請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68410完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林怡成(Yi-Cheng Lin) | |
| dc.contributor.author | Wei-Ya Lee | en |
| dc.contributor.author | 李薇雅 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:20:10Z | - |
| dc.date.available | 2025-08-18 | |
| dc.date.copyright | 2017-08-24 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-21 | |
| dc.identifier.citation | [1]W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, R. D. Averitt, “Novel electrically resonant terahertz metamaterials,” Phys. Rev. B, Rapid 2007, 75, 041102.
[2]R. Dickie, R. Cahill, H. S. Gamble, V. F. Fusco, A. Schuchinsky, and N. Grant, “Spatial demultiplexing in the sub-mm wave band using multilayer free-standing frequency selective surfaces,” IEEE Trans. Antennas Propag., vol. 53, no. 6, pp. 1903–1911, Jun. 2005. [3]A. Feresidis, G. Goussetis, W. Shenhong, and J. Vardaxoglou, “Arti- ficial magnetic conductor surfaces and their application to low-profile high gain planar antennas,” IEEE Trans. Antennas Propag., vol. 53, no. 1, pp. 209–215, Jan. 2005. [4]R. Dickie, R. Cahill, H. S. Gamble, V. F. Fusco, M. Henry, M. L. Oldfield, P. G. Huggard, P. Howard, N. Grant, Y. Munro, and P. de Maagt, “Submillimeter wave frequency selective surface with polarization independent spectral responses,” Proc. IEEE Antennas and Propag., vol. 57, pp. 1985–1994, Jul. 2009. [5]D. Jackson, A. Oliner, and A. Ip, “Leaky-wave propagation and radiation for a narrow-beam multiple-layer dielectric structure,” IEEE Trans. Antennas Propag., vol. 41, no. 3, pp. 344–348, Mar. 1993. [6]C. Cheype, C. Serier, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, “An electromagnetic bandgap resonator antenna,” IEEE Trans. Antennas Propag., vol. 50, no. 9, pp. 1285–1290, Sep. 2002. [7]Y. Lee, Y. J., R. Mittra, and W. Park, “Application of electromagnetic bandgap (EBG) superstrates with controllable defects for a class of patch antennas as spatial angular filters,” IEEE Trans. Antennas Propag., vol. 53, no. 1, pp. 224–235, Jan. 2005. [8]N. Guerin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, “A metallic fabry-perot directive antenna,” IEEE Trans. Antennas Propag., vol. 54, no. 1, pp. 220–224, Jan. 2006. [9]Y. Ge, K. P. Esselle, and T. S. Bird, “The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas,” IEEE Trans. Antennas Propag., vol. 60, no. 2, pp. 743-750, Feb. 2012. [10]A. P. Feresidis and J. C. Vardaxoglou, “A broadband high-gain resonant cavity antenna with single feed,” in Proc. EuCAP, Nice, France, Nov. 6–10, 2006, pp. 1–5. [11]B. A. Zeb, Y. Ge, K. P. Esselle, S. Zhu and M. E. Tobar, 'A simple dual-band electromagnetic band gap resonator antenna based on inverted reflection phase gradient,' IEEE Trans. Antennas Propag., vol. 60, no. 10, pp. 4522-4529, Oct. 2012. [12]K. Konstantinidis, A. P. Feresidis and P. S. Hall, “Multilayer partially reflective surfaces for broadband Fabry-Perot cavity antennas,” IEEE Trans. Antennas Propag., vol. 62, pp. 3474-3481, 2014. [13]R. Orr, G. Goussetis, and V. Fusco, “Design method for circularly polarized Fabry-Perot cavity antenna,” IEEE Trans. Antennas Propag., vol. 62, no. 1, pp. 19–26, Jan. 2014. [14]A. R. Weily, K. P. Esselle, T. S. Bird, and B. C. Sanders, “High gain circularly polarised 1-D EBG resonator antenna,” Electron. Lett., vol. 42, no. 18, pp. 1012–1013, 2006. [15]T. Teshirogi, M. Tanaka, and W. Chujo, “Wideband circularly polarized array antenna with sequential rotations and phase shifts of elements,” in Proc. Int. Symp. Antennas Propagat. ISAP, Tokyo, Japan, Aug. 1985, pp. 117–120. [16]J. Huang, “A technique for an array to generate circular polarization using linearly polarized elements,” IEEE Trans. Antennas Propag., vol. 34, no. 9, pp. 1113–1124, Sep. 1986. [17]S. S. Yang, R. Chair, A. A. Kishk, K. F. Lee, and K. M. Luk, “Study on sequential feeding networks for subarrays of circularly polarized elliptical dielectric resonator antenna,” IEEE Trans. Antennas Propag., vol. 55, no. 2, pp. 321–333, Feb. 2007. [18]H. Evans, P. Gale, B. Aljibouri, E. G. Lim, E. Korolkeiwicz, and A. Sambell, “Application of simulated annealing to design of serial feed sequentially rotated 2×2 antenna array,” Electron. Lett., vol. 36, no. 24, pp. 1987–1988, Nov. 2000. [19]K. H. Lu and T.-N. Chang, “Circularly polarized array antenna with corporate-feed network and series-feed elements,” IEEE Trans. Antennas Propag., vol. 53, no. 10, pp. 3288–3292, Oct. 2005. [20]S. K. Lin and Y. C. Lin, “A compact sequential-phase feed using uniform transmission lines for circularly polarized sequential-rotation arrays,” IEEE Trans. Antennas Propag., vol. 59, no. 7, pp. 2721–2724, July. 2011. [21]W. F. Chou, “Design and implement of printed millimeter-wave cavity resonant antenna and arrays,” M.S. thesis, Graduate Institute of Comm. Eng. NTU Univ., Taipei, Taiwan, July. 2016. [22]Y. W. Hsu and Y. C. Lin, “Analysis of a finite-size bi-directional leaky wave antenna with edge reflection,” in Proc. IEEE AP-S Symp., Chicago, IL, Jul. 2011, pp.1-2. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68410 | - |
| dc.description.abstract | 在本論文,我們設計具有高增益及圓極化特性的空腔共振天線,其使用多層印刷電路板製作,並應用在毫米波頻段。空腔共振天線的架構由一層部分反射面和一層金屬接地面組成空腔,使波在空腔內來回共振以達到高增益之天線特性。本論文的天線架構,由重複四組饋入結構做順序旋轉排列,並接上順序相位電路去激發以產生圓極化。完成單一天線的設計後,我們在天線模組邊緣加上通孔排列成金屬壁,藉此增加單一天線的增益,並且減少天線模組之間的干擾。在組成陣列天線時,我們再次使用順序旋轉技術,使圓極化之長短軸比頻寬及阻抗頻寬同時增加。本論文所完成之天線效能為:單一天線的圓極化之長短軸比頻寬為1 %及阻抗頻寬為3.9 %,陣列天線的長短軸比例頻寬為8 %及阻抗頻寬為19 %;操作在29.1 GHz頻率下,天線正向輻射增益可達18.5 dBic,而2×2陣列天線之正向輻射增益可達22.3 dBic。 | zh_TW |
| dc.description.abstract | In this thesis, we propose a cavity resonant antenna (CRA) with high gain and circular polarization for millimeter wave applications. The presented CRA consists of a partially reflecting surface (PRS), a metallic ground plane, and a predesignated feeding structure in the cavity, all configured into a solid multi-layered printed circuit board (PCB). Through circuit loaded feeding structure, the excited EM waves bounce back and forth within the cavity and achieve the directive patterns. First, we arranged four symmetric feeding structures in sequential rotation and connected them to four sequential phased lumped port to verify the design concept of circular polarization (CP). Second, we designed a correspondent sequential phased 4-port power divider circuitry and connected to the predesignated feeding structures to realize the CP operation. Additionally, we employed a metallic wall with the plated through hole (PTH) surroundings the edges of the CRA unit module. Advantages of using the surrounding metallic wall may increase the antenna gain and suppress the coupling between the module elements in array. When designing the 2x2 array, we utilized the sequential rotation technique again to improve the axial ratio bandwidth and the impedance bandwidth of the entire array. The overall performances of the developed antennas are: the axial ratio bandwidth of 1 % and impedance bandwidth of 3.9 % for the single element; and the axial ratio bandwidth of 8% and impedance bandwidth of 19 % for array. For the antenna gain at broadside, the presented antenna achieved an 18.5 dBic for the single element and a 22.3 dBic for the 2x2 arrays. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:20:10Z (GMT). No. of bitstreams: 1 ntu-106-R04942129-1.pdf: 7362492 bytes, checksum: d09c65c35eec750516194f0980d3ee61 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝 ii
中文摘要 iv ABSTRACT v LIST OF FIGURES viii LIST OF TABLES xviii Chapter 1 Introduction 1 1.1 Cavity Resonant Antenna 1 1.2 Sequential Phase Feed 3 1.3 Motivation and Frame Work of This Thesis 5 Chapter 2 Design of Circularly Polarized Antenna 6 2.1 Background 6 2.2 Circularly Polarized PRS Antenna 9 Chapter 3 The Second Design of Circularly Polarized Feed 22 3.1 Cross Feed 22 3.2 Simulation Results 30 Chapter 4 Design of Edge Reflection and Array 36 4.1 Design of Edge Reflection and Optimization 36 4.2 Single Element 43 4.3 2×2 Array 49 Chapter 5 Implementation of Designed Antenna 55 5.1 Implementation of Edge Reflection with Via Walls 55 5.2 Explanation for Adding Strips 59 5.3 Simulation and Measurement Results of prototype 62 5.4 Error Analysis 75 Chapter 6 Conclusion 102 REFERENCES 103 | |
| dc.language.iso | en | |
| dc.subject | 圓極化 | zh_TW |
| dc.subject | 槽孔效率 | zh_TW |
| dc.subject | 部分反射面 | zh_TW |
| dc.subject | 空腔共振天線 | zh_TW |
| dc.subject | 毫米波 | zh_TW |
| dc.subject | sequential phase feed | en |
| dc.subject | partially reflecting surface (PRS) | en |
| dc.subject | cavity resonant antenna (CRA) | en |
| dc.subject | Fabry Perot antenna | en |
| dc.subject | circular polarization | en |
| dc.subject | millimeter wave | en |
| dc.title | 印刷式毫米波圓極化空腔共振天線與陣列之研製 | zh_TW |
| dc.title | Design and Implementation of Printed Cavity Resonant Antenna and Arrays for Circularly Polarized Millimeter-Wave Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭瑞清(Jui-Ching Cheng),林俊華(Jiun-Hwa Lin),陳富強(Fu-Chiang Chen) | |
| dc.subject.keyword | 毫米波,圓極化,空腔共振天線,部分反射面,槽孔效率, | zh_TW |
| dc.subject.keyword | millimeter wave,partially reflecting surface (PRS),cavity resonant antenna (CRA),Fabry Perot antenna,circular polarization,sequential phase feed, | en |
| dc.relation.page | 105 | |
| dc.identifier.doi | 10.6342/NTU201701493 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 7.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
