Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68416
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳浩銘(Hao Ming Chen)
dc.contributor.authorYu-Ping Huangen
dc.contributor.author黃宇屏zh_TW
dc.date.accessioned2021-06-17T02:20:21Z-
dc.date.available2025-08-17
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citation1 plc, T. B. P. C. in bp Statistical Review of World Energy 2020 69th edition (2020).
2 Grand View Research, I. (Grand View Research, Inc., 2020).
3 Turner, J. A. Sustainable Hydrogen Production. Science 305, 972-974 (2004).
4 J.D. Holladay, J. H., D.L. King, Y. Wang. An overview of hydrogen production technologies. Catalysis Today 139, 244 (2009).
5 HONDA, A. F. K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238, 37-38 (1972).
6 Nur Fajrina, M. T. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int. J. Hydrogen. Energ. 44, 540-577 (2019).
7 Zhang, X. Z. a. Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148-5180 (2015).
8 Timothy R. Cook, D. K. D., Steven Y. Reece, Yogesh Surendranath, Thomas S. Teets, and Daniel G. Nocera. Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds. Chem. Rev. 110, 6474–6502 (2010).
9 Li, M. Z. a. Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 3, 14942–14962 (2015).
10 M. Bajdich, M. G. a.-M., A. Vojvodic, J. K. Nørskov and A. T. Bell. Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water. J. Am. Chem. Soc. 135, 13521–13530 (2013).
11 Seo-Yoon Bae, J. M., In-Yup Jeon and Jong-Beom Baek. Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horiz. 5, 43-56 (2020).
12 J., T. Über die Polarisation bei kathodischer Wasserstoffentwicklung. . Zeitschrift für physikalische Chemie 50, 641-712 (1905).
13 Aria Kahyarian, B. B., and Srdjan Nesic. Mechanism of the Hydrogen Evolution Reaction in Mildly Acidic Environments on Gold. Journal ofThe Electrochemical Society 164, H365-H374 (2017).
14 Bibi Ruqia, S.-I. C. Pt and Pt-Ni(OH) 2 Electrodes for the Hydrogen Evolution Reaction in Alkaline Electrolytes and Their Nanoscaled Electrocatalysts. ChemSusChem. 11, 2643-2653 (2018).
15 Y. Yan, B. Y. X., Z. Xu and X. Wang. Recent Development of Molybdenum Sulfides as Advanced Electrocatalysts for Hydrogen Evolution Reaction. ACS Catal. 4, 1693–1705 (2014).
16 B. Hinnemann, P. G. M., J. Bonde, K. P. Jorgensen, J. H. Nielsen, S. Horch, I. Chorkendorff and J. Norskov. Biomimetic Hydrogen Evolution:  MoS2 Nanoparticles as Catalyst for Hydrogen Evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).
17 T. F. Jaramillo, K. P. J., J. Bonde, J. H. Nielsen, S. Horch and I. Chorkendorff. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science 317, 100–102 (2007).
18 Chengyi Hu, Q. M., Sung-Fu Hung, Zhe-Ning Chen, Daohui Ou, Bin Ren, Hao Ming Chen, Gang Fu, Nanfeng Zheng. In Situ Electrochemical Production of Ultrathin Nickel Nanosheets for Hydrogen Evolution Electrocatalysis. Chem. Rev. 3, 122–133 (2017).
19 Rodriguez, P. L. a. J. A. Catalysts for Hydrogen Evolution from the [NiFe] Hydrogenase to the Ni2P(001) Surface: The Importance of Ensemble Effect. J. Am. Chem. Soc. 127, 14871–14878 (2005).
20 S. Ted Oyama a, T. G., Haiyan Zhao, Yong-Kul Lee. Transition metal phosphide hydroprocessing catalysts: A review. Catal. Today 143, 94–107 (2009).
21 Popczun, E. J. M., J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 135, 9267-9270 (2013).
22 Y. Zheng, Y. J., Y. Zhu, L. H. Li, Y. Han, Y. Chen, M. Jaroniec and S.-Z. Qiao. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. J. Am. Chem. Soc. 138, 16174–16181 (2016).
23 J. Mahmood, F. L., S.-M. Jung, M. S. Okyay, I. Ahmad, S.-J. Kim, N. Park, H. Y. Jeong and J.-B. Baek. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 12, 441 (2017).
24 Jae-Chan Kim, C. W. L. a. D.-W. K. Dynamic evolution of a hydroxylated layer in ruthenium phosphide electrocatalysts for an alkaline hydrogen evolution reaction. J. Mater. Chem. A 8, 5655-5662 (2020).
25 Junyuan Xu, T. L., Junjie Li, Bo Li, Yuefeng Liu, Bingsen Zhang, Dehua Xiong, Isilda Amorim, Wei Li and Lifeng Liu. Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide. Energy Environ. Sci. 11, 1819-1827 (2018).
26 Junjie Mao, C.-T. H., Jiajing Pei, Wenxing Chen, Dongsheng He, Yiqing He, Zhongbin Zhuang, Chen Chen, Qing Peng, Dingsheng Wang Yadong Li. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat Commun 9, 4958 (2018).
27 Sung-Fu Hung, Y. Z., Guan-Quan Tzeng, Hsiao-Chien Chen, Chia-Shuo Hsu, Yen-Fa Liao, Hirofumi Ishii, Nozomu Hiraoka, and Hao Ming Chen. In Situ Spatially Coherent Identification of Phosphide-Based Catalysts: Crystallographic Latching for Highly Efficient Overall Water Electrolysis. ACS Energy Lett. 4, 2813−2820 (2019).
28 Yanping Zhu, H.-C. C., Chia-Shuo Hsu, Ting-Sheng Lin, Chia-Jui Chang, Sung-Chun Chang, Li-Duan Tsai, and Hao Ming Chen. Operando Unraveling of the Structural and Chemical Stability of P‑Substituted CoSe2 Electrocatalysts toward Hydrogen and Oxygen Evolution Reactions in Alkaline Electrolyte. ACS Energy Lett. 4, 987−994 (2019).
29 Y. Fernández, J. A. M., A. Arenillas, E. Fuente, J.H. Peng, Z.B. Zhang, W. Li, Z.Y. Zhang. Microwave-assisted synthesis of CuO/ZnO and CuO/ZnO/Al2O3 precursors using urea hydrolysis. Solid State Ionics 180, 1372–1378 (2009).
30 Zhang, Y. S. a. B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 45, 1529 (2016).
31 SHELDON A. BUCKLER, L. D., FRANK K. LIND, and MARTIN EPSTEIN. Phosphine as a Reducing Agent. J. Org. Chem. 27, 794–798 (1962).
32 Sidgwick, N. V. The Chemical Elements and Their Compounds. 730 (Oxford University Press, 1950).
33 Reinmuth, W. H. Three-Dimensional Representation of Voltammetric Processes. Anal. Chem. 32, 1509-1512 (1960).
34 Ching-Wei Tung1, Y.-Y. H., Yen-Ping Shen, Yixin Zheng, Ting-Shan Chan, Hwo-Shuenn Sheu, Yuan-Chung Cheng Hao Ming Chen. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nat. Commun. 6, 8106 (2015).
35 Paula Connor, J. S., Bernhard Kaiser and Wolfram Jaegermann. The Determination of Electrochemical Active Surface Area and Specific Capacity Revisited for the System MnOx as an Oxygen Evolution Catalyst. Z. Phys. Chem. 234 (2020).
36 Tanglue Feng, G. Y., Songyuan Tao, Shoujun Zhu, Ruiqi Ku, Ran Zhang, Qingsen Zeng, Mingxi Yang, Yixin Chen, Weihua Chen, Wei Chen and Bai Yang. Highly efficient overall water splitting ruthenium-cobalt alloy electrocatalyst across a wide pH range via electronic coupling with carbon dots. J. Mater. Chem. A 8, 9638-9645 (2020).
37 Feng Li, G.-F. H., Hyuk-Jun Noh, Jong-Pil Jeon, Ishfaq Ahmad, Shanshan Chen, Changduk Yang, Yunfei Bu, Zhengping Fu, Yalin Lu Jong-Beom Baek. Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis. Nat. Commun. 10, 4060 (2019).
38 Song, G. Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete. Cement and Concrete Research 30, 1723-1730 (2000).
39 Zuo, J. M. S., J. C. H., Eds. Advanced Transmission Electron Microscopy: Imaging and Diffraction in Nanoscience. (Springer Nature, 2017).
40 Akhtar K., K. S. A., Khan S.B., Asiri A.M. Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization. In: Sharma S. (eds) Handbook of Materials Characterization., (Springer, Cham, 2018).
41 Downs, B. L. P. D. R. T. Modern X-ray Diffraction Methods in Mineralogy and Geosciences. Reviews in Mineralogy and Geochemistry 78, 1-31 (2014).
42 Feng Lin, Y. L., Xiqian Yu, Lei Cheng, Andrej Singer, Oleg G. Shpyrko, Huolin L. Xin, Nobumichi Tamura, Chixia Tian, Tsu-Chien Weng, Xiao-Qing Yang, Ying Shirley Meng, Dennis Nordlund, Wanli Yang, and Marca M. Doeff. Synchrotron X‑ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries. Chem. Rev. 117, 13123-13186 (2017).
43 Krasnikova, I. V., Mishakov, I. V., Vedyagin, A. A. . Modification, and Characterization of Carbon Nanofibers. Carbon-Based Nanofiller and Their Rubber Nanocomposites. 75-137 (Elsevier B.V., 2019).
44 G. Greczynski, L. H. X-ray photoelectron spectroscopy: Towards reliable binding energy referencing. Progress in Materials Science 107, 100591 (2020).
45 F.L'Annunziata, M. Radioactivity Introduction and History, from the Quantum to Quarks. 2 edn, 269-302 (ELSEVIER, 2016).
46 LAMBERTI, J. A. V. B. a. C. X-Ray Absorption and X-ray Emission Spectroscopy: Theory and Application. (John Wiley Sons, Inc., 2016).
47 Goldstein, J. I. N., D. E.; Echlin, P.; Joy, D. C.; Lyman, C. E.; Lifshin, E.; Sawyer, L.; Michael, J. R. Scanning Electron Microscopy and X-ray Microanalysis: Third Edition. (Eds. Springer US, 2003).
48 Emiliana Fabbri, D. F. A., Maarten Nachtegaal and Thomas J. Schmidt. Operando X-ray absorption spectroscopy A powerful tool toward water splitting catalyst development. Curr. Opin. Electrochem. 5, 20-26 (2017).
49 Tatiana Nedoseykina, M. G. K., Seul-A. Park, Hyun-Soo Kim, Seong-Bae Kim,Jaephil Cho, Youngil Lee. In situ X-ray absorption spectroscopic study for the electrochemical delithiation of a cathode LiFe0.4Mn0.6PO4 material. Electrochim. Acta 55, 8876–8882 (2010).
50 Christina H. M. van Oversteeg, H. Q. D., Frank M. F. de Groot and Tanja Cuk. In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts. Chem. Soc. Rev. 46, 102 (2017).
51 Don-Hyung Ha, B. H., Marcel Risch, Livia Giordano, Koffi P.C. Yao, Pinar Karayaylali, Yang Shao-Horn. Activity and stability of cobalt phosphides for hydrogen evolution upon water splitting. Nano Energy 29, 37-45 (2016).
52 Morgan, D. J. Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interface Anal. 47, 1072–1079 (2015).
53 Jianmei Wang, W. Y. a. J. L. CoP2 nanoparticles on reduced graphene oxide sheets as a super-efficient bifunctional electrocatalyst for full water splitting. J. Mater. Chem. A 4, 4686–4690 (2016).
54 Andrew P. Grosvenor, R. G. C., Arthur Mar. Next-nearest neighbour contributions to the XPS binding energies and XANES absorption energies of P and As in transition-metal arsenide phosphides MAs1yPy having the MnP-type structure. Journal of Solid State Chemistry 181, 2549–2558 (2008).
55 Juodkazytė, J., Vilkauskaitė, R., Stalnionis, G., Šebeka, B., Juodkazis, K. EQCM Study of Ru and RuO2 Surface Electrochemistry. Electroanalysis 19, 1093-1099 (2007).
56 Tomonori Ohba, S.-i. T., Kenji Hata, Katsumi Kaneko and Hirofumi Kanoh. Predominant nanoice growth in single-walled carbon nanotubes by watervapor loading. RSC Advances 2, 3634–3637 (2012).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68416-
dc.description.abstract近年來能源議題已成為熱門研究主題,如何從自然界中有效獲取並儲存各種再生能源將會成為舒緩能源需求的關鍵。以太陽能為例,日光通過光電效應以光子撞擊太陽能板放出光電子,使得光能得以轉化為電能的形式,然而,電能的長途運輸不是那麼容易,這時需要再將電能轉化為更方便運輸的形式。透過電解反應以電能驅動溶液進行化學反應使我們得以在陰極、陽極獲得對應之產物,其中電解水便是一種能有效將電能儲存成化學鍵鍵能的手段。在電解水的過程中得到的陰極產物,氫氣,具有高能量密度且燃燒無汙染的優勢,藉由開發出優秀的陰極與陽極端電催化劑便能降低電解水過程中的能量損耗進而提高能量轉化效率。
本研究藉由尿素水解反應將含釕、鈷之前驅物合成在導電碳布上,再以管爐在氬氣環境下進行磷化反應合成一系列磷化釕鈷之碳布元件。藉由添加鈷金屬進入磷化釕後,相較於純的磷化釕無論是在酸性還是鹼性下催化都得到顯著的性能提升,尤其是在酸性電解液中,鈷的添加改善了磷化釕材料過電位較鹼性電解液高出許多的缺點,將本材料在酸性電解液中的過電位降低至鉑催化劑的催化活性,以及維持鹼性溶液中磷化釕的塔菲爾斜率與過電位,並且在全酸鹼值範圍都擁能保持相當優異的催化能力。此外為了瞭解電催化劑在施加電壓在水溶液中進行電催化反應時的結構以及原子區域結構,本研究除了基本的材料鑑定之外也輔以臨場X光吸收光譜與X光繞射實驗監控催化劑在真實催化條件下之材料結構變化,連結電化學量測中觀察到的現象,說明如何藉由添加鈷金屬調控釕基催化劑的催化活性。
zh_TW
dc.description.abstractEnergy issues have attracted increasing attention in recent years due to the global warming and climate change. To avoid deterioration of greenhouse effect, clean energy sources should be developed to replace fossil fuels. Among numerous techniques which are able to extract energy from the nature, conversion of solar energy to electricity via photoelectric effect is a feasible method to utilize the energy from sunlight. However, delivery and storage of obtained electricity from sunlight may be challenging. To store electricity in another form, conversion of energy to chemical bonding through water electrolysis provides zero-pollution and high energy density fuel. The energy conversion efficiency can be enhanced by lowering the overpotential of anodic and cathodic catalysts.
In this work the ruthenium-based catalysts were synthesized on carbon cloth by a two-step process: urea hydrolysis chemical bath deposition followed by chemical vapor deposition using phosphine (PH3) gas. With the addition of cobalt cation, enhancement on catalytic activity is observed especially in acidic media. Numerous techniques including in situ XAS, XRD are applied to monitor the genuine behaviors of materials under reaction conditions. Hence, the reaction mechanism can be unraveled. Our catalyst exhibits extremely small overpotential at 10 mA cm-2 of current density (3 mV in 0.5 M H2SO4 solution; 4 mV in 1.0 M KOH solution; 30 mV in 1.0 M PBS solution). Besides, the catalyst possesses high stability of electrocatalytic activity and material structure in catalytic process. These performances outperform all the other HER electrocatalysts, including benchmark of HER, Pt/C.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:20:21Z (GMT). No. of bitstreams: 1
U0001-1708202014173000.pdf: 24520203 bytes, checksum: 5899bb1bce9322414d41bde9082834ba (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 1
中文摘要 2
ABSTRACT 3
目錄 4
圖目錄 8
表目錄 18
第一章 緒論 19
1.1 能源危機與氫能源 19
1.2 氫氣製備技術 20
1.2.1 蒸汽重整 20
1.2.2 光催化水分解 21
1.2.3 電催化水分解 22
1.3 電催化析氫反應 23
1.3.1 高天然豐度過渡金屬硫族化物催化劑 26
1.3.2 高天然豐度過渡金屬磷化物催化劑 27
1.3.3 釕基催化劑 29
1.4 本研究之研究動機與目的 31
第二章 實驗步驟與儀器分析原理 34
2.1 化學藥品 34
2.2 催化劑製備流程 35
2.2.1 碳布前處理方法 35
2.2.2 鈷摻雜釕基催化劑之前驅物製備 35
2.2.3 鈷摻雜釕基催化劑製備 37
2.3 電化學分析架設與原理 39
2.3.1 電化學量測之架設 39
2.3.2 線性掃描伏安法(Linear Sweep Voltammetry, LSV) 41
2.3.3 循環伏安法(Cyclic Voltammetry, CV) 43
2.3.4 計時安培測定法(Chronoamperometry, CA) 45
2.3.5 計時電位測定法(Chronopotentiometry, CP) 45
2.3.6 電化學阻抗頻譜法(Electrochemical Impedance Spectroscopy, EIS) 46
2.4 材料分析方法與儀器原理 48
2.4.1 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 48
2.4.2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 50
2.4.3 能量散射X光光譜(Energy-dispersive X-ray Spectroscopy, EDS) 52
2.4.4 X光繞射(X-ray Diffraction, XRD) 53
2.4.5 X光光電子能譜∕化學分析電子能譜(X-ray Photoelectron Spectroscopy / Electron Spectroscopy for Chemical Analysis, XPS/ESCA) 55
2.4.6 X光吸收光譜(X-ray Absorption Spectroscopy, XAS) 57
2.4.7 X光吸收近邊緣結構(X-ray Absorption Near Edge Structure, XANES) 60
2.4.8 延伸X光吸收細微結構(Extended X-ray Absorption Fine Structure, EXAFS) 64
第三章 研究結果與討論 65
3.1 鈷摻雜釕基催化劑之材料分析與結構鑑定 65
3.1.1 本研究使用之儀器與操作條件 65
3.1.2 掃描式電子顯微鏡影像 66
3.1.3 能量散射X光光譜分析 70
3.1.4 X光繞射圖譜分析 77
3.1.5 穿透式電子顯微鏡影像 80
3.1.6 X光吸收光譜分析 82
3.1.7 X光光電子能譜分析 87
3.1.8 電感耦合等離子體質譜法(Inductively Coupled Plasms Mass Spectrometry, ICP-MS) 93
3.2 鈷摻雜釕基催化劑之催化活性測試與電化學分析 95
3.2.1 線性掃描伏安法分析 95
3.2.2 循環伏安法分析 101
3.2.3 定電流穩定性測試 105
3.2.4 電化學阻抗頻譜分析 105
3.3 鈷摻雜釕基催化劑之臨場實驗鑑定 110
3.3.1 臨場同步輻射X光繞射圖譜分析 110
3.3.2 臨場X光吸收近邊緣結構分析 121
3.3.3 臨場延伸X光吸收細微結構分析 134
3.3.4 臨場延伸X光吸收細微結構擬合分析 148
第四章 結論 172
參考文獻 173
dc.language.isozh-TW
dc.subject水分解zh_TW
dc.subject臨場實驗zh_TW
dc.subject電催化zh_TW
dc.subject析氫反應zh_TW
dc.subjecthydrogen evolution reactionen
dc.subjectelectrocatalysisen
dc.subjectin situ characterizationen
dc.title鈷摻雜釕基催化劑於電催化析氫反應之研究zh_TW
dc.titleUltra-High Performance Cobalt-doped Ruthenium-based Electrocatalyst for Hydrogen Evolution Reactionen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.advisor-orcid陳浩銘(0000-0002-7480-9940)
dc.contributor.oralexamcommittee廖尉斯(Wei-Ssu Liao),張慕傑(Mu-Chieh Chang),黃志嘉(Chih Chia Huang)
dc.contributor.oralexamcommittee-orcid廖尉斯(0000-0002-5619-4997),張慕傑(0000-0002-7270-0319),黃志嘉(0000-0002-9486-8665)
dc.subject.keyword水分解,電催化,析氫反應,臨場實驗,zh_TW
dc.subject.keywordhydrogen evolution reaction,electrocatalysis,in situ characterization,en
dc.relation.page176
dc.identifier.doi10.6342/NTU202003742
dc.rights.note有償授權
dc.date.accepted2020-08-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
U0001-1708202014173000.pdf
  未授權公開取用
23.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved