請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68458
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳維婷(Wei-Ting Chen) | |
dc.contributor.author | Chiao-Wei Chang | en |
dc.contributor.author | 張巧薇 | zh_TW |
dc.date.accessioned | 2021-06-17T02:21:42Z | - |
dc.date.available | 2017-08-25 | |
dc.date.copyright | 2017-08-25 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-20 | |
dc.identifier.citation | 參考文獻
Ackerman, S. A., Toon, B.O., Hobbs, V.P., Kirkpatrick, P.M., & Stevens, E.D. (2004). The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432, pp. 1014-1017. Albrecht, B. A. (1989). Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, pp. 1227-1230. Boyle, J. S., & Chen, T. (1987). Synoptic aspects of the winter time East Asian monsoon. In C.-P. Chang, & T. N. Krishnamuti (Ed.), Monsoon Meteorology (pp. 125-160). Oxford University Press. Chang, C.-P., Millard, J. E., & Chen, G. (1983). Gravitational character of cold surges during winter MONES. Monthly Weather Reivew, 111, pp. 293-307. Chen, L., Zhu, Q., & Luo, H. (1991). East Asian Monsoon. China Meteorological Press, (p. 362). Chen, Y., Christensen, M. W., Xue, L., Sorooshian, A., Stephens, G. L., Rasmussen, R. M., & Seinfeld, J. H. (2012). Occurence of lower cloud albedo in ship tracks. Atmos. Chem. Phys., 12, pp. 8223-8235. Chen, Y.-C., Christensen, M. W., Stephens, G. L., & Seinfeld, J. H. (2014). Satellie-based estimate of global aerosol-cloud radiative forcing by marine warm clouds. Nature, 7, pp. 636-646. Fan, J., Wang, Y., Rosenfeld, D., & Liu, X. (2016). Review of Aerosol-Cloud Interaction: Mechanisms, Significance, and Challenges. Journal of Atmospheric Science, 73, pp. 4221-4252. Jhun, J., & Lee, E. (2004). A new East Asian winter monsoon index and associated characteristics of the winter monsoon. Journal of climate, 17(4), pp. 711-726. Jiang, H., & Feingold, G. (2006). Effect of aerosol on warm convective clouds: Aerosol-cloud-surface flux feedbacks in a new coupled large eddy model. Journal of Geophysical Research, 111, p. D01202. Koike, M., Asano, N., Nakamura, H., Sakai, S., Nagao, T. M., & Nakajima, T. Y. (2016). Modulations of aerosol impacts on cloud microphysics induced by the warm Kuroshio Current under the East Asian winter monsoon. Journal of Geophysical Research: Atmosphere, 121, pp. 12282-12297. Koike, M., Takegawa, N., Kondo, Y., Nakamura, H., Kita, K., Matsui, H., . . . Nakajima, T. Y. (2012). Measurements of regional-sclae aerosol impacts on cloud microphysics over the East China Sea: Possible influences of warm sea surface temperature over the Kuroshio ocean current. Journal of Geophysical Research, 117, p. D17205. Latham, J., Rasch, P., Chen, C.-C., Kettles, L., Gadian, A., Gettelmen, A., . . . Choularton, T. (2008). Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Philosophical transactions of the royal society, 366, pp. 3969-3987. Latham, J., Rasch, P., Chen, C.-C., Kettles, L., Gadian, A., Gettelmen, A., . . . Choularton, T. (2008). Global temperature stabilization via controoled albedo enhancement of low-level maritime clouds. Philosopjysiacl Transactions of the Royal Society A, 366, pp. 3969-3987. Lau, K.-M., & Li, M.-T. (1984). The monsoon of East Asia and its global associations-A survey. American Meteorologcial Society, 65(2), pp. 114-125. Liu, L.-W., Xie, S.-P., Yang, S., & Zhang, S.-P. (2016). Low-cloud transitions across the Kuroshio front in East China Sea. Journal of climate, 29, pp. 4429-4443. NASA. (2016, 6 29). CALIPSO Users Guide with Data Quality Summaries. Retrieved from CALIPSO-Cloud and Aerosol Lidar and Infrared Pathfinder Satellite Observations: https://www-calipso.larc.nasa.gov/resources/calipso_users_guide/ Sassen, K. (1991). The polarization lidar technique for cloud research: A review and current assessment. Bull of the American Meteorological Society, 72, pp. 1848-1866. Small, J. D., Chuang, P. Y., Feingold, G., & Jiang, H. (2009). Can aerosol decrease cloud lifetime? Geophysical Research Letter, 36, p. L16806. Sorooshian, A., Feingold, G., Lebsock, M. D., Hongli, J., & Stephens, G. L. (2010). Deconstructing the precipitating susceptibility construct: Improving methodology for aerosol-cloud precipitation studies. Journal of Geophysical Research, 115, p. D17201. Twomey, S. (1970). The influence of pollution on the shortwave albedo of clouds. Journal of the Atmospheric Science, 34, pp. 1149-1152. Wang, S., Wang, Q., & Feingold, G. (2003). Turbulence, condensation, and liquid water transport in numerically simlated nonprecipitating stratocumulus clouds. Jounal of Atmospheric Science, 60, pp. 262-278. Wood, R. (2012). Stratocumulus clouds. Monthly Weather Reivew, 140, pp. 2372-2423. Wood, R., & Bretherton, C. S. (2006). On the relationship between stratiform low cloud cover and lower-tropspheric stability. Journal of Climate, 19, pp. 6425-6432. Xue, H., & Feingold, G. (2006). Large-eddy simulations of trade wind cumuli: Investigation of aerosol indirect effects. Journal of Atmospheric Science, 63, pp. 1605-1622. Xue, H., Feingold, G., & Stevens, B. (2008). Aerosol effects on cloud, precipitation, and the origanization of shallow cumulus convection. Journal of Atmospheric Science, 65, pp. 392-406. 侯昭平. (2006). 不均勻地表情況下淺對流的大渦流模擬研究. 博士論文. 侯昭平, 余青樺, 張智昇, 張龍耀, 蔡世樵, 李亞偉, & 黃椿喜. (2014). 東亞地區冷空氣變性過程之數值研究. 大氣科學, 42(3), 頁 273-300. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68458 | - |
dc.description.abstract | 氣膠做為雲凝結核,可以透過改變雲的微觀與巨觀物理性質進而影響雲輻射力。過去研究指出,雲凝結核數量增加會導致雲滴有效半徑減少,從而抑制碰撞—合併成長,這可能會延長雲的壽命,增加雲中液態水含量、雲量與雲反照率,並產生冷卻效應。最近的研究著重於淺雲的氣膠—雲交互作用,認為雲與氣膠交互作用最重要的物理過程取決於雲的降水狀態以及大氣環境狀態。東亞冬、春季時,冬季季風環流和與黑潮是主導大氣環境的兩大因素,本研究旨在探討上述環境參數對雲的型態乃至雲-氣膠交互作用的影響。
本研究使用 2006-2010 年冬季與春季來自 A-Train 衛星序列的共同定位資料。首先,根據 CALIPSO 的雲層數資料和 Aqua-MODIS 的雲頂溫度和雲頂壓力,篩選出海洋上的單層暖雲,並應用 CloudSat 2C-PRECIP-COLUM precipitation flag 分類降水與不降水的海洋暖雲樣本。最後根據近地表穩定度(NSS)和估計逆溫強度(EIS)進一步分類雲的樣本,以探討不同環境條件下雲敏感性的變化。 當寒冷的大陸空氣移動到溫暖的海洋上時,強烈的海氣溫差會使海洋邊界層不穩定,同時雲水含量、雲量、雲光學厚度與雲頂高度均增加,顯示淺雲對流因為海洋邊界層趨於不穩定而增強。冷高壓出海時,大尺度沉降增強,在邊界層頂形成逆溫層,限制了雲頂高度的發展,整體而言,雲水含量呈現減少趨勢,雲量與雲光學厚度則是隨著逆溫強度增強而增加,表示低雲的形態則從較破碎的雲轉變成連續分布的雲。 雲敏感性分析的結果顯示,降水雲與不降水雲對氣膠的反應會受到近地面穩定度與逆溫強度的影響:在穩定的海洋邊界層中,不降水雲當中的蒸發-逸入回饋因為氣膠增加而增強,降低雲水含量,而降水雲則因為氣膠抑制了碰撞-合併成長過程,使得毛毛雨降水的形成被抑制,雲中的液態水含量因此增加。降水雲的敏感性比不降水雲更強,連帶影響雲光學厚度和雲反照率的敏感性。比較環境狀態對敏感性的影響,在不穩定的海洋邊界層以及強沉降逆溫的環境下,雲的敏感性較強。 未來擬使用高解析度模式與新一代的衛星觀測資料分析海洋暖雲降水的敏感性,以了解不同形態或發展階段的雲之間獨特的氣膠-雲交互作用,並估計東亞冬季和春季雲輻射力對氣膠的敏感性。 | zh_TW |
dc.description.abstract | Aerosols can affect the cloud radiative forcing by acting as the cloud condensation nuclei and subsequently changing the micro- and macro-physical properties of clouds. The classical theory states that the increase in CCN concentration results in the decrease of cloud droplet effective radius (Re), thereby inhibiting the coalescence process, which in turn may extend the cloud lifetime, enhance cloud water contents and increase the clod fraction, producing negative radiative forcing. More recent studies focusing on the aerosol-cloud interactions of shallow clouds have suggested that the cloud liquid water path does not necessarily increase with increasing aerosol loading, and the response depends on the precipitation state of the cloud and the thermodynamic conditions of the environment. It is found that the environmental condition in East Asian winter and spring is largely controlled by the monsoonal circulation and the warm sea surface temperature associated with the Kuroshio current. The environmental factors not only affect the types of low clouds but also the aerosol-cloud responses.
The current study applies the co-located aerosol and cloud retrievals from the A- train satellites during 2006-2010 to investigate the aerosol-cloud interactions of marine warm clouds in East Asia in winter and spring, the seasons in which the low-level marine clouds and high aerosol pollution coexist most frequently. First, the single-layer warm clouds over the open ocean are identified based on the number of cloud layers detected by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and the cloud-top temperature and pressure retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS). The precipitation flag retrieved from the Cloud Profiling Radar on CloudSat are also applied to separate the state of precipitation of the clouds. The clouds are then further classified based on the near-surface stability (NSS) and estimated inversion strength (EIS) to explore variation of the susceptibility of cloud properties under different environmental conditions. As cold continental air moves onto the warm ocean, it destabilizes the marine boundary layer, resulting in the formation of more shallow convective clouds. As the large-scale subsidence associated with the southeastward movement of Siberian high strengthens, the type of clouds transfer from broken clouds into continuous clouds. The cloud susceptibility is stronger for precipitating clouds and under unstable conditions. For non-precipitating clouds, LWP decreases slightly under the stable condition and increases in unstable condition with increasing aerosols. For precipitating clouds, LWP increases with increasing aerosols and increases more under unstable condition. Note that the susceptibility of precipitating clouds is stronger than non- precipitating ones, it results in larger cloud optical depth and cloud albedo. In the future, the susceptibility of precipitation of marine warm clouds will be analyzed by high resolution model in purpose of understanding the unique aerosol-cloud interaction among different cloud types. In addition, the aerosol-cloud radiative forcing during winter and spring in East Asia will also be estimated. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:21:42Z (GMT). No. of bitstreams: 1 ntu-106-R04229020-1.pdf: 9322007 bytes, checksum: fdd98ba0b8c2bd81f35d5c2b603fbdeb (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 致謝 ⅰ
摘要 ⅱ Abstract ⅲ 目錄 ⅴ 圖目錄 ⅶ 表目錄 viii 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 氣膠間接效應 1 1.2 東亞冬、春季的海洋暖雲型態 4 第二章 資料與研究方法 6 2.1 CALIPSO Level 2 雲與氣膠產品 6 2.2 CloudSat 2C-PRECIP-COLUMN 7 2.3 雲特性與氣膠光學特性資料 8 2.4 ECMWF-AUX 與環境變數 9 2.5 個案篩選與敏感性分析 11 第三章 東亞地區冬春季環境、氣膠分佈 12 第四章 海洋暖雲對氣膠之敏感性分析 14 4.1 不同大氣環境下的暖雲型態與氣膠變異 14 4.1.1 近地面穩定度 (NSS) 14 4.1.2 估計逆溫強度 (EIS) 16 4.2 海洋暖雲敏感性分析 18 4.2.1 近地面穩定度 (NSS) 18 4.2.2 估計逆溫強度 (EIS) 18 4.3 討論 20 第五章 結論與未來工作 22 5.1 結論 22 5.2 未來研究方向 24 參考文獻 25 附錄 53 | |
dc.language.iso | zh-TW | |
dc.title | 使用衛星觀測分析東亞冬春季海洋暖雲對氣膠之敏感性 | zh_TW |
dc.title | The Susceptibility of East Asian Marine Warm Clouds to Aerosol Index During Winter and Sparing From Satellite Observation | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳正平(Jen-Ping Chen),劉千義(Chian-Yi Liu),吳健銘(Chien-Ming Wu),蘇世顥(Shih-Hao Su) | |
dc.subject.keyword | 氣膠 - 雲交互作用,雲敏感性,東亞冬季風,共同定位, | zh_TW |
dc.subject.keyword | Aerosol-cloud interaction,cloud susceptibility,East Asian winter monsoon,co-located, | en |
dc.relation.page | 55 | |
dc.identifier.doi | 10.6342/NTU201703887 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-20 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 9.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。