Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68327
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑞庭(Anthony J. T. Lee)
dc.contributor.authorChih-Ling Hsuen
dc.contributor.author許芷菱zh_TW
dc.date.accessioned2021-06-17T02:17:45Z-
dc.date.available2026-02-11
dc.date.copyright2021-03-08
dc.date.issued2021
dc.date.submitted2021-02-11
dc.identifier.citationAlakwaa W, Nassef M, Badr A (2017) Lung cancer detection and classification with 3D convolutional neural network (3D-CNN). International Journal of Advanced Computer Science and Applications 8(8): 409-417
Batmaz Z, Yurekli A, Bilge A, Kaleli C (2018) A review on deep learning for recommender systems: Challenges and remedies. Artificial Intelligence Review 52(1):1-37
Burt, RS (1987) Social contagion and innovation: Cohesion versus structural equivalence. American Journal of Sociology 92(6), 1287-1335
Chen B, Wang J, Huang Q, Mei T (2012) Personalized video recommendation through tripartite graph propagation. Proceedings of the ACM International Conference on Multimedia, 1133-1136
Chen J, Zhang H, He X, Nie L, Liu W, Chua TS (2017) Attentive collaborative filtering: Multimedia recommendation with item- and component-level attention. Proceedings of the ACM SIGIR International Conference on Research and Development in Information Retrieval, 335-344
Cheng HT, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H, Anil R (2016) Wide deep learning for recommender systems. Proceedings of the Workshop on Deep Learning for Recommender Systems, 7-10
Covington P, Adams J, Sargin E (2016) Deep neural networks for YouTube recommendations. Proceedings of the ACM Conference on Recommender Systems, 191-198
Diao Q, Qiu M, Wu CY, Smola AJ, Jiang J, Wang C (2014) Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS). Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 193-202
Dsouza AM, Chen L, Wu Y, Abidin AZ, Xu C, Wismüller A (2018) MRI tumor segmentation with densely connected 3D CNN. Medical Imaging: Image Processing 10574: 105741F
Fang X, Hu PJH (2018) Top persuader prediction for social networks. MIS Quarterly 42(1): 63-82
Fang X, Hu PJH, Li Z, Tsai W (2013) Predicting adoption probabilities in social networks. Information Systems Research 24(1): 128-145
Festinger L (1954) A theory of social comparison processes. Human Relations 7(2):117-140
Gong Y, Zhang Q (2016) Hashtag recommendation using attention-based convolutional neural network. Proceedings of the International Joint Conference on Artificial Intelligence, 2782-2788
Guo C, Zhang M, Liu Y, Ma S (2016) A picture is worth a thousand words: Introducing visual similarity into recommendation. Proceedings of the International Conference on Intelligent Control and Information Processing, 153-160
Gupta S, Varma V (2017) Scientific article recommendation by using distributed representations of text and graph. Proceedings of the International Conference on World Wide Web Companion, 1267-1268
Hai-Xia L, Guang Y, Xian-yun T (2013) A matching recommendation algorithm for celebrity endorsement on social network. Proceedings of the International Conference on Management Science and Engineering, 72-77
Hara K, Kataoka H, Satoh Y (2017) Learning spatio-temporal features with 3D residual networks for action recognition. Proceedings of the IEEE International Conference on Computer Vision, 3154-3160
Hasani B, Mahoor MH (2017) Facial expression recognition using enhanced deep 3D convolutional neural networks. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition Workshops, 2278-2288
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, 770-778
He R, McAuley J (2016) VBPR: Visual Bayesian personalized ranking from implicit feedback. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 114-150
Heaton JB, Polson NG, Witte JH (2017) Deep learning for finance: Deep portfolios. Applied Stochastic Models in Business and Industry 33(1):3-12
Huang J, Zhou W, Li H, Li W (2015) Sign language recognition using 3D convolutional neural networks. Proceedings of the IEEE International Conference on Multimedia and Expo, 1-6
Jamali M, Ester M (2010) A matrix factorization technique with trust propagation for recommendation in social networks. Proceedings of the ACM International Conference on Recommender Systems, 135-142
Jiang L, Yang CC (2017) User recommendation in healthcare social media by assessing user similarity in heterogeneous network. Artificial Intelligence in Medicine 81:63-77
Jing Y, Zhang X, Wu L, Wang J, Feng Z, Wang D (2014) Recommendation on Flickr by combining community user ratings and item importance. Proceedings of the IEEE International Conference on Multimedia and Expo, 1-6
Kabbur S, Ning X, Karypis G (2013) FISM: Factored item similarity models for top-N recommender systems, Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 659-667
Kang W, Kim E, Leskovec J, Rosenberg C, Mcauley J (2019) Complete the look: Scene-based complementary product recommendation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 555-563
Kim Y (2014) Convolutional neural networks for sentence classification. Proceedings of the International Conference on Empirical Methods in Natural Language Processing, 1746-1751
Kingma DP, Ba J (2015) Adam: A method for stochastic optimization Proceedings of the International Conference on Learning Representations, 1-15
Koren Y, Bell R, Volinsky C (2009) Matrix Factorization Techniques for Recommender Systems. Computer 42(8):30-37
Knoke D (1990) Networks of political action: Toward theory construction. Social Forces 68(4):1041-1063
Li G, Luo J, Xiao Q, Liang C, Ding P, Cao B (2017) Predicting microRNA-disease associations using network topological similarity based on DeepWalk. IEEE Access 5:24032-24039
Lin X, Han C (2018) Chinese text sentiment analysis based on improved convolutional neural networks. Proceedings of the IEEE Internatinoal Conference on Software Engineering and Service Science, 922-926
Liu W, Zhang M, Luo Z, Cai Y (2017) An ensemble deep learning method for vehicle type classification on visual traffic surveillance sensors. IEEE Access 5:24417-24425
Lobel S, Li C, Gao J, Carin L (2020) Towards amortized ranking-critical training for collaborative filtering. Proceedings of the Internatinoal Conference on Learning Representations, 1-19
Ma H, King I, Lyu MR (2009) Learning to recommend with social trust ensemble. Proceedings of the ACM SIGIR International Conference on Research and Development in Information Retrieval, 203-210
Ma H, Yang H, Lyu MR, King I (2008) SoRec: Social recommendation using probabilistic matrix factorization. Proceedings of the ACM International Conference on Information and Knowledge Management, 931-940
Melville P, Sindhwani V (2010) Recommender systems. Encyclopedia of Machine Learning, Springer, 829-838
Mikolov T, Sutskever I, Chen K, Corrado G, Dean J (2013) Distributed representations of words and phrases and their compositionality. Proceedings of the International Conference on Neural Information Processing Systems, 3111-3119
Nagpal C, Dubey SR (2019) A performance evaluation of convolutional neural networks for face nnti spoofing. Proceedings of the IEEE Internatinoal Joint Conference on Neural Networks, 1-8
Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic E (2015) Deep learning applications and challenges in big data analytics. Journal of Big Data 2(1):1-21
Perozzi B, AI-Rfou R, Skiena S (2014) DeepWalk: Online learning of social representations. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701-710
Rawat YS, Kankanhalli MS (2016) ConTagNet: Exploiting user context for image tag recommendation. Proceedings of the ACM International Conference on Multimedia, 1102-1106
Rendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme L (2009) BPR: Bayesian personalized ranking from implicit feedback. Proceedings of the ACM International Conference on Uncertainty in Artificial Intelligence, 452-461
Shen D, Wu G, Suk H (2017) Deep learning in medical image analysis. Annual Review of Biomedical Engineering 19(1):221-248
Song W, Xiao Z, Wang Y, Charlin L, Zhang M, Tang J (2019) Session-based social recommendation via dynamic graph attention networks. Proceedings of the ACM International Conference on Web Search and Data Mining, 555-563
Sridhar S, Srinivasan R (2012) Social influence effects in online product ratings. Journal of Marketing 76(5): 70-88
Thorat PB, Goudar RM, Barve S (2015) Survey on collaborative filtering, content-based filtering and hybrid recommendation system. International Journal of Computer Applications 110(4):31-36
Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotemporal features with 3D convolutional networks. Proceedings of the IEEE International Conference on Computer Vision, 4489-4497
Wang S, Wang,Y, Tang J, Shu K, Ranganath S (2017) What your images reveal: Exploiting visual contents for point-of-interest recommendation. Proceedings of the ACM International Conference on World Wide Web, 391-400
Weiner B. (1986) An attributional theory of achievement motivation and emotion. Psychological Review 92(4):548-573
Xue HJ, Dai X, Zhang J, Huang S, Chen J (2017) Deep matrix factorization models for recommender systems. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, 3203-3209
Yan M, Sang J, Mei T, Xu C (2013) Friend transfer: Cold-start friend recommendation with cross-platform transfer learning of social knowledge. Proceedings of the IEEE International Conference on Multimedia and Expo, 1-6
Yan M, Sang J, Xu C (2015) Unified YouTube video recommendation via cross-network collaboration, Proceedings of the ACM International Conference on Multimedia Retrieval, 19-26
Zhong Z, Zhuang X (2018) Deep learning applications in business activities. American Journal of Management Science and Engineering 3(5):38-43
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68327-
dc.description.abstractYouTube已成為最大製造網紅的社群平台之一,網紅可透過YouTube頻道與他(她)的追隨者或頻道訂閱者保持緊密聯繫。許多網紅不僅在YouTube 上發布影片,更在其他的社群平台上分享相關的內容,尤其在熱門社群平台如:Instagram,推廣他們的頻道和吸收更多的追隨者,以增加其能見度與影響力。然而,有些YouTubers在YouTube上很紅,但在Instagram上卻不紅,反之亦然,因此,本研究提出了一個深度學習的架構,推薦YouTubers 給 Instagram上的使用者。所提出的研究架構包括三個階段,第一階段,我們從YouTube蒐集資料,並提取出文字、影片與社群相關的特徵;第二階段,我們從Instagram蒐集資料,並提取出圖片、社群與關注相關的特徵,接著將兩個平台的特徵融合,以特徵化每位YouTuber;最後,我們提出一個推薦模型,結合上述的融合特徵和注意力機制來學習使用者的喜好,並將得分最高的前k位YouTubers推薦給使用者。實驗結果顯示,我們提出的方法優於所有的比較方法,並可減輕冷啟動問題的效應。我們的研究可幫助YouTubers、網紅或企業擬訂有效的行銷策略,亦可幫助使用者發現更多感興趣的YouTubers。zh_TW
dc.description.abstractYouTube has become one of the largest platforms for creating internet celebrities, where the internet celebrities build and maintain a channel to establish tight connections with their followers or subscribers. Moreover, many internet celebrities tend to share their posts on multiple platforms, especially on popular one like Instagram, to promote their YouTube channels and acquire more followers to increase their reputations and influences. However, some YouTubers popular on YouTube are not popular on Instagram, and vice versa. Therefore, in our study, we propose a deep learning framework for recommending YouTubers to users on Instagram. The proposed framework contains three phases. First, we extract the features from the data collected from YouTube, including textual features, video features and social features. Next, we extract the features from the data collected from Instagram, including photo features, social features and following features. Then, we combine these features together to characterize each YouTuber. Finally, based on the combined features, we design an attentive recommendation model for computing the recommendation score of each YouTuber, and recommend top-k YouTubers with highest scores to users. The experiment results show that our proposed model outperforms the state-of-the-art methods in terms of precision, recall, F1-score and Normalized Discounted Cumulative Gain (NDCG), and mitigates the effect of cold start problems. Our study can help YouTubers, internet celebrities and businesses formulate effective marketing strategies, and assist users in discovering the YouTubers of interest.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:17:45Z (GMT). No. of bitstreams: 1
U0001-1002202109394800.pdf: 2520602 bytes, checksum: 68ae69dc0ec49fb22a867c86e808a71c (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsTable of Contents i
List of Figures ii
List of Tables iii
Chapter 1 Introduction 1
Chapter 2 Related Work 5
Chapter 3 The Proposed Framework 9
3.1 Theoretical Foundation 9
3.2 YouTubers Recommendation Framework 10
3.2.1 Features Extracted from YouTube 11
3.2.2 Features Extracted from Instagram 15
3.2.3 YouTubers Recommendation 18
Chapter 4 Experimental Results 22
4.1 Dataset 22
4.2 Performance Evaluation 25
4.3 Effects of Attention Mechanism 31
4.4 Effects of Embedding Matrix 32
4.4 Effects of User and Auxiliary Latent Factors 36
4.5 Recommendation Examples 38
Chapter 5 Conclusions and Future Work 40
References 43
Appendix A 49
dc.language.isoen
dc.subjectYouTuber 推薦zh_TW
dc.subject網紅zh_TW
dc.subject深度學習zh_TW
dc.subject注意力機制zh_TW
dc.subject冷啟動問題zh_TW
dc.subjectinternet celebrityen
dc.subjectYouTuber recommendationen
dc.subjectcold start problemen
dc.subjectattention mechanismen
dc.subjectdeep learningen
dc.titleInstagram 平台 YouTubers 推薦zh_TW
dc.titleYouTubers Recommendation on Instagramen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee劉敦仁(Duen-Ren Liu),柯士文(Shi-Wen Ke)
dc.subject.keywordYouTuber 推薦,網紅,深度學習,注意力機制,冷啟動問題,zh_TW
dc.subject.keywordYouTuber recommendation,internet celebrity,deep learning,attention mechanism,cold start problem,en
dc.relation.page54
dc.identifier.doi10.6342/NTU202100693
dc.rights.note有償授權
dc.date.accepted2021-02-16
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
U0001-1002202109394800.pdf
  未授權公開取用
2.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved