請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68443完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳文中 | |
| dc.contributor.author | Shih-Chao Lin | en |
| dc.contributor.author | 林士超 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:21:13Z | - |
| dc.date.available | 2022-08-28 | |
| dc.date.copyright | 2017-08-28 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-20 | |
| dc.identifier.citation | 1. Amirtharajah, R. and A.P. Chandrakasan, Self-powered signal processing using vibration-based power generation. IEEE Journal of Solid-State Cirsuits, 1998. 33(5): p. 687-695.
2. Roundy, S., P.K. Wright, and J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, 2003. 26(11): p. 1131-1144. 3. Chiu, Y. and V.F.G. Tseng, A capacitive vibration-to-electricity energy converter with integrated mechanical switches. Journal of Micromechanics and Microengineering, 2008. 18(10): p. 104004. 4. Cheng, S., N. Wang, and D.P. Arnold, Modeling of magnetic vibrational energy harvesters using equivalent circuit representations. Journal of Micromechanics and Microengineering, 2007. 17(11): p. 2328-2335. 5. Sodano, H.A., D.J. Inman, and G. Park, A Review of Power Harvesting from Vibration Using Piezoelectric Materials. The Shock and Vibration Digest, 2004. 36(3): p. 197-205. 6. Roundy, S., et al., Improving power output for vibration-based energy scavengers. IEEE Pervasive Computing, 2005. 4(1): p. 28-36. 7. Allan, R., Energy Harvesting Efforts Are Picking Up Steam. Power Electronics Rechnology, 2012. 8. Lin, S.-C. and W.-J. Wu, Fabrication of PZT MEMS energy harvester based on silicon and stainless-steel substrates utilizing an aerosol deposition method. Journal of Micromechanics and Microengineering, 2013. 23(12): p. 125028. 9. Curie, J. and P. Curie, Development by pressure of polar electricity in hemihedral crystals with inclined faces. Bull. soc. min. de France, 1880. 3: p. 90. 10. Hankel, W.G., Abh. Sachs, 1881. 12: p. 457. 11. Hankel, W.G., Ber. Sachs, 1881. 33: p. 52. 12. Lippmann, M., On the principle of the conservation of electricity. 1881. 13. Meitzler, A., et al., IEEE standard on piezoelectricity. 1988, Society. 14. Daniels, A., M. Zhu, and A. Tiwari, Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013. 60(12): p. 2626-2633. 15. Erturk, A. and D.J. Inman, Piezoelectric energy harvesting. 2011: John Wiley & Sons. 16. K. T. Zawilski. Piezoelectric Crystals. Available: http://goo.gl/T2qcBd. 17. Choi, S., et al., Dielectric and pyroelectric properties in the Pb (Mg1/3Nb2/3) O3-PbTiO3 system. Ferroelectrics, 1989. 100(1): p. 29-38. 18. Alguero, M., et al., Processing by mechanosynthesis and properties of piezoelectric Pb (Mg 1/3 Nb 2/3) O 3–PbTiO 3 with different compositions. Acta materialia, 2006. 54(2): p. 501-511. 19. Kelly, J., et al., Effect of Composition on the Electromechanical Properties of (1‐x) Pb (Mg1/3Nb2/3) O3− XPbTiO3 Ceramics. Journal of the American Ceramic Society, 1997. 80(4): p. 957-964. 20. Singh, A.K. and D. Pandey, Evidence for M B and M C phases in the morphotropic phase boundary region of (1− x)[Pb (Mg 1/3 Nb 2/3) O 3]− x PbTiO 3: A Rietveld study. Physical Review B, 2003. 67(6): p. 064102. 21. Chen, C.-T., Fabrication of High-Quality Piezoelectric Micro Energy Harvester and of 3-1, 3-3 Mode Optimization, in Department of Engineering Science and Ocean Engineering. 2016, National Taiwan University: Taiwan. 22. Zhang, R., B. Jiang, and W. Cao, Elastic, piezoelectric, and dielectric properties of multidomain 0.67 Pb (Mg 1/3 Nb 2/3) O 3–0.33 PbTiO 3 single crystals. Journal of Applied Physics, 2001. 90(7): p. 3471-3475. 23. Kim, K., et al. Finite element analysis of piezoelectric actuator with PMN–PT single crystals for nanopositioning. Current Applied Physics, 2006. 6(6): p. 1064-1067. 24. Jiang, X., et al. Single crystal piezoelectric composites for advanced NDT ultrasound. in The 14th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring. 2007. International Society for Optics and Photonics. 25. Cheng, K., et al. Piezoelectric coefficients of PMN-0.33 PT single crystals. in Applications of Ferroelectrics, 2000. ISAF 2000. Proceedings of the 2000 12th IEEE International Symposium on. 2000. IEEE. 26. Sun, S., et al., Fabrication and electrical properties of grain-oriented 0.7 Pb (Mg 1/3 Nb 2/3) O 3–0.3 PbTiO 3 ceramics. Applied physics letters, 2004. 84(4): p. 574-576. 27. Uršič, H., et al., A large-displacement 65Pb (Mg 1/3 Nb 2/3) O 3–35PbTiO 3/Pt bimorph actuator prepared by screen printing. Sensors and Actuators B: Chemical, 2008. 133(2): p. 699-704. 28. Thiercelin, M., H. Dammak, and M.P. Thi. Electromechanical properties of PMN-PT and PZT ceramics at cryogenic temperatures. in Applications of Ferroelectrics (ISAF), 2010 IEEE International Symposium on the. 2010. IEEE. 29. Butler, J.L. and C.H. Sherman, Transducers and arrays for underwater sound. 2016: Springer. 30. Berlincourt, D., H. Krueger, and C. Near, Properties of Morgan electro ceramic ceramics. Technical Publication TP-226, Morgan Electro Ceramics, 2000. 31. L. APC International. Physical and Piezoelectric Properties of APC Materials [Online]. Available: https://goo.gl/OESPwX. 32. Lin, S.-C. and W.-J. Wu, Piezoelectric micro energy harvesters based on stainless-steel substrates. Smart Materials and Structures, 2013. 22(4): p. 045016. 33. Granstrom, J., et al., Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Materials and Structures, 2007. 16(5): p. 1810. 34. Feenstra, J., J. Granstrom, and H. Sodano, Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack. Mechanical Systems and Signal Processing, 2008. 22(3): p. 721-734. 35. Liu, J.-Q., et al., A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectronics Journal, 2008. 39(5): p. 802-806. 36. Erturk, A., J. Hoffmann, and D. Inman, A piezomagnetoelastic structure for broadband vibration energy harvesting. Applied Physics Letters, 2009. 94(25): p. 254102. 37. Morimoto, K., et al., High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers. Sensors and Actuators A: Physical, 2010. 163(1): p. 428-432. 38. Aktakka, E.E., R.L. Peterson, and K. Najafi. Thinned-PZT on SOI process and design optimization for piezoelectric inertial energy harvesting. in Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International. 2011. IEEE. 39. Lei, A., et al. MEMS-based thick film PZT vibrational energy harvester. in Micro electro mechanical systems (MEMS), 2011 IEEE 24th international conference on. 2011. IEEE. 40. Tang, G., et al., Fabrication and analysis of high-performance piezoelectric MEMS generators. Journal of Micromechanics and Microengineering, 2012. 22(6): p. 065017. 41. Lin, S.-C., High performance piezoelectric MEMS generators based on stainless steel substrate, in Department of Engineering Science and Ocean Engineering. 2014, National Taiwan University: Taiwan. 42. Tang, G., et al., Development of high performance piezoelectric d 33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film. Sensors and Actuators A: Physical, 2014. 205: p. 150-155. 43. Song, H., et al., Energy harvesting utilizing single crystal PMN-PT material and application to a self-powered accelerometer. Journal of Mechanical Design, 2009. 131(9): p. 091008. 44. Moon, S., et al., Characterization of a high-power piezoelectric energy-scavenging device based on PMN-PT piezoelectric single crystals. Journal of the Korean Physical Society, 2012. 60(2): p. 230-234. 45. Park, J.H., F. Xu, and S. Trolier-McKinstry, Dielectric and piezoelectric properties of sol–gel derived lead magnesium niobium titanate films with different textures. Journal of Applied Physics, 2001. 89(1): p. 568-574. 46. Barrow, D., et al., Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process. Journal of Applied Physics, 1997. 81(2): p. 876-881. 47. Hata, T., et al., Proposal of new mixture target for PZT thin films by reactive sputtering. Vacuum, 1998. 51(4): p. 665-671. 48. Herdier, R., et al., Piezoelectric thin films for MEMS applications—A comparative study of PZT, 0.7PMN–0.3PT and 0.9PMN–0.1PT thin films grown on Si by r.f. magnetron sputtering. Sensors and Actuators A: Physical, 2008. 148(1): p. 122-128. 49. Kanda, T., et al., Performance of hydrothermal PZT film on high intensity operation. Sensors and Actuators A: physical, 2001. 89(1): p. 16-21. 50. Nakahira, D., et al. Hydrothermal deposition of the PZT film and applications of piezoelectric actuators. in Mechatronics and Machine Vision in Practice (M2VIP), 2012 19th International Conference. 2012. IEEE. 51. White, G., et al., A model for the screen-printing of Newtonian fluids. Journal of Engineering Mathematics, 2006. 54(1): p. 49-70. 52. Gentil, S., D. Damjanovic, and N. Setter, Pb (Mg 1/3 Nb 2/3) O 3 and (1− x) Pb (Mg 1/3 Nb 2/3) O 3− xPbTiO 3 Relaxor Ferroelectric Thick Films: Processing and Electrical Characterization. Journal of electroceramics, 2004. 12(3): p. 151-161. 53. Robertson, C., R. Shipton, and D. Gray, Miniature sensors using high density screen printing. Sensor Review, 1999. 19(1): p. 33-36. 54. Akedo, J. and M. Lebedev, Microstructure and electrical properties of lead zirconate titanate (Pb (Zr52/Ti48) O3) thick films deposited by aerosol deposition method. Japanese journal of applied physics, 1999. 38(9S): p. 5397. 55. Schubert, M., Hanft, D., Moos, R.: Dense ceramic coatings manufactured with the Aerosol-Deposition-Method (ADM) at the department of functional materials; 2014. http://www.funktionsmaterialien. de/docs/Highlight_ADM_ENG.pdf (accessed on 12 February, 2015). 56. Zhao, X.M., Y. Xia, and G.M. Whitesides, Fabrication of three‐dimensional micro‐structures: Microtransfer molding. Advanced Materials, 1996. 8(10): p. 837-840. 57. Akedo, J., Aerosol Deposition Method for Fabrication of Nano Crystal Ceramic Layer. Materials Science Forum, 2004. 449-452: p. 43-48. 58. Swartz, S.L. and T.R. Shrout, FABRICATION OF PEROVSKITE LEAD MAGNESIUM NIOBATE. Mat. Res. Bull., 1982. 17: p. 1245-1250. 59. Akedo, J., Aerosol Deposition of Ceramic Thick Films at Room Temperature: Densification Mechanism of Ceramic Layers. Journal of the American Ceramic Society, 2006. 89(6): p. 1834-1839. 60. Ichiki, M., et al., <X-Ray Diffraction and Scanning Electron Microscopy Observation of Lead Zirconate Titanate Thick Film Formed by Gas Deposition Method>. Japanese Journal of Applied Physics, 1997. 36: p. 5815-5819. 61. Akedo, J., et al., Jet molding system for realization of three-dimensional micro-structures. Sensors and Actuators A: Physical, 1998. 69(1): p. 106-112. 62. Jun, A. and L. Maxim, Microstructure and Electrical Properties of Lead Zirconate Titanate (Pb(Zr 52 /Ti 48 )O 3 ) Thick Films Deposited by Aerosol Deposition Method. Japanese Journal of Applied Physics, 1999. 38(9S): p. 5397. 63. Lebedev, M., J. Akedo, and Y. Akiyama, Actuation Properties of Lead Zirconate Titanate Thick Films Structured on Si Membrane by the Aerosol Deposition Method. Japanese Journal of Applied Physics, 2000. 39(9S): p. 5600. 64. Lebedev, M. and J. Akedo, Effect of thickness on the piezoelectric properties of lead zirconate titanate films fabricated by aerosol deposition method. Japanese journal of applied physics, 2002. 41(11S): p. 6669. 65. Akedo, J. and M. Lebedev, Effects of annealing and poling conditions on piezoelectric properties of Pb (Zr 0.52, Ti 0.48) O 3 thick films formed by aerosol deposition method. Journal of crystal growth, 2002. 235(1): p. 415-420. 66. Lebedev, M. and J. Akedo, Patterning properties of PZT thick films made by aerosol deposition. Ferroelectrics, 2002. 270(1): p. 117-122. 67. Akedo, J., Study on rapid micro-structuring using Jet molding–Present status and structuring properties toward HARMST. Microsystem technologies, 2000. 6(6): p. 205-209. 68. Iwata, A. and J. Akedo, Hexagonal to cubic crystal structure transformation during aerosol deposition of aluminum nitride. Journal of Crystal Growth, 2005. 275(1): p. e1269-e1273. 69. Lebedev, M., J. Akedo, and T. Ito, Substrate heating effects on hardness of an α-Al 2 O 3 thick film formed by aerosol deposition method. Journal of Crystal Growth, 2005. 275(1): p. e1301-e1306. 70. Park, J.-H., J. Akedo, and H. Sato, High-speed metal-based optical microscanners using stainless-steel substrate and piezoelectric thick films prepared by aerosol deposition method. Sensors and Actuators A: Physical, 2007. 135(1): p. 86-91. 71. Akedo, J. and M. Lebedev, Powder preparation in aerosol deposition method for lead zirconate titanate thick films. Japanese journal of applied physics, 2002. 41(11S): p. 6980. 72. Lee, D.-W., et al., Substrate hardness dependency on properties of Al 2 O 3 thick films grown by aerosol deposition. Surface and Coatings Technology, 2012. 209: p. 160-168. 73. Akedo, J., Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices. Journal of Thermal Spray Technology, 2008. 17(2): p. 181-198. 74. Naoe, K., M. Nishiki, and A. Yumoto, Relationship between impact velocity of Al2O3 particles and deposition efficiency in aerosol deposition method. Journal of thermal spray technology, 2013. 22(8): p. 1267-1274. 75. Hanft, D., et al., An overview of the aerosol deposition method: Process fundamentals and new trends in materials applications. J. Ceram. Sci. Technol, 2015. 6(3): p. 147-182. 76. Kumar, A., et al., Optimization of poling parameters of mechanically processed PLZT 8/60/40 ceramics based on dielectric and piezoelectric studies. The European Physical Journal B, 2015. 88(11). 77. Shrout, T.R., et al., Dielectric behavior of single crystals near the (1− X) Pb (Mg1/3Nb2/3) O3-(x) PbTiO3 morphotropic phase boundary. Ferroelectrics Letters Section, 1990. 12(3): p. 63-69. 78. Cho, H., et al., Nonlinear hardening and softening resonances in micromechanical cantilever-nanotube systems originated from nanoscale geometric nonlinearities. International Journal of Solids and Structures, 2012. 49(15): p. 2059-2065. 79. Kim, P., S. Bae, and J. Seok, Resonant behaviors of a nonlinear cantilever beam with tip mass subject to an axial force and electrostatic excitation. International Journal of Mechanical Sciences, 2012. 64(1): p. 232-257. 80. Tvedt, L.G.W., D.S. Nguyen, and E. Halvorsen, Nonlinear behavior of an electrostatic energy harvester under wide-and narrowband excitation. Journal of Microelectromechanical Systems, 2010. 19(2): p. 305-316. 81. Roundy, S. and P.K. Wright, A piezoelectric vibration based generator for wireless electronics. Smart Materials and Structures, 2004. 13(5): p. 1131. 82. Lin, T.-L., Improve Performance of PZT Micro Piezoelectric Energy Harvester Fabricated by Aerosol Deposition Method, in Department of Engineering Science and Ocean Engineering. 2017, National Taiwan University: Taiwan. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68443 | - |
| dc.description.abstract | 本論文主要利用氣膠沉積法,於301不銹鋼基板上製備以PMN-PT主軸的壓電懸臂樑式能量擷取元件,並比較PMN-PT元件與PZT元件之輸出功率。本論文之元件可透過壓電材料PMN-PT,將環境中的機械震動能轉換為電能,而為了順利沉積出緻密的PMN-PT厚膜,論文中將探討氣膠沉積法的關鍵參數,透過不同粉末球磨時間與熱處理溫度的實驗,發現粉末經球磨3小時且再經過450 oC後為最佳噴塗參數,接著為了提升元件之壓電特性,其需經過退火及極化步驟,10 μm的PMN-PT元件之製程最佳參數分別為退火525 oC、極化電場30 V/μm、極化溫度150 oC、極化時間20分鐘。實驗結果顯示,本論文製備的能量擷取元件於0.5 g的震動環境下,共振頻為98 Hz,掛載最佳阻抗時輸出電壓可達7.7 Vpp而輸出功率可達90.4 μW,此輸出表現優於過去本團隊所研發的PZT元件,其於同樣0.5 g的震動環境中,最佳阻抗下之輸出電壓為6.2 Vpp、輸出功率為48.5 μW。本論文所製備的PMN-PT元件有較佳的輸出功率,主要原因是PMN-PT具有較佳的壓電常數(d31)以及介電常數(ε33),導致最後有較佳的輸出功率表現,這也顯示了PMN-PT材料於能量擷取器的研究上,具有很高的價值。 | zh_TW |
| dc.description.abstract | In the past studies, the vibration energy harvesting technologies have been studied intensively and based on material of lead zirconate titanate (PZT). The power outputs of piezoelectric MEMS generators were steadily improved year by year. Until now, the performance of energy harvesters(EH) had gradually reached the limit of the chosen materials. In our previous research, a significant increase in power output was achieved by altering the EH substrate material. In view of this, we introduce innovative piezoelectric material in this dissertation to expect a breakthrough in the limit of EH energy output. According to recently published literature, attention has been given to lead magnesium niobate–lead titanate (PMN-PT) material because of its high piezoelectric constant and electromechanical coupling factor.
In this dissertation, 10 m of PMN-PT film was successfully deposited on stainless steel substrate by aerosol deposition. First part of this dissertation is to investigate critical parameters of aerosol deposition method and we found the pre-process for starting powder is a key to deposit PMN-PT layer. Powder milled for 3 hours and heated at 450 oC were chosen as the best deposition condition. Then, in order to increase piezoelectric properties of the device, annealing and poling process were necessary and optimal parameters were described as below: annealed at 525 oC, electric field was 30 V/μm, poling temperature was 150 oC, and poling time was 20 minutes. The experimental results show that the fabricated device excited at 0.5 g vibration level can generate a maximum output voltage of 7.7 VPP and corresponding power of 90.4 μW at the resonant frequency of 98 Hz. When given a comparison with previous work, the output performance is better than the PZT-based EH with same thickness, which had maximum output voltage of 6.2 VPP and corresponding power of 48.5 μW under 0.5 g acceleration. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:21:13Z (GMT). No. of bitstreams: 1 ntu-106-R04525080-1.pdf: 6131072 bytes, checksum: a583b2e196e00928c10cfe77906021c4 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 目錄
謝誌 i 中文摘要 ii ABSTRACT iii 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 研究背景 1 1.2 論文目標 5 1.3 論文架構 6 第二章 壓電微型能量擷取器 7 2.1 壓電材料簡介 7 2.1.1 壓電材料歷史與特性 7 2.1.2 壓電效應 7 2.1.3 壓電材料種類 9 2.2 壓電本構方程式 10 2.3 壓電材料選擇 12 2.3.1 PMN-PT壓電材料 13 2.3.2 PMN-PT與PZT之比較 14 2.4 懸臂樑式壓電能量擷取器 16 2.5 壓電薄膜製程方式 18 2.5.1 溶膠凝膠法(Sol-gel) 19 2.5.2 濺鍍法(Sputtering) 19 2.5.3 水熱合成法(Hydrothermal) 20 2.5.4 網版印刷法(Screen Printing) 21 2.5.5 氣膠沉積法(Aerosol deposition) 22 2.5.6 各壓電膜鍍膜方式比較 24 第三章 壓電能量擷取器製備 26 3.1 粉末製備 26 3.2 氣膠沉積法設備 27 3.3 微型能量擷取器製程 29 3.4 材料分析 35 3.4.1 粒徑分析 35 3.4.2 晶相分析 35 3.4.3 表面分析 36 3.4.4 電性分析 36 3.5 實驗架構 37 第四章 氣膠沉積法製備PMN-PT薄膜 41 4.1 氣膠沉積法文獻回顧 41 4.2 氣膠沉積法設備之機構改良 42 4.3 粉粒體噴塗參數分析 47 4.3.1 粒徑分析 49 4.3.2 粉末表面形貌分析 51 4.3.3 晶相分析 55 4.3.4 流量分析 56 第五章 元件實驗結果與討論 58 5.1 壓電元件分析 58 5.1.1 表面形貌分析 58 5.1.2 鐵電特性分析 60 5.1.3 退火溫度最佳化分析 62 5.1.4 極化參數分析 63 5.2 元件輸出特性 66 5.2.1 開迴路電壓與共振頻率關係 66 5.2.2 開迴路電壓與加速度關係 67 5.2.3 輸出表現與阻抗之關係 68 5.2.4 實驗結果與討論 70 第六章 結論與未來展望 71 6.1 結論 71 6.2 未來展望 72 參考文獻 73 圖目錄 圖 1物聯網(Internet of Things)的架構示意圖 2 圖 2自供電系統架構示意圖 3 圖 3電子元件能耗及能量擷取[7] 5 圖 4 ABO3結構單位晶格示意圖 8 圖 5 正壓電效應示意圖 9 圖 6 逆壓電效應示意圖 9 圖 7 PMN-PT鈣鈦礦晶體結構 14 圖 8 PMN-PT相圖 14 圖 9 未裝設質量塊之元件共振頻 16 圖 10 裝設質量塊之共振頻 17 圖 11 懸臂樑結構之應變與位移量分布圖(右端為固定端,左端為自由端) 17 圖 12濺鍍設備示意圖 20 圖 13 水熱合成沉積PZT薄膜示意圖[50] 21 圖 14 網版印刷沉積示意圖[51] 21 圖 15氣膠沉積法設備圖[55] 23 圖 16 利用擋板進行氣膠沉積示意圖[56] 23 圖 17 各PZT壓電鍍膜方式所對應之膜厚關係圖 24 圖 18 各PZT壓電鍍膜方式所對應之製程溫度關係圖 25 圖 19透過Columbite Precursor Method製備PMN-PT之流程 26 圖 20 氣膠沉積設備架構圖 27 圖 21 氣膠沉積機台(a)正面整體 (b)粉末腔體細節放大圖 28 圖 22 (a)操作面板主介面 (b)試片載台選擇介面 29 圖 23 黃光製程室設備圖 30 圖 24 化學室設備圖 30 圖 25 爐管及分析室設備圖 31 圖 26 元件切割成形流程圖 31 圖 27元件濕蝕刻成形流程圖 32 圖 28元件實體圖 (a)元件切割成形、(b)元件濕蝕刻成形 34 圖 29 Mastersizer 2000雷射粒徑分析儀 35 圖 30 D2 PHASER X光繞射儀 35 圖 31 場發射掃描式電子顯微鏡 36 圖 32 鐵電量測分析設備 37 圖 33 極化示意圖 38 圖 34 極化實際架設圖 39 圖 35 極化過程示意圖 39 圖 36 輸出量測實驗架設圖 40 圖 37 新製夾具 (a)Solidworks設計圖 (b)夾具實際圖 40 圖 38 粉體與基板交互作用示意圖(不同撞擊動能及粉體形貌) [75] 42 圖 39 噴嘴剖面設計圖 43 圖 40噴嘴內部卡粉狀況 (a)舊噴嘴 (b)新噴嘴 44 圖 41 新舊噴嘴製備薄膜之表面粗糙度分析 45 圖 42 連接機構改良示意圖 46 圖 43 PMN-PT原始粉末及經過800 oC熱處理之粒徑分布圖[21] 47 圖 44 (a)平均粒徑0.4 μm之PMN-PT粉末SEM圖以及噴塗狀況(b)PMN-PT粉末經過800 oC熱處理後之SEM圖以及噴塗狀況[21] 48 圖 45 不同球磨時間之粒徑分布圖 49 圖 46不同球磨時間及不同熱處理溫度所噴塗之第一層壓電膜厚度 50 圖 47 不同球磨時間及不同熱處理溫度所噴塗之多層壓電膜厚度 50 圖 48球磨3小時及熱處理450 oC之粒徑分析 51 圖 49不同球磨時間及熱處理450 oC所噴塗之壓電膜外觀 51 圖 50 不同球磨時間之粉末及其噴塗壓電膜之SEM圖 52 圖 51 球磨3小時及熱處理450 oC所噴塗之壓電膜厚均勻度分析 53 圖 52 球磨3小時與熱處理450 oC所噴塗之壓電膜表面粗糙度 54 圖 53球磨3小時與熱處理450 oC之粉末與其噴塗壓電膜之SEM圖 54 圖 54 粉末與所沉積壓電膜之XRD 56 圖 55 不同流量之噴塗厚度關係圖 56 圖 56 元件厚度 58 圖 57 10 μm之PMN-PT元件剖面SEM圖 58 圖 58 550 °C退火元件之SEM觀測圖 (10 μm元件) 59 圖 59 退火溫度525-650 oC壓電膜之XRD (你怎麼跟TK一樣都會少標一個峰值) 60 圖 60 不同溫度退火試片之電滯曲線圖 60 圖 61退火溫度550-650 °C元件之輸出電壓測試 62 圖 62 不同極化電壓之PMN-PT元件輸出電壓 63 圖 63 不同極化溫度之PMN-PT元件輸出電壓 64 圖 64 不同極化時間之PMN-PT元件輸出電壓 65 圖 65 加速度0.5g下之輸出電壓與頻率關係圖 66 圖 66 加速度0.02g下之輸出電壓與頻率關係圖 67 圖 67 不同震動環境之輸出電壓與頻率關係圖 68 圖 68 加速度0.1 g下輸出電壓、輸出功率與負載關係圖 69 圖 69 加速度0.5 g下輸出電壓、輸出功率與負載關係圖 69 圖 70 噴塗30分鐘後粉瓶內部狀況 72 表目錄 表 1比較各種能量來源之電能密度 4 表 2比較各種震動能量擷取之電能密度 4 表 3 壓電材料的種類 10 表 4 各壓電參數之定義 11 表 5 PZT與PMN-PT特性表 [21] 15 表 6 近年壓電式震動發電元件之比較 [21] 18 表 7 0.65PMN-0.35PT壓電粉末研發特性一覽表 27 表 8 壓電能量擷取元件尺寸 34 表 9 新舊噴嘴設計之面積變化 44 表 10 本論文氣膠沉積設備之相關參數 (流量5 L/min的狀況下) 46 表 11 退火溫度550-650 °C元件之元素成分分析表 59 表 12 不同溫度退火試片之殘留極化量及介電損耗 61 表 13 PZT與PMN-PT微型壓電能量擷取器之比較 70 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鈮鎂酸鉛-鈦酸鉛 | zh_TW |
| dc.subject | 懸臂樑 | zh_TW |
| dc.subject | 壓電材料 | zh_TW |
| dc.subject | 氣膠沉積法 | zh_TW |
| dc.subject | 微振動發電元件 | zh_TW |
| dc.subject | aerosol deposition | en |
| dc.subject | cantilever beam | en |
| dc.subject | piezoelectric material | en |
| dc.subject | power harvesting | en |
| dc.subject | PMN-PT | en |
| dc.title | PMN-PT微型壓電能量擷取器之製作及其厚膜製程最佳化之研究 | zh_TW |
| dc.title | Fabrication of Thick Film Piezoelectric Micro Energy Harvester based on PMN-PT and Process Optimization | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝志文,謝宗霖,宋家驥,林順區 | |
| dc.subject.keyword | 鈮鎂酸鉛-鈦酸鉛,懸臂樑,壓電材料,氣膠沉積法,微振動發電元件, | zh_TW |
| dc.subject.keyword | PMN-PT,cantilever beam,piezoelectric material,aerosol deposition,power harvesting, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU201704061 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 5.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
