請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68386完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳宏銘 | |
| dc.contributor.author | Ming-I Yang | en |
| dc.contributor.author | 楊明頤 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:19:27Z | - |
| dc.date.available | 2017-08-24 | |
| dc.date.copyright | 2017-08-24 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-21 | |
| dc.identifier.citation | [1] P. Rentfrow and S. Gosling, “The Do Re Mi's of everyday life: The structure and personality correlates of music preferences,” J. Pers. Soc. Psychol., vol. 84, no. 6, pp. 1236-1256, 2003.
[2] X. Cheng, D. Cameron, and L. Jiangchuan, “Statistics and social network of Youtube videos,” in Proc. Int. Workshop Quality Service, pp. 229–238, 2008. [3] C.-H. Chung and H. H. Chen, “Vector representation of emotion flow for popular music,” in Proc. IEEE 17th Int. Workshop Multimedia Signal Process., 2015. [4] L. Lu, D. Liu, and H.-J. Zhang, “Automatic mood detection and tracking of music audio signals,” IEEE Trans. Audio, Speech, Language Process., vol. 14, no. 1, pp. 5–18, 2006. [5] X. Hu and J. S. Downie, “Exploring mood metadata: Relationships with genre, artist and usage metadata,” in Proc. Int. Soc. Music Inform. Retrieval, pp. 67–72, 2007. [6] Y.-C. Lin, Y.-H. Yang, and H. H. Chen, “Exploiting online music tags for music emotion classification,” ACM Trans. Multimedia Computing, Commun., Applicat., 2011. [7] Y. Feng, Y. Zhuang, and Y. Pan, “Popular music retrieval by detecting mood,” in Proc. ACM SIGIR, pp. 375–376, 2003. [8] Y.-H. Yang, C.-C. Liu, and H. H. Chen, “Music emotion classification: A fuzzy approach,” in Proc. ACM Int. Conf. Multimedia, pp. 81–84, 2006. [9] Y.-H. Yang, Y.-C. Lin, Y.-F. Su, and H. H. Chen, “A regression approach to music emotion recognition,” IEEE Trans. Audio, Speech, Language Process., vol. 16, vol. 2, pp. 448–457, 2008 [10] E. Schubert, “Measurement and time series analysis of emotion in music,” Ph.D. dissertation, School of Music & Music Education, University of New South Wales, 1999. [11] J. A. Russell, “A circumplex model of affect,” J. Pers. Soc. Psychol., vol. 39, no. 6, pp. 1161-1178, 1980. [12] R. Panda and R. P. Paiva, “Using support vector machines for automatic mood tracking in audio music,” Audio Engineering Soc. Convention, 2011. [13] E. M. Schmidt, D. Turnbull, and Y. E. Kim, “Feature selection for content-based, time-varying musical emotion regression,” in Proc. ACM Int. Conf. Multimedia Inform. Retrieval, pp. 267-274, 2010. [14] B. Horner and T. Swiss, “Key terms in popular music and culture,” Blackwell Publishing, 1999 [15] E. Schubert, S. Ferguson, N. Farrar, D. Taylor, and G. E. Mcpherson, “Continuous response to music using discrete emotion faces,” in Proc. Int. Symp. Comput. Music Modelling Retrieval, pp. 1–17, 2012. [16] J. J. Aucouturier, and P. Francois, “Representing musical genre: A state of the art.” J. New Music Research, vol.32, no.1, pp. 83-93, 2003. [17] J.-H. Lee and J. S. Downie, “Survey of music information needs, uses, and seeking behaviours: Preliminary findings,” in Proc. Int. Soc. Music Inform. Retrieval, pp. 441–446, 2004. [18] A guide to song form-AAA song form [Online]. Available: http://www.songstuff.com/song-writing/article/song-form-guide-aaa/ [19] A guide to song form-AAB song form [Online]. Available: http://www.songstuff.com/song-writing/article/aab-song-form/ [20] M. Tilmouth, “Strophic,” The New Grove Dictionary Music Musicians, pp. 292–293, 1980. [21] W. Everett, “The foundations of rock: From 'Blue suede shoes' to 'Suite: Judy blue eyes,” pp. 145, 2008. [22] J. Nielsen, “Heuristic evaluation,” Usability Inspection Methods, vol. 17, no. 1, pp. 25–62, 1994. [23] K. Hoashi, S. Hamawaki, H. Ishizaki, Y. Takishima, and J. Katto, “Usability evaluation of visualization interfaces for content-based music retrieval systems,” in Proc. Int. Soc. Music Inform. Retrieval, pp. 207–212, 2009. [24] S. Pauws and S. Wijdeven, “User evaluation of a new interactive playlist generation concept,” in Proc. Int. Soc. Music Inform. Retrieval, 2005. [25] X. Hu and N. Kando, “Evaluation of music search in casual-leisure situations,” in Proc. Workshop Searching Fun, 2014. [26] X. Hu, J.-H. Lee, D. Bainbridge, K. Choi, P. Organisciak, and J. S. Downie, “The MIREX grand challenge: A framework of holistic user experience evaluation in music information retrieval,” J. Assoc. Inform. Sci. Technol., 2015. [27] Y. Zhang, “Developing a holistic model for digital library evaluation,” J. Am. Soc. Inform. Sci. Technol., vol. 61, no. 1, pp. 88–110, 2010. [28] J.-H. Lee and R. Price, “User experience with commercial music services: An empirical exploration,” J. Assoc. Inform. Sci. Technol., 2015. [29] X. Hu and N. Kando, “User-centered measures vs. system effectiveness in finding similar songs,” in Proc. Int. Soc. Music Inform. Retrieval, 2012. [30] Y.-H. Yang, Y.-F. Su, Y.-C. Lin, and H. H. Chen, “Music emotion recognition: The role of individuality,” in Proc. ACM Int. Workshop Human-Centered Multimedia,” pp. 13– 22, 2007. [31] Y.-A. Chen, Y.-H. Yang, J.-C. Wang, and H. H. Chen, “The AMG1608 dataset for music emotion recognition,” in Proc. IEEE Int. Conf. Acoustics, Speech Signal Process., 2015. [32] O. Lartillot and P. Toiviainen, “A MATLAB toolbox for musical feature extraction from audio,” in Proc. Int. Conf. Digital Audio Effects, pp. 237–244, 2007. [33] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, 2011. [34] C. G. Tsai, R. S. Chen, and T. S. Tsai, “The arousing and cathartic effects of popular heartbreak songs as revealed in the physiological responses of listeners,” Musicae Scientiae, vol. 18, no. 4, pp. 410-422, 2014. [35] A. Aljanaki, Y.-H. Yang, and M. Soleymani, “Emotion in music task at MediaEval 2014,” MediaEval, 2014. [36] A. Aljanaki, Y.-H. Yang, and M. Soleymani, “Emotion in music task at MediaEval 2015,” MediaEval, 2015. [37] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise,” Kdd, vol. 96, no. 34, 1996. [38] J. B. MacQueen, “Some methods for classification and analysis of multivariate observations,” in Proc. Berkeley Symposium Mathematical Statistics Probability, University of California Press, pp. 281–297, 1967. [39] R. J. Ripani, “The new blue music: changes in rhythm & blues, 1950-1999,” Wm. B. Eerdmans Publishing, 2006. [40] Jazz origins in New Orleans [Online]. Available: http://www.nps.gov/jazz/learn/historyculture/history_early.htm. [41] K. Ruehl. (2017, March 16). Folk Music [Online]. Available: http://www.thoughtco.com/g00/what-is-folk-music-1322534?i10c.referrer=https%3A%2F%2Fen.wikipedia.org%2F [42] D. Hatch and S. Millward, “From blues to rock: an analytical history of pop music,” Manchester University Press, 1987. [43] Origins of the blues [Online]. Available: http://www.bbc.co.uk/schools/gcsebitesize/music/popular_music/blues2.shtml [44] R. A. Peterson, “Creating country music: Fabricating authenticity,” University of Chicago Press, 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68386 | - |
| dc.description.abstract | 音樂情緒動態能以二維情緒平面(2-D valence-arousal plane)上的兩點來表示。相較於傳統的單點音樂情緒表示法,這種向量表示法是否能使音樂檢索(music retrieval)更有效,是否能用來展現或描述曲風特性(genre characteristic)是值得探討的兩個基本問題。在這篇論文,我們設計一系列的實驗來回答這兩個問題。首先,我們讓受試者使用這兩種表示法搜尋音樂後以下列七個衡量標準進行評分:功能多樣性(affordance)、學習簡易度(learnability)、易用性(ease of use)、實用性(usefulness)、娛樂性(joyfulness)、新穎度(novelty)及整體滿意度(overall satisfaction)。整體實驗結果顯示向量表示法比傳統的單點表示法在學習簡易度方面略遜一籌,但在功能多樣性、娛樂性和新穎度等方面皆獲得顯著的好評。其次,我們使用向量表示法來分析六種主流曲風的情緒特性,包括藍調音樂(blues)、鄉村音樂(country)、民謠(folk)、爵士樂(jazz)、流行音樂(pop)、以及搖滾樂(rock)。由於向量表示法比起單點表示法可以表示音樂的情緒動態,使得曲風特性的描述更加細緻。實驗中我們使用情緒向量在正負度及激昂度方向上的長度,呈現六種曲風的音樂情緒動態特性。結果顯示在正負度方向上,藍調及鄉村音樂的情緒向量較短、爵士及流行樂的情緒向量則較長;在激昂度方向上,鄉村音樂的情緒向量較短,搖滾樂的情緒向量較長。此外,我們也發現曲風的歌曲情緒向量長度和歌曲結構的複雜度有正向關係。 | zh_TW |
| dc.description.abstract | The dynamics of music emotion can be instantly visualized by a couple of points in a two dimensional valence-arousal plane. However, the effectiveness of this vector representation for music retrieval and genre characterization remains to be explored. In this thesis, we conduct a series of experiments for the effectiveness evaluation of vector representation. First, we build a music retrieval system enabling a subject to search music through either the conventional point representation or the vector representation. The effectiveness for music retrieval is evaluated using seven metrics: learnability, ease of use, affordance, usefulness, joyfulness, novelty, and overall satisfaction. Overall, the vector representation outperforms the point representation in affordance, novelty, and joyfulness, although the subjects need some introduction to get familiar with it. Second, we use both the point and vector representations to characterize the emotion flow of blues, country, folk, jazz, pop, and rock songs. Since the vector representation captures music emotion dynamics, it can be used to analyze the characteristics of emotion for each genre more elaborately. The characteristics of the music emotion dynamics are expressed in terms of the length of emotion vector, in both valence and arousal dimensions. We find that in the valence dimension, the emotion vectors of blues or country music tend to be short, whereas the emotion vectors of jazz and pop music tend to be long. Likewise, in the arousal dimension, the emotion vectors of country music tend to be short, and the emotion vectors of rock music tend to be long. We also find that the length of the emotion vector of a genre generally depends on the complexity of song structure. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:19:27Z (GMT). No. of bitstreams: 1 ntu-106-R04942102-1.pdf: 1498393 bytes, checksum: 0f146772f7fee26c6a1443321ae6835b (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES viii LIST OF TABLES x Chapter 1 Introduction 1 Chapter 2 User experience evaluation metrics 4 Chapter 3 Experiment Setup 6 3.1 Music Database for the Retrieval System 6 3.2 Distance Measurement 7 3.3 Music Dataset for Genre Characterization 10 Chapter 4 Experiments 11 4.1 Training 11 4.2 Precision of Emotion Vectors 14 4.3 Comparison of Point and Vector Representations 16 4.4 Genre Characterization by Vector Representation 17 Chapter 5 Results and Discussion 19 5.1 Precision of Emotion Vectors 19 5.2 Comparison of Point and Vector Representations 20 5.3 Emotion Characteristics of Genres 22 5.3.1 Point Representation 23 5.3.2 Emotion Points of Song Segments 24 5.3.3 Emotion Vector 28 5.3.4 Genre Classification 39 5.3.5 Discussion 44 Chapter 6 Conclusion 47 REFERENCES 48 | |
| dc.language.iso | en | |
| dc.subject | 向量表示法 | zh_TW |
| dc.subject | 音樂情緒動態 | zh_TW |
| dc.subject | 音樂檢索 | zh_TW |
| dc.subject | 使用者經驗評量 | zh_TW |
| dc.subject | 曲風情緒特徵 | zh_TW |
| dc.subject | genre characterization | en |
| dc.subject | dynamic music emotion | en |
| dc.subject | Vector representation | en |
| dc.subject | music retrieval | en |
| dc.subject | user experience evaluation | en |
| dc.title | 使用情緒向量於音樂檢索及曲風描述 | zh_TW |
| dc.title | Using Vector Representation of Emotion Flow for Music Retrieval and Genre Characterization | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊奕軒,張智星,陳宜欣,王家慶 | |
| dc.subject.keyword | 向量表示法,音樂情緒動態,音樂檢索,使用者經驗評量,曲風情緒特徵, | zh_TW |
| dc.subject.keyword | Vector representation,dynamic music emotion,music retrieval,user experience evaluation,genre characterization, | en |
| dc.relation.page | 52 | |
| dc.identifier.doi | 10.6342/NTU201704042 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 1.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
