Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68421
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉秉慧(Biing-Hui Liu)
dc.contributor.authorYa-Chih Chengen
dc.contributor.author鄭雅之zh_TW
dc.date.accessioned2021-06-17T02:20:31Z-
dc.date.available2022-09-08
dc.date.copyright2017-09-08
dc.date.issued2017
dc.date.submitted2017-08-21
dc.identifier.citationAbdel-Wahhab, M. A., & Aly, S. E. (2003). Antioxidants and radical scavenging properties of vegetable extracts in rats fed aflatoxin-contaminated diet. J Agric Food Chem, 51(8), 2409-2414. doi:10.1021/jf0209185
Abdulrazzaq, Y. M., Osman, N., Yousif, Z. M., & Trad, O. (2004). Morbidity in neonates of mothers who have ingested aflatoxins. Ann Trop Paediatr, 24(2), 145-151. doi:10.1179/027249304225013420
Adamson, R. H., Correa, P., Sieber, S. M., McIntire, K. R., & Dalgard, D. W. (1976). Carcinogenicity of aflatoxin B1 in rhesus monkeys: two additional cases of primary liver cancer. J Natl Cancer Inst, 57(1), 67-78.
Ahmed, N., & Singh, U. S. (1984). Effect of aflatoxin B1 on brain serotonin and catecholamines in chickens. Toxicol Lett, 21(3), 365-367.
Alpsoy, L., & Yalvac, M. E. (2011). Key roles of vitamins A, C, and E in aflatoxin B1-induced oxidative stress. Vitam Horm, 86, 287-305. doi:10.1016/b978-0-12-386960-9.00012-5
Alunni, A., & Bally-Cuif, L. (2016). A comparative view of regenerative neurogenesis in vertebrates. Development, 143(5), 741-753. doi:10.1242/dev.122796
Anukul, N., Vangnai, K., & Mahakarnchanakul, W. (2013). Significance of regulation limits in mycotoxin contamination in Asia and risk management programs at the national level. Journal of Food and Drug Analysis, 21(3), 227-241. doi:10.1016/j.jfda.2013.07.009
Autrup, H. (1993). Transplacental transfer of genotoxins and transplacental carcinogenesis. Environ Health Perspect, 101 Suppl 2, 33-38.
Bandiera, S., Pfeffer, S., Baumert, T. F., & Zeisel, M. B. (2015). miR-122--a key factor and therapeutic target in liver disease. J Hepatol, 62(2), 448-457. doi:10.1016/j.jhep.2014.10.004
Bedard, L. L., & Massey, T. E. (2006). Aflatoxin B1-induced DNA damage and its repair. Cancer Lett, 241(2), 174-183. doi:10.1016/j.canlet.2005.11.018
Bhattacharyya, A., Chattopadhyay, R., Mitra, S., & Crowe, S. E. (2014). Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev, 94(2), 329-354. doi:10.1152/physrev.00040.2012
Bijlsma, N., & Cohen, M. M. (2016). Environmental Chemical Assessment in Clinical Practice: Unveiling the Elephant in the Room. Int J Environ Res Public Health, 13(2), 181. doi:10.3390/ijerph13020181
Bradshaw, R. A., Murray-Rust, J., Ibanez, C. F., McDonald, N. Q., Lapatto, R., & Blundell, T. L. (1994). Nerve growth factor: structure/function relationships. Protein Sci, 3(11), 1901-1913. doi:10.1002/pro.5560031102
Britzi, M., Friedman, S., Miron, J., Solomon, R., Cuneah, O., Shimshoni, J. A., . . . Shlosberg, A. (2013). Carry-over of aflatoxin B1 to aflatoxin M1 in high yielding Israeli cows in mid- and late-lactation. Toxins (Basel), 5(1), 173-183. doi:10.3390/toxins5010173
Bruchim, Y., Segev, G., Sela, U., Bdolah-Abram, T., Salomon, A., & Aroch, I. (2012). Accidental fatal aflatoxicosis due to contaminated commercial diet in 50 dogs. Res Vet Sci, 93(1), 279-287. doi:10.1016/j.rvsc.2011.07.024
Carvajal-Moreno, M. (2015). Metabolic Changes of Aflatoxin B1 to become an Active Carcinogen and the Control of this Toxin. Immunome Research, 11(3). doi:10.4172/1745-7580.10000104
Caviglia, J. M., & Schwabe, R. F. (2014). Experimental Hepatocarcinogenesis. 1866-1880. doi:10.1016/b978-0-12-386456-7.04212-x
Chandra, J., Samali, A., & Orrenius, S. (2000). Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med, 29(3-4), 323-333.
Chen, J., Chen, K., Yuan, S., Peng, X., Fang, J., Wang, F., . . . Geng, Y. (2016). Effects of aflatoxin B1 on oxidative stress markers and apoptosis of spleens in broilers. Toxicol Ind Health, 32(2), 278-284. doi:10.1177/0748233713500819
Chu, F. S. (1991). Mycotoxins: food contamination, mechanism, carcinogenic potential and preventive measures. Mutat Res, 259(3-4), 291-306.
Chu, J., & Sadler, K. C. (2009). New school in liver development: lessons from zebrafish. Hepatology, 50(5), 1656-1663. doi:10.1002/hep.23157
Cilievici, O., Moldovan, A., & Ghidus, E. (1980). Action of aflatoxin B1 on pregnant rats. Morphol Embryol (Bucur), 26(2), 125-131.
Creppy, E. E. (2002). Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol Lett, 127(1-3), 19-28.
Cullen, J. M., Marion, P. L., Sherman, G. J., Hong, X., & Newbold, J. E. (1990). Hepatic neoplasms in aflatoxin B1-treated, congenital duck hepatitis B virus-infected, and virus-free pekin ducks. Cancer Res, 50(13), 4072-4080.
Dalvi, R. R. (1986). An overview of aflatoxicosis of poultry: its characteristics, prevention and reduction. Vet Res Commun, 10(6), 429-443.
Darzynkiewicz, Z., Galkowski, D., & Zhao, H. (2008). Analysis of apoptosis by cytometry using TUNEL assay. Methods, 44(3), 250-254. doi:10.1016/j.ymeth.2007.11.008
Das, S. K., Nair, R. C., Patthey, H. L., & Mgbodile, M. U. (1978). The effects of aflatoxin B1 on rat fetal lung lipids. Biol Neonate, 33(5-6), 283-288.
De Luca, E., Zaccaria, G. M., Hadhoud, M., Rizzo, G., Ponzini, R., Morbiducci, U., & Santoro, M. M. (2014). ZebraBeat: a flexible platform for the analysis of the cardiac rate in zebrafish embryos. Scientific Reports, 4(1). doi:10.1038/srep04898
Deavall, D. G., Martin, E. A., Horner, J. M., & Roberts, R. (2012). Drug-induced oxidative stress and toxicity. J Toxicol, 2012, 645460. doi:10.1155/2012/645460
Dereszynski, D. M., Center, S. A., Randolph, J. F., Brooks, M. B., Hadden, A. G., Palyada, K. S., . . . Sanders, S. Y. (2008). Clinical and clinicopathologic features of dogs that consumed foodborne hepatotoxic aflatoxins: 72 cases (2005-2006). J Am Vet Med Assoc, 232(9), 1329-1337. doi:10.2460/javma.232.9.1329
Dethleffsen, K., Heinrich, G., Lauth, M., Knapik, E. W., & Meyer, M. (2003). Insert-containing neurotrophins in teleost fish and their relationship to nerve growth factor. Mol Cell Neurosci, 24(2), 380-394.
Dhanapal, J., Ravindrran, M. B., & Baskar, S. K. (2015). Toxic effects of aflatoxin B1 on embryonic development of zebrafish (Danio rerio): potential activity of piceatannol encapsulated chitosan/poly (lactic acid) nanoparticles. Anticancer Agents Med Chem, 15(2), 248-257.
Diener, U. L., Cole, l. R. J., Sanders, T. H., Payne, G. A., Lee, L. S., & Klich, M. A. (1987). Epidemiology of aflatoxin formation by Aspergillus flavus. Ann. Rev. Phytopathol., 25, 249-270.
DiPaolo, J. A., Elis, J., & Erwin, H. (1967). Teratogenic response by hamsters, rats and mice to aflatoxin B1. Nature, 215(5101), 638-639.
Diplock, A. T. (1994). Antioxidants and disease prevention. Mol Aspects Med, 15(4), 293-376.
Dixon, S. J., & Stockwell, B. R. (2014). The role of iron and reactive oxygen species in cell death. Nat Chem Biol, 10(1), 9-17. doi:10.1038/nchembio.1416
Dohnal, V., Wu, Q., & Kuca, K. (2014). Metabolism of aflatoxins: key enzymes and interindividual as well as interspecies differences. Arch Toxicol, 88(9), 1635-1644. doi:10.1007/s00204-014-1312-9
Doi, A. M., Patterson, P. E., & Gallagher, E. P. (2002). Variability in aflatoxin B(1)-macromolecular binding and relationship to biotransformation enzyme expression in human prenatal and adult liver. Toxicol Appl Pharmacol, 181(1), 48-59. doi:10.1006/taap.2002.9399
Doi, K., & Uetsuka, K. (2011). Mechanisms of mycotoxin-induced neurotoxicity through oxidative stress-associated pathways. Int J Mol Sci, 12(8), 5213-5237. doi:10.3390/ijms12085213
Dou, C., & Zhang, J. (2011). Effects of lead on neurogenesis during zebrafish embryonic brain development. J Hazard Mater, 194, 277-282. doi:10.1016/j.jhazmat.2011.07.106
Eaton, D. L., & Gallagher, E. P. (1994). Mechanisms of aflatoxin carcinogenesis. Annu Rev Pharmacol Toxicol, 34, 135-172. doi:10.1146/annurev.pa.34.040194.001031
Eisen, J. S. (1991). Developmental neurobiology of the zebrafish. J Neurosci, 11(2), 311-317.
El-Nahla S, Imam H, Moussa E, Ibrahim A, & A, G. (2013). Teratogenic effects of aflatoxin in Rabbits (Oryctolagus cuniculus). J. Vet. Anat., 6, 67-85.
Elis, J., & DiPaolo, J. A. (1967). Aflatoxin B1. Induction of malformations. Arch Pathol, 83(1), 53-57.
Essigmann, J. M., Croy, R. G., Bennett, R. A., & Wogan, G. N. (1982). Metabolic activation of aflatoxin B1: patterns of DNA adduct formation, removal, and excretion in relation to carcinogenesis. Drug Metab Rev, 13(4), 581-602. doi:10.3109/03602538209011088
Fischer, A. H., Jacobson, K. A., Rose, J., & Zeller, R. (2008). Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc, 2008, pdb.prot4986. doi:10.1101/pdb.prot4986
Geissler, F., & Faustman, E. M. (1988). Developmental toxicity of aflatoxin B1 in the rodent embryo in vitro: contribution of exogenous biotransformation systems to toxicity. Teratology, 37(2), 101-111. doi:10.1002/tera.1420370203
Gesing, A., & Karbownik-Lewinska, M. (2008). Protective effects of melatonin and N-acetylserotonin on aflatoxin B1-induced lipid peroxidation in rats. Cell Biochem Funct, 26(3), 314-319. doi:10.1002/cbf.1438
Greene, N. D., & Copp, A. J. (2009). Development of the vertebrate central nervous system: formation of the neural tube. Prenat Diagn, 29(4), 303-311. doi:10.1002/pd.2206
Groopman, J. D., Kensler, T. W., & Wild, C. P. (2008). Protective interventions to prevent aflatoxin-induced carcinogenesis in developing countries. Annu Rev Public Health, 29, 187-203. doi:10.1146/annurev.publhealth.29.020907.090859
Guo, S. (2009). Using zebrafish to assess the impact of drugs on neural development and function. Expert Opin Drug Discov, 4(7), 715-726. doi:10.1517/17460440902988464
He, J. H., Gao, J. M., Huang, C. J., & Li, C. Q. (2014). Zebrafish models for assessing developmental and reproductive toxicity. Neurotoxicol Teratol, 42, 35-42. doi:10.1016/j.ntt.2014.01.006
Her, G. M., Chiang, C. C., Chen, W. Y., & Wu, J. L. (2003). In vivo studies of liver-type fatty acid binding protein (L-FABP) gene expression in liver of transgenic zebrafish (Danio rerio). FEBS Lett, 538(1-3), 125-133.
Hill, A. J., Howard, C. V., & Cossins, A. R. (2002). Efficient embedding technique for preparing small specimens for stereological volume estimation: zebrafish larvae. J Microsc, 206(Pt 3), 179-181.
Hill, A. J., Teraoka, H., Heideman, W., & Peterson, R. E. (2005). Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci, 86(1), 6-19. doi:10.1093/toxsci/kfi110
Huang, R. F., Huang, S. M., Lin, B. S., Hung, C. Y., & Lu, H. T. (2002). N-Acetylcysteine, vitamin C and vitamin E diminish homocysteine thiolactone-induced apoptosis in human promyeloid HL-60 cells. J Nutr, 132(8), 2151-2156.
IARC. (1993). Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC Monogr Eval Carcinog Risks Hum, 56(1–599).
Ikegwuonu, F. I. (1983). The neurotoxicity of aflatoxin B1 in the rat. Toxicology, 28(3), 247-259.
Ishikawa, A., Takabayashi-Yamashita, C., Ono, E., Bagatin, A., Rigobello, F., Kawamura, O., . . . Itano, E. (2016). Exposure Assessment of Infants to Aflatoxin M1 through Consumption of Breast Milk and Infant Powdered Milk in Brazil. Toxins, 8(9), 246. doi:10.3390/toxins8090246
Johar, K., Priya, A., & Wong-Riley, M. T. (2014). Regulation of Na(+)/K(+)-ATPase by neuron-specific transcription factor Sp4: implication in the tight coupling of energy production, neuronal activity and energy consumption in neurons. Eur J Neurosci, 39(4), 566-578. doi:10.1111/ejn.12415
Johnson, K., Barragan, J., Bashiruddin, S., Smith, C. J., Tyrrell, C., Parsons, M. J., . . . Barresi, M. J. (2016). Gfap-positive radial glial cells are an essential progenitor population for later-born neurons and glia in the zebrafish spinal cord. Glia, 64(7), 1170-1189. doi:10.1002/glia.22990
Kalueff, A. V., Gebhardt, M., Stewart, A. M., Cachat, J. M., Brimmer, M., Chawla, J. S., . . . Schneider, H. (2013). Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish, 10(1), 70-86. doi:10.1089/zeb.2012.0861
Kalueff, A. V., Stewart, A. M., & Gerlai, R. (2014). Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci, 35(2), 63-75. doi:10.1016/j.tips.2013.12.002
Khaliq, M., Choi, T. Y., So, J., & Shin, D. (2015). Id2a is required for hepatic outgrowth during liver development in zebrafish. Mech Dev, 138 Pt 3, 399-414. doi:10.1016/j.mod.2015.05.001
Kim, C. H., Ueshima, E., Muraoka, O., Tanaka, H., Yeo, S. Y., Huh, T. L., & Miki, N. (1996). Zebrafish elav/HuC homologue as a very early neuronal marker. Neurosci Lett, 216(2), 109-112.
Korzh, S., Pan, X., Garcia-Lecea, M., Winata, C. L., Pan, X., Wohland, T., . . . Gong, Z. (2008). Requirement of vasculogenesis and blood circulation in late stages of liver growth in zebrafish. BMC Dev Biol, 8, 84. doi:10.1186/1471-213x-8-84
Lewis, A. P., & Jopling, C. L. (2010). Regulation and biological function of the liver-specific miR-122. Biochem Soc Trans, 38(6), 1553-1557. doi:10.1042/bst0381553
Lin, C. Y., Chiang, C. Y., & Tsai, H. J. (2016). Zebrafish and Medaka: new model organisms for modern biomedical research. J Biomed Sci, 23, 19. doi:10.1186/s12929-016-0236-5
Liu, Z., & Liu, F. (2012). Cautious use of fli1a:EGFP transgenic zebrafish in vascular research. Biochem Biophys Res Commun, 427(1), 223-226. doi:10.1016/j.bbrc.2012.09.064
Lu, J. W., Hsia, Y., Tu, H. C., Hsiao, Y. C., Yang, W. Y., Wang, H. D., & Yuh, C. H. (2011). Liver development and cancer formation in zebrafish. Birth Defects Res C Embryo Today, 93(2), 157-172. doi:10.1002/bdrc.20205
Mammen, E. F. (1992). Coagulation abnormalities in liver disease. Hematol Oncol Clin North Am, 6(6), 1247-1257.
Manczak, M., Anekonda, T. S., Henson, E., Park, B. S., Quinn, J., & Reddy, P. H. (2006). Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet, 15(9), 1437-1449. doi:10.1093/hmg/ddl066
Marin, D. E., & Taranu, I. (2012). Overview on aflatoxins and oxidative stress. Toxin Reviews, 31(3-4), 32-43. doi:10.3109/15569543.2012.730092
Marrone, A. K., Tryndyak, V., Beland, F. A., & Pogribny, I. P. (2016). MicroRNA Responses to the Genotoxic Carcinogens Aflatoxin B1 and Benzo[a]pyrene in Human HepaRG Cells. Toxicol Sci, 149(2), 496-502. doi:10.1093/toxsci/kfv253
Mayura, K., Abdel-Wahhab, M. A., McKenzie, K. S., Sarr, A. B., Edwards, J. F., Naguib, K., & Phillips, T. D. (1998). Prevention of maternal and developmental toxicity in rats via dietary inclusion of common aflatoxin sorbents: potential for hidden risks. Toxicol Sci, 41(2), 175-182. doi:10.1006/toxs.1997.2405
Mazumder, P. M., & Sasmal, D. (2001). Mycotoxins - limits and regulations. Anc Sci Life, 20(3), 1-19.
Meissonnier, G. M., Laffitte, J., Loiseau, N., Benoit, E., Raymond, I., Pinton, P., . . . Galtier, P. (2007). Selective impairment of drug-metabolizing enzymes in pig liver during subchronic dietary exposure to aflatoxin B1. Food Chem Toxicol, 45(11), 2145-2154. doi:10.1016/j.fct.2007.05.012
Meki, A. R., Abdel-Ghaffar, S. K., & El-Gibaly, I. (2001). Aflatoxin B1 induces apoptosis in rat liver: protective effect of melatonin. Neuro Endocrinol Lett, 22(6), 417-426.
Meki, A. R., Esmail Eel, D., Hussein, A. A., & Hassanein, H. M. (2004). Caspase-3 and heat shock protein-70 in rat liver treated with aflatoxin B1: effect of melatonin. Toxicon, 43(1), 93-100. doi:10.1016/j.toxicon.2003.10.026
Mudumana, S. P., Wan, H., Singh, M., Korzh, V., & Gong, Z. (2004). Expression analyses of zebrafish transferrin, ifabp, and elastaseB mRNAs as differentiation markers for the three major endodermal organs: liver, intestine, and exocrine pancreas. Dev Dyn, 230(1), 165-173. doi:10.1002/dvdy.20032
Mughal, M. J., Xi, P., Yi, Z., & Jing, F. (2017). Aflatoxin B1 invokes apoptosis via death receptor pathway in hepatocytes. Oncotarget, 8(5), 8239-8249. doi:10.18632/oncotarget.14158
Newberne, P. M., & Butler, W. H. (1969). Acute and chronic effects of aflatoxin on the liver of domestic and laboratory animals: a review. Cancer Res, 29(1), 236-250.
Niki, E. (2014). Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med, 66, 3-12. doi:10.1016/j.freeradbiomed.2013.03.022
Nilsson, A. S., Fainzilber, M., Falck, P., & Ibanez, C. F. (1998). Neurotrophin-7: a novel member of the neurotrophin family from the zebrafish. FEBS Lett, 424(3), 285-290.
Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S., & Kriegstein, A. R. (2001). Neurons derived from radial glial cells establish radial units in neocortex. Nature, 409(6821), 714-720. doi:10.1038/35055553
O'Callaghan, J. P., & Sriram, K. (2005). Glial fibrillary acidic protein and related glial proteins as biomarkers of neurotoxicity. Expert Opin Drug Saf, 4(3), 433-442. doi:10.1517/14740338.4.3.433
Oancea, S., & Stoia, M. (2008). Mycotoxins: a review of toxicology, analytical
methods and health risks. Acta Universitatis Cibiniensis Series E: Food Technology, XII, 19-36.
Ober, E. A., Field, H. A., & Stainier, D. Y. (2003). From endoderm formation to liver and pancreas development in zebrafish. Mech Dev, 120(1), 5-18.
Ober, E. A., Verkade, H., Field, H. A., & Stainier, D. Y. (2006). Mesodermal Wnt2b signalling positively regulates liver specification. Nature, 442(7103), 688-691. doi:10.1038/nature04888
Parmar, H., Sharma, P., Anerao, I., & Roy, H. (2016). Aflatoxin B1 induced developmental neurotoxicity in RIR egg. Advances in Applied Science Research, 7(1), 23-27.
Partanen, H. A., El-Nezami, H. S., Leppanen, J. M., Myllynen, P. K., Woodhouse, H. J., & Vahakangas, K. H. (2010). Aflatoxin B1 transfer and metabolism in human placenta. Toxicol Sci, 113(1), 216-225. doi:10.1093/toxsci/kfp257
Peng, T., Li, L. Q., Peng, M. H., Liu, Z. M., Liu, T. W., Yan, L. N., . . . Santella, R. M. (2007). Is correction for protein concentration appropriate for protein adduct dosimetry? Hypothesis and clues from an aflatoxin B1-exposed population. Cancer Sci, 98(2), 140-146. doi:10.1111/j.1349-7006.2006.00380.x
Peng, X., Chen, K., Chen, J., Fang, J., Cui, H., Zuo, Z., . . . Lai, W. (2016). Aflatoxin B1 affects apoptosis and expression of Bax, Bcl-2, and Caspase-3 in thymus and bursa of fabricius in broiler chickens. Environ Toxicol, 31(9), 1113-1120. doi:10.1002/tox.22120
Peraica, M., Radic, B., Lucic, A., & Pavlovic, M. (1999). Toxic effects of mycotoxins in humans. Bull World Health Organ, 77(9), 754-766.
Poapolathep, S., Imsilp, K., Machii, K., Kumagai, S., & Poapolathep, A. (2015). The Effects of Curcumin on Aflatoxin B1- Induced Toxicity in Rats. Biocontrol Sci, 20(3), 171-177. doi:10.4265/bio.20.171
Qureshi, H., Hamid, S. S., Ali, S. S., Anwar, J., Siddiqui, A. A., & Khan, N. A. (2015). Cytotoxic effects of aflatoxin B1 on human brain microvascular endothelial cells of the blood-brain barrier. Med Mycol, 53(4), 409-416. doi:10.1093/mmy/myv010
Rastogi, R. P., Singh, S. P., Hader, D. P., & Sinha, R. P. (2010). Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2',7'-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys Res Commun, 397(3), 603-607. doi:10.1016/j.bbrc.2010.06.006
Rawal, S., & Coulombe, R. A., Jr. (2011). Metabolism of aflatoxin B1 in turkey liver microsomes: the relative roles of cytochromes P450 1A5 and 3A37. Toxicol Appl Pharmacol, 254(3), 349-354. doi:10.1016/j.taap.2011.05.010
Rawi, S. M., & Waggas, A. M. (2013). Impact of 90-Day Oral Dosing with Naturally Occurring Aflatoxin Mixture on Male Sprague-Dawley Rat Neurochemistry and Behavioral Pattern. Middle East Journal of Scientific Research, 14(2), 228-238. doi:10.5829/idosi.mejsr.2013.14.2.7343
Repetto, M., Semprine, J., & Boveris, A. (2012). Lipid Peroxidation: Chemical Mechanism, Biological Implications and Analytical Determination. doi:10.5772/45943
Richard, J. L. (2007). Some major mycotoxins and their mycotoxicoses--an overview. Int J Food Microbiol, 119(1-2), 3-10. doi:10.1016/j.ijfoodmicro.2007.07.019
Rieswijk, L., Claessen, S. M., Bekers, O., van Herwijnen, M., Theunissen, D. H., Jennen, D. G., . . . van Breda, S. G. (2016). Aflatoxin B1 induces persistent epigenomic effects in primary human hepatocytes associated with hepatocellular carcinoma. Toxicology, 350-352, 31-39. doi:10.1016/j.tox.2016.05.002
Risk assessment and risk management of mycotoxins. (2012). IARC Sci Publ(158), 105-117.
Sanders, T., Liu, Y., Buchner, V., & Tchounwou, P. B. (2009). Neurotoxic effects and biomarkers of lead exposure: a review. Rev Environ Health, 24(1), 15-45.
Santana, S., Rico, E. P., & Burgos, J. S. (2012). Can zebrafish be used as animal model to study Alzheimer's disease? Am J Neurodegener Dis, 1(1), 32-48.
Santoriello, C., & Zon, L. I. (2012). Hooked! Modeling human disease in zebrafish. J Clin Invest, 122(7), 2337-2343. doi:10.1172/jci60434
Schmidt, R., Strahle, U., & Scholpp, S. (2013). Neurogenesis in zebrafish - from embryo to adult. Neural Dev, 8, 3. doi:10.1186/1749-8104-8-3
Schmidt, R. E., & Panciera, R. J. (1980). Effects of aflatoxin on pregnant hamsters and hamster foetuses. J Comp Pathol, 90(3), 339-347.
Shimada, T., Yamazaki, H., Mimura, M., Inui, Y., & Guengerich, F. P. (1994). Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther, 270(1), 414-423.
Shupe, T., & Sell, S. (2004). Low hepatic glutathione S-transferase and increased hepatic DNA adduction contribute to increased tumorigenicity of aflatoxin B1 in newborn and partially hepatectomized mice. Toxicol Lett, 148(1-2), 1-9. doi:10.1016/j.toxlet.2003.11.008
Spence, R., Gerlach, G., Lawrence, C., & Smith, C. (2008). The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev Camb Philos Soc, 83(1), 13-34. doi:10.1111/j.1469-185X.2007.00030.x
St John, J. A., & Key, B. (2012). HuC-eGFP mosaic labelling of neurons in zebrafish enables in vivo live cell imaging of growth cones. J Mol Histol, 43(6), 615-623. doi:10.1007/s10735-012-9462-7
Supriya, C., & Reddy, P. S. (2015). Prenatal exposure to aflatoxin B1: developmental, behavioral, and reproductive alterations in male rats. Naturwissenschaften, 102(5-6), 26. doi:10.1007/s00114-015-1274-7
Takayama, S., Thorgeirsson, U. P., & Adamson, R. H. (2008). Chemical carcinogenesis studies in nonhuman primates. Proc Jpn Acad Ser B Phys Biol Sci, 84(6), 176-188.
Tao, T., & Peng, J. (2009). Liver development in zebrafish (Danio rerio). J Genet Genomics, 36(6), 325-334. doi:10.1016/s1673-8527(08)60121-6
Thisse, C., & Thisse, B. (2008). High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc, 3(1), 59-69. doi:10.1038/nprot.2007.514
Trebak, F., Alaoui, A., Alexandre, D., El Ouezzani, S., Anouar, Y., Chartrel, N., & Magoul, R. (2015). Impact of aflatoxin B1 on hypothalamic neuropeptides regulating feeding behavior. Neurotoxicology, 49, 165-173. doi:10.1016/j.neuro.2015.06.008
Troxel, C. M., Reddy, A. P., O'Neal, P. E., Hendricks, J. D., & Bailey, G. S. (1997). In vivo aflatoxin B1 metabolism and hepatic DNA adduction in zebrafish (Danio rerio). Toxicol Appl Pharmacol, 143(1), 213-220. doi:10.1006/taap.1996.8058
Tsai, W. C., Hsu, S. D., Hsu, C. S., Lai, T. C., Chen, S. J., Shen, R., . . . Tsou, A. P. (2012). MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest, 122(8), 2884-2897. doi:10.1172/jci63455
Turner, P. C., Collinson, A. C., Cheung, Y. B., Gong, Y., Hall, A. J., Prentice, A. M., & Wild, C. P. (2007). Aflatoxin exposure in utero causes growth faltering in Gambian infants. Int J Epidemiol, 36(5), 1119-1125. doi:10.1093/ije/dym122
Valencia-Quintana, R., Sanchez-Alarcon, J., Tenorio-Arvide, M. G., Deng, Y., Montiel-Gonzalez, J. M., Gomez-Arroyo, S., . . . Arenas-Huertero, F. (2014). The microRNAs as potential biomarkers for predicting the onset of aflatoxin exposure in human beings: a review. Front Microbiol, 5, 102. doi:10.3389/fmicb.2014.00102
van Hinsbergh, V. W. (2012). Endothelium--role in regulation of coagulation and inflammation. Semin Immunopathol, 34(1), 93-106. doi:10.1007/s00281-011-0285-5
van Meerloo, J., Kaspers, G. J., & Cloos, J. (2011). Cell sensitivity assays: the MTT assay. Methods Mol Biol, 731, 237-245. doi:10.1007/978-1-61779-080-5_20
Veldman, M. B., & Lin, S. (2008). Zebrafish as a developmental model organism for pediatric research. Pediatr Res, 64(5), 470-476. doi:10.1203/PDR.0b013e318186e609
Verduzco, D., & Amatruda, J. F. (2011). Analysis of cell proliferation, senescence, and cell death in zebrafish embryos. Methods Cell Biol, 101, 19-38. doi:10.1016/b978-0-12-387036-0.00002-5
Vismara, C., & Caloni, F. (2007). Evaluation of aflatoxin B1 embryotoxicity using the frog embryo teratogenesis assay-Xenopus and bio-activation with microsome activation systems. Birth Defects Res B Dev Reprod Toxicol, 80(3), 183-187. doi:10.1002/bdrb.20113
Wang, Y. C., Juan, H. C., Wong, Y. H., Kuo, W. C., Lu, Y. L., Lin, S. F., . . . Fann, M. J. (2013). Protogenin prevents premature apoptosis of rostral cephalic neural crest cells by activating the alpha5beta1-integrin. Cell Death Dis, 4, e651. doi:10.1038/cddis.2013.177
Wangikar, P. B., Dwivedi, P., Sinha, N., Sharma, A. K., & Telang, A. G. (2005). Effects of aflatoxin B1 on embryo fetal development in rabbits. Food Chem Toxicol, 43(4), 607-615. doi:10.1016/j.fct.2005.01.004
Williams, J. H., Phillips, T. D., Jolly, P. E., Stiles, J. K., Jolly, C. M., & Aggarwal, D. (2004). Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr, 80(5), 1106-1122.
Wilson, B. J., Teer, P. A., Barney, G. H., & Blood, F. R. (1967). Relationship of aflatoxin to epizootics of toxic hepatitis among animals in southern United States. Am J Vet Res, 28(126), 1217-1230.
Wogan, G. N. (1992). Aflatoxins as risk factors for hepatocellular carcinoma in humans. Cancer Res, 52(7 Suppl), 2114s-2118s.
Wogan, G. N., Kensler, T. W., & Groopman, J. D. (2012). Present and future directions of translational research on aflatoxin and hepatocellular carcinoma. A review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 29(2), 249-257. doi:10.1080/19440049.2011.563370
Wong, Y. H., Lu, A. C., Wang, Y. C., Cheng, H. C., Chang, C., Chen, P. H., . . . Fann, M. J. (2010). Protogenin defines a transition stage during embryonic neurogenesis and prevents precocious neuronal differentiation. J Neurosci, 30(12), 4428-4439. doi:10.1523/JNEUROSCI.0473-10.2010
Xie, J., Farage, E., Sugimoto, M., & Anand-Apte, B. (2010). A novel transgenic zebrafish model for blood-brain and blood-retinal barrier development. BMC Dev Biol, 10, 76. doi:10.1186/1471-213x-10-76
Yeh, C. W., & Hsu, L. S. (2016). Zebrafish diras1 Promoted Neurite Outgrowth in Neuro-2a Cells and Maintained Trigeminal Ganglion Neurons In Vivo via Rac1-Dependent Pathway. Mol Neurobiol, 53(10), 6594-6607. doi:10.1007/s12035-015-9550-2
Yu, M. W., Zhang, Y. J., Blaner, W. S., & Santella, R. M. (1994). Influence of vitamins A, C, and E and beta-carotene on aflatoxin B1 binding to DNA in woodchuck hepatocytes. Cancer, 73(3), 596-604.
Yuan, T. F., Gu, S., Shan, C., Marchado, S., & Arias-Carrion, O. (2015). Oxidative Stress and Adult Neurogenesis. Stem Cell Rev, 11(5), 706-709. doi:10.1007/s12015-015-9603-y
Yunus, A. W., Razzazi-Fazeli, E., & Bohm, J. (2011). Aflatoxin B(1) in affecting broiler's performance, immunity, and gastrointestinal tract: a review of history and contemporary issues. Toxins (Basel), 3(6), 566-590. doi:10.3390/toxins3060566
Zhang, C., Wang, J., Lu, G., Li, J., Lu, X., Mantion, G., . . . Lin, R. (2012). Hepatocyte proliferation/growth arrest balance in the liver of mice during E. multilocularis infection: a coordinated 3-stage course. PLoS One, 7(1), e30127. doi:10.1371/journal.pone.0030127
Zhang, W., & Dolan, M. E. (2010). The emerging role of microRNAs in drug responses. Curr Opin Mol Ther, 12(6), 695-702.
Zorn, A. M., & Wells, J. M. (2009). Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol, 25, 221-251. doi:10.1146/annurev.cellbio.042308.113344
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68421-
dc.description.abstract黃麴毒素B1(Aflatoxins B1, AFB1)為黃麴黴 (Aspergillus flavus) 等黴菌產生之二級代謝產物,已知其對人類及動物具有肝毒性及致肝癌性。目前對於AFB1在胚胎發育上的影響及毒性機制尚不明瞭,因此本研究將利用斑馬魚胚胎作為動物模式來探討AFB1對於胚胎發育的影響。實驗結果發現,AFB1處理斑馬魚胚胎達120 hpf (hours post fertilization) 後,雖然導致胚胎的高死亡率,卻不會對胚胎造成明顯的不良型態變化。以0.25及0.5 μM的AFB1處理轉殖肝螢光魚胚胎Tg(lfabp:eGFP)以觀察AFB1對肝臟發育的影響 (6-96 hpf),結果顯示肝臟螢光強度隨毒素劑量上升而顯著下降,組織切片分析也顯示肝臟有縮小現象。末端脫氧核苷酸轉移酶脫氧尿苷三磷酸切口末端標記螢光染色 (Terminal deoxynucleotidyl transferase dUTP nick end labeling, TUNEL)的結果指出AFB1會促進肝臟細胞凋亡,磷酸化組蛋白H3免疫染色 (phospho-histone H3 immunostaining) 的結果則顯示AFB1可能可以抑制肝臟細胞增生。以prox1和hhex探針進行全胚體原位雜交法 (Whole-mount in situ hybridization) ,發現胚胎肝臟在特化 (specification) 階段(24hpf)就會受到AFB1的傷害,進一步在肝臟發育不同的不同時期以AFB1處理轉殖肝螢光魚胚胎Tg(lfabp:eGFP)觀察,得知肝臟在出芽/分化 (budding/ differentiation) 及增長 (outgrowth) 階段都有可能受AFB1影響而造成肝臟縮小的情形。AFB1的暴露亦會導致肝臟特異性的miR-122表現下降,但不會影響胚胎中凝血因子基因(f7、f3a、f3a)和肝臟特異性基因(vtna、cp)的表現。此外AFB1會誘發斑馬魚肝細胞(ZFL)中的氧化壓力上升,而抗氧化劑N-乙醯半胱氨酸(N-acetylcysteine , NAC)和維生素C (Vitamin C, Vit C) 的使用可以降低AFB1造成的細胞傷害、胚胎死亡率,而維生素C更可能可以改善肝臟縮小的情形。
過去研究指出AFB1也會造成中樞神經的損傷。我們由行為測試觀察到AFB1的暴露造成斑馬魚胚胎異常的游泳模式,同時也使胚胎移動的距離下降,因此推測AFB1可能會影響胚胎發育階段的神經生長。早期神經元的標記(HuC)和神經毒性的生物指標(gfap)的mRNA變化證實了AFB1會影響胚胎神經發育而產生神經毒性。乙醯化微管蛋白免疫染色 (Acetyl-alpha Tubulin staining, AcTub staining) 的結果也顯示,0.25及0.5 μM的AFB1明顯干擾了24 hpf胚胎神經元的發育。將 6 hpf 斑馬魚胚胎以 0.5 μM AFB1 處理至 48 hpf 後進行微陣列技術分析(microarray),發現多個和神經發育相關基因的表現皆受到AFB1的影響。以半定量及定量聚合酶鏈鎖反應 (PCR) 確認在處理AFB1達24h及48h的胚胎中,ngfa 及atp1b1b mRNA的表現量顯著下降prtga mRNA的表現量則上升,上述結果表示AFB1可能可以干擾神經元的能量來源並抑制斑馬魚胚胎神經元的早期分化。
本篇研究證實AFB1會干擾早期胚胎肝臟和神經的發育,而相關的發育毒性的機制仍需要進一步的實驗來確認。
zh_TW
dc.description.abstractAflatoxins B1 (AFB1) is a naturally occurring mycotoxin produced by the Aspergillus flavus group of fungi. It is also a well-known hepatocarcinogen that contributes significantly to the high incidence of hepatocellular carcinoma. Since there are few studies examining the developmental toxicity of AFB1, we used the zebrafish embryo as a vertebrate model herein. Treatment of zebrafish embryos from 6 hours post-fertilization (hpf) to 120 hpf resulted in a high mortality rate, but the morphology of embryos remained unchanged. To observe the effect of AFB1 on liver development, the embryos of transgenic zebrafish Tg(lfabp:eGFP) were treated with AFB1 ranging from 0.25 to 0.5 μM. We found that the liver fluorescence was decreased in a dose-dependent manner and histological analysis also indicated a shrunk liver size. TUNEL assay revealed that AFB1 promoted liver apoptosis and pH3 immunostaining implied that AFB1 might also inhibited liver proliferation. Whole-mount in situ hybridization with prox1 and hhex probes and observation of Tg(lfabp:eGFP) showed that the embryonic liver was affected by AFB1 at the specification and the budding/ differentiation stages (24-72hpf). Also, AFB1 treatment led to the down-regulation of liver-specific miR-122. However, AFB1 did not affect the gene expression of coagulation factors (f7, f3a, and f3a) and liver-specific genes (vtna and cp) in 6-72 hpf embryos. As AFB1 was found to increase the oxidative stress in zebrafish liver cell line (ZFL), ZFL cell death as well as embryo mortality mediated by AFB1 was restored in the presence of antioxidants N-acetylcysteine (NAC) and Vitamin C (Vit C). In addition, Vit C is likely to rescue the liver shrinkage that caused by AFB1.
Previous studies indicate that AFB1 also leads to brain damage. From our results of behavior test, AFB1 exposure decreased the total distance moved of embryos which swam in an abnormal shaking patterns. Therefore, we hypothesized that AFB1 might affect the neurodevelopment during developmental stage of embryos. The marker of early born neurons (HuC) and the biomarker of neurotoxicity (gfap) were both modulated by AFB1. Additionally, acetylated alpha-tubulin (AcTub) staining indicated that AFB1 disrupted the development of embryonic neurons. Microarray profiles of embryos after 48 hr AFB1 treatment showed an alteration of several genes which were related to neurodevelopment, including nerve growth factor a (ngfa), atp1b1b, and protogenin homolog a (prtga). PCR analysis further confirmed that AFB1 significantly decreased the expression of both ngfa and atp1b1b, and increased that of prtga gene in 6-48 hpf embryos, which suggest that AFB1 might have the ability to suppress neuronal differentiation and reduce the source of energy demand in neurons.
In conclusion, AFB1 might interfere with the embryonic liver and neural development. Further experiments are required to confirm the mechanism of developmental hepatotoxicity and neurotoxicity associated with AFB1.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:20:31Z (GMT). No. of bitstreams: 1
ntu-106-R04447006-1.pdf: 2973527 bytes, checksum: fd1a056ef081c5ad12a5b5f36c36987d (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
摘要 III
Abstract V
Chapter 1. Introduction 1
1.1 Mycotoxin 1
1.2 Aflatoxin B1 2
1.2.1 Worldwide Occurrence and Limits of safe intake 4
1.2.2 Hepatotoxicity of AFB1 5
1.2.3 Neurotoxicity of AFB1 7
1.2.4 Developmental Toxicity of AFB1 8
1.2.5 Apoptosis and Oxidative Stress 9
1.3 Zebrafish (Danio rerio) 11
1.3.1 Zebrafish as a Model for Investigating Developmental Toxicity 11
1.3.2 Liver development of Zebrafish 14
1.3.3 Neural development of Zebrafish 15
1.4.1 Purpose of this study 17
1.4.2 The approach and finding in this study 18
Chapter 2. Methods and Materials 21
2.1 Materials 21
2.1.1 Experimental animals 21
2.1.2 Cell culture 21
2.1.3 Chemicals 22
2.1.4 Reagents 23
2.1.5 Instruments and Equipment 24
2.2 Methods 25
2.2.1 AFB1 exposure 25
2.2.2 Observation of liver, neural and vascular development 26
2.2.3 Paraffin sectioning 27
2.2.4 Hematoxylin and eosin stain, HE stain 27
2.2.5 Whole mount in-situ hybridization (WHISH) 28
2.2.6 TdT-mediated dUTP-biotin nick end labeling assay, TUNEL assay 29
2.2.7 Phosphohistone H3 (pH3) immunohistochemistry staining 30
2.2.8 Total RNA extraction 30
2.2.9 Reverse transcription reaction, RT reaction 31
2.2.10 Polymerase chain reaction, PCR 31
2.2.11 SYBR real-time polymerase chain reaction, RT-PCR 32
2.2.12 TaqMan real-time Polymerase Chain Reaction, RT-PCR 32
2.2.13 MTT assay 33
2.2.14 Cellular Reactive Oxygen Species Detection Assay (DCFH-DA) 34
2.2.15 Recording of zebrafish behavior 34
2.2.16 Microarray 35
2.2.17 Whole mount acetylated α-tubulin staining 36
2.2.18 Statistical analysis 36
Chapter 3. Results 38
3.1 Adverse effects of AFB1 on zebrafish embryos 38
3.2 AFB1 affected liver development in zebrafish embryos 38
3.3 AFB1 interfered with the liver at specification stage 39
3.4 AFB1 was likely to damage all three stages of liver development 40
3.5 AFB1 promoted hepatic cell apoptosis in embryonic zebrafish and might also inhibit the hepatic cell proliferation 40
3.6 AFB1 did not alter the expression of liver-specific genes and coagulation factor genes 41
3.7 AFB1 decreased the expression of liver-specific miR-122 42
3.8 AFB1 induced cytotoxicity and oxidative stress in ZFL 42
3.9 Antioxidants rescued the damage caused by AFB1 in ZFL 43
3.10 Antioxidants promoted the survival rate of AFB1-treated embryos 44
3.11 Antioxidants might rescue the AFB1-induced liver shrinkage 44
3.12 AFB1 contributed to the abnormal behavior of embryos in the early stage of development 45
3.13 AFB1 decreased the expression of early neuronal marker and induced embryonic neurotoxicity 45
3.14 AFB1 disrupted the embryonic neural development 46
3.15 AFB1 altered the expression of gene related to neurogenesis in zebrafish embryos 47
3.16 AFB1 showed a slight effect on brain vessel development 48
Chapter 4. Discussion 49
References 58
Tables 70
Figures 73
dc.language.isoen
dc.subject肝臟zh_TW
dc.subject神經zh_TW
dc.subject發育zh_TW
dc.subject斑馬魚zh_TW
dc.subject黃麴毒素zh_TW
dc.subjectAflatoxin B1en
dc.subjectzebrafishen
dc.subjectneuronen
dc.subjectliveren
dc.subjectdevelopmenten
dc.title黃麴毒素B1對斑馬魚胚胎發育的影響zh_TW
dc.titleEffects of Aflatoxin B1 on the Development of Zebrafish Embryosen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許濤(Tao Hsu),陳曜鴻(Yau-Hung Chen)
dc.subject.keyword黃麴毒素,斑馬魚,發育,肝臟,神經,zh_TW
dc.subject.keywordAflatoxin B1,zebrafish,development,liver,neuron,en
dc.relation.page96
dc.identifier.doi10.6342/NTU201704094
dc.rights.note有償授權
dc.date.accepted2017-08-21
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved