(PPO)、苯丙胺酸裂解酶(PAL)、過氧化酶(POD)、胰蛋白抑制劑、防禦相關基因表現、植物賀爾蒙含量以及對瘤野螟發育之影響。結果顯示抗性潛力水稻具有較高的苯丙胺酸裂解酶、過氧化酶及胰蛋白抑制劑含量,且不利瘤野螟生存,此外,抗性潛力水稻清流具有較高的水楊酸、離層酸及 JA-Ile 表現,感性品種台中在來一號則是有較高的茉莉酸表現,推測具有抗性潛力的水稻能藉由誘導高含量的 JA-Ile 來啟動下游防禦機制。 | zh_TW |
| dc.description.abstract | Rice (Oryza sativa L.) is one of the most important crops in the world particularly in Asia. However, rice production and quality encounters enormous challenges, such as pests and diseases. Estimated yield losses in rice caused by pests range from 20 to 30 %. The outbreak of rice leaffolder (Cnaphalocrocis medinalis) has been recorded as an important pest of rice in Taiwan. Insect biotype, which may overcome plant resistance, has emerged as a serious problem. Thus, we used two maternally or bi-parentally inherited markers, mitochondrial AT-rich region and internal transcribed spacer 2 (ITS2) to monitor rice leaffolder population in Taiwan. The results showed that there is only one population of rice leaffolder in Taiwan. We further examined the effects of five leaffolder resistant rice varieties on insect survival. A resistant variety is defined as one that leads to a low insect survivorship. We monitored the changes of compounds known to be involved in induced plant resistance, such as defensive enzymes (PPO, PAL and POD), trypsin protease inhibitor (TPI), defensive-related genes, and phytohormone level. Our data revealed that rice variety, Qingliu, had greater response in salicylic acid (SA), abscisic acid (ABA) and jasmonyl-isoleucine (JA-Ile) compared with TN1. However, the susceptible variety TN1 had higher jasmonic acid (JA) content. It was suggested that induced JA-Ile may activate downstream defense against rice leaffolder in Qingliu. Furthermore, resistant varieties have higher levels of POD, PAL and TPI, and inducible abundance of defensive protein results in larval growth retardation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:21:44Z (GMT). No. of bitstreams: 1 ntu-106-R04621114-1.pdf: 2995331 bytes, checksum: daf05f68044316be8845975b821e03ba (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II Content IV Index of Figures and Tables VI Abbreviations IX I. INTRODUCTION 1 1.1 Insect pests constrain rice production 1 1.2 Plant-insect interaction 5 1.3 Plant defensive chemicals 6 1.4 Plant defense response: phytohormones 12 1.4.1 Jasmonic acid (JA) 12 1.4.2 Salicylic acid (SA) 13 1.5 Rice leaffolder (Cnaphalocrocis medinalis Guenee) in Taiwan 14 1.5.1 RLF damage on rice 14 1.5.2 Insect biotype concerns 15 1.6 Phylogenic analysis 17 1.7 Purpose 19 II. MATERIALS AND METHODS 20 1.1 Plant materials 20 1.2 Insects rearing 21 1.3 Phylogenetic analysis 22 1.3.1 Sample preparation and collection 22 1.3.2 DNA extraction 22 1.3.3 PCR amplification and purification for Cnaphalocrocis medinalis 23 1.3.4 Sequence and phylogenetic analysis 25 1.4 Insect Performance 25 1.5 Gene expression 26 1.5.1 RNA extraction 27 1.5.2 Quantitative RT-PCR (qRT-PCR) analysis 27 1.6 Defensive proteins activities 27 1.6.1 PPO and POD activity 28 1.6.2 PAL activity 29 1.6.3 Trypsin inhibitor activity 30 1.7 Phytohormone analysis 31 1.8 Statistical analysis 33 III. RESULTS 34 1.1 Phylogenetic analysis of Cnaphalocrocis medinalis 34 1.2 High larval mortality rate acts as resistant trait of rice variety 35 1.3 Effect of rice leaffolder on direct defense metabolites and TPI activity 37 1.4 Induction of defense gene expression upon rice leaffolder infestation 39 IV. DISCUSSION 44 V. FUTURE DIRECTIONS 54 VI. REFERENCES 72 | |
| dc.language.iso | en | |
| dc.subject | 植物與昆蟲交互作用 | zh_TW |
| dc.subject | 瘤野螟 | zh_TW |
| dc.subject | 生物小種 | zh_TW |
| dc.subject | 茉莉酸 | zh_TW |
| dc.subject | Rice leaffolder | en |
| dc.subject | biotype | en |
| dc.subject | jasmonic acid | en |
| dc.subject | plant-insect interaction | en |
| dc.title | 探討瘤野螟生物小種及水稻品種之抗性 | zh_TW |
| dc.title | Examine the Biotype of Rice Leaffolder(Cnaphalocrocis medinalis Guenee) and Associated Resistance in Rice | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張孟基,廖君達,何傳愷 | |
| dc.subject.keyword | 瘤野螟,生物小種,茉莉酸,植物與昆蟲交互作用, | zh_TW |
| dc.subject.keyword | Rice leaffolder,biotype,jasmonic acid,plant-insect interaction, | en |
| dc.relation.page | 88 | |
| dc.identifier.doi | 10.6342/NTU201704001 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
