請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68295完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柯淳涵 | |
| dc.contributor.author | Kun-Sheng Chen | en |
| dc.contributor.author | 陳昆生 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:16:53Z | - |
| dc.date.available | 2025-12-31 | |
| dc.date.copyright | 2018-01-04 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2017-09-21 | |
| dc.identifier.citation | 王松永(2003)木質材料利用對二氧化碳涵存之效應。氣候變遷對森林之二氧化碳吸存影響研討會論文集:125-144。
王松永、塗三賢(2007)木材利用、木構建築對溫室氣體減量貢獻。林業研究專訊14(6):1-5。 王義仲(2011)竹林經營對減緩溫室效應之助益。林業研究專訊18(1):8-11。 王義仲(2006)竹林調查生物量回顧與展望。2006年森林碳吸存研討會。 江玄政、黃國恭、黃雪娟(2001)ISO14000系列:生命週期評估技術與應用手册。 經濟部工業局。 林俊成、林裕仁、邱祈榮(2014)10年來臺灣竹材利用市場統計。林業研究專訊21(1):38-42。 林誠謙(1989)蒙地卡羅法簡介。物理雙月刊11(2):163-176。 馬鴻文(2003)本土化生命週期評估技術及其應用之研究─子計畫四:生命週期評估之不確定性分析與資訊價值評估系統之研發(II)。台北:國立臺灣大學環境工程學研究所。 經濟部能源局(2014)能源統計手冊。 顏添明(2011)竹林碳吸存潛力之探討。林業研究專訊18(1):19-22。 Anwar, U. M. K., Hiziroglu, S., Hamdan, H., Abd.Latif, M. 2011. Effect of outdoor exposure on some properties of resin-treated plybamboo. Industrial Crops and Products, 33(1), 140-145. Bansal, A., Zoolagud, S. S. 2002. Bamboo composites: Material of the future. Journal of Bamboo and Rattan, 1(2), 119-130. Björklund, A. E. 2002. Survey of approaches to improve reliability in lca. The International Journal of Life Cycle Assessment, 7(2), 64-72. Chang, Y. S. 2002. Life cycle assessment on the reduction of carbon dioxide emission of buildings. in: Department of Architecture, National Cheng Kung University, pp. 145. Chen, T. H., Chiu, C. Y., Xie, Z. Y., Wang, J. 2014. Growth Characteristics of Moso Bamboo (Phyllostachys Pubescens) Plantations at Various Altitudes--For Instance in Daan Area, Nantou County. Quarterly Journal of Chinese Forestry, 47(2), 181-192. Chen, T. H., Chung, H. Y., Wang, D. H., Lin, S. H. 2009a. Growth and Biomass of Makino Bamboo in Shihmen Reservoir Watershed Area. Quarterly Journal of Chinese Forestry, 42(4), 519-527. Chen, T. H., Wang, D. H., Chung, H. Y. 2012. The Growth and Biomass of Bambusa Stenostachya Hackel Plantation at Zeochen Area in Tainan City. Quarterly Journal of Chinese Forestry, 45(3), 341-349. Chen, X., Zhang, X., Zhang, Y., Booth, T., He, X. 2009b. Changes of carbon stocks in bamboo stands in China during 100 years. Forest Ecology and Management, 258(7), 1489-1496. Cheng, K. L. 2012. Carbon Footprint Calculation Method and Uncertainty Analysis of Recycling: Cases Study of the Steel Industry in Taiwan. in: Department of Environmental Engineering, National Cheng Kung University, pp. 150. Chiou, C. R., Chen, T. H., Lin, Y. J., Yang, Y. J., Lin, S. D. 2009. Distribution and Change Analysis of Bamboo Forest in Northern Taiwan. Quarterly Journal of Chinese Forestry, 42(1), 89-105. Chung, H. Y., Liu, C. P., Chen, T. H. 2010. Effects of Thinning on the Growths and Biomass of Makino Bamboos in Lienhuachih. Quarterly Journal of Chinese Forestry, 43(2), 223-231. Curran, M. A. 2006. Life Cycle Assessment: Principles and Practice. FAO. 2006. Global Forest Resources Assessment 2005 Progress toward sustainable forest management. Food And Agriculture Organization Of The United Nations, Rome. FAO. 2010. Global Forest Resources Assessment 2010 Main report. Food And Agriculture Organization Of The United Nations, Rome. Heijungs, R., Guineév, J. B. 2012. An Overview of the Life Cycle Assessment Method – Past, Present, and Future. Life cycle assessment handbook: A guide for environmentally sustainable products, 15-41. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., Van der Linden, P. J., Dai, X., Maskell, K., Johnson, C. A. 2001. Climate change 2001 : the scientific basis : contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York. Huijbregts, M. A. J. 1998. Application of uncertainty and variability in LCA. The International Journal of Life Cycle Assessment, 3(5), 273-280. ITTO. 2015. Biennial Review and Assessment of the World Timber Situation. International Tropical Timber Organization, Yokohama, Japan. Ji, Y. J. 2008. Biomass and Carbon Storage of Phyllostachys makinoi Plantation in Central Taiwan. in: Department of Forestry, National Chung Hsing University, pp. 92. Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., Rosenbaum, R. 2003. IMPACT 2002+: A new life cycle impact assessment methodology. The International Journal of Life Cycle Assessment, 8(6), 324-330. Jyoti Nath, A., Das, G., Das, A. K. 2009. Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass and Bioenergy, 33(9), 1188-1196. Kindermann, G. E., McAllum, I., Fritz, S., Obersteiner, M. 2008. A global forest growing stock, biomass and carbon map based on FAO statistics. Silva Fennica, 42(3), 387-396. Kuehl, Y., Lou, Y. 2012. Carbon Off-setting with Bamboo. International Network for Bamboo and Rattan. Li, J., Yuan, Y., Guan, X. 2016. Assessing the Environmental Impacts of Glued-Laminated Bamboo Based on a Life Cycle Assessment. BioResources, 11(1), 1941-1950. Lin, S. H., Lai, C. F., Chen, Y. J. 2007. A Study on the Root System of Makino's Bamboo Forest and it's Effect on the Subsequent Landslide. Journal of Soil and Water Conservation, 39(2), 173-187. Lin, S. T., Chang, Y. S., Ou, W. S., Yang, H. C., Liu, H. C. 2002. An Analysis on Environmental Load of Building Material Production in Taiwan. Journal of Architecture, 40, 1-15. Lin, Y. J. 2011. Review, current status, and prospects of the bamboo industry in Taiwan. Taiwan Journal of Forest Science, 26(1), 99-111. Lo, S. C. 2005. Identification, Quantification and Integration of Uncertainty in Life Cycle Assessment Using the Systematic Approach of Probabilistic Model. in: Graduate Institute of Environmental Engineering, National Taiwan University, pp. 154. Lobovikov, M., Ball, L., Guardia, M., Russo, L. 2007. World bamboo resources: a thematic study prepared in the framework of the global forest resources assessment 2005. Food & Agriculture Org. Lu, C. M. 2001. Cultivation and Management of Bamboo Forests. Taiwan Forestry Research Institute, 135, 84-89. Luo, Y. J. 2009. Studies of management efficiency between bamboo and timber—An illustration of Phyllostachys pubescens and Cunninghamia lanceolata Hook. in: Department of Forestry, National Chung Hsing University, pp. 1-75. Metropolis, N., Ulam, S. 1949. The Monte Carlo Method. Journal of the American Statistical Association, 44(247), 335-341. Owens, J. W. 1996. LCA impact assessment categories. The International Journal of Life Cycle Assessment, 1(3), 151-158. Parresol, B. R. 1999. Assessing Tree and Stand Biomass: A Review with Examples and Critical Comparisons. Forest Science, 45(4), 573-593. Scurlock, J. M. O., Dayton, D. C., Hames, B. 2000. Bamboo: an overlooked biomass resource?. Biomass and Bioenergy, 19(4), 229-244. Smith, J. E., Heath, L. S., Skog, K. E., Birdsey, R. A. 2006. Methods for calculating forest ecosystem and harvested carbon with standard estimates for forest types of the United States. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., Miller, H. L. 2007. Climate change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. Sun, B. K. 2013. Estimation of stand structure and carbon storage on Ma bamboo and Moso bamboo. in: Department of Forestry, National Chung Hsing University, pp. 72. Sun, B. K., Chen, Y. T., Yen, T. M., Li, L. E. 2013. Stand characteristics, aboveground biomass and carbon storage of moso bamboo (Phyllostachys pubescens) stands under different management levels in central Taiwan. Quarterly Journal of Forest Research, 35(1), 23-32. Sun, C. H., Yen, T. M. 2011. Using Allometric Equation to Predict Bamboo Biomass Based on Combined Data of Makino Bamboo (Phyllostachys makinoi) and Moso Bamboo (Phyllostachys pubescens) Quarterly Journal of Forest Research, 33(3), 1-8. Sun, C. H., Yen, T. M., Lee, J. S. 2011. Comparisons of Different Allometric Equations for Predicting the Aboveground Biomass of Conifer and Bamboo Forests. Quarterly Journal of Forest Research, 33(1), 1-8. Tai, K. Y., Yang, P. L., Shen, Y. K. 1973. Bamboo resources of Taiwan. Cooperation Project by the Joint Commission on Rural Reconstruction, Taiwan Forestry Bureau, Taiwan Agricultural and Forestry Aerial Survey Team, a the Provincial Pingtung Institute of Agriculture. 90p. [in Chinese with English summary]. Tu, S. H. 2007. Contribution of Carbon Sequestration and Carbon Dioxide Reduction by Wooden Construction Buildings in Taiwan. in: Department of Forestry and Resource Conversation, National Taiwan University, pp. 117. Van den Dobbelsteen, A. 2004. The Sustainable Office. An exploration of the potential for factor 20 environmental improvement of office accommodation. Van der Lugt, P., Vogtländer, J., Brezet, H. 2008. Bamboo, a Sustainable Solution for Western Europe: Design Cases LCAs and Land-use. Centre for Indian Bamboo Resource and Technology. Vogtländer, J., Van der Lugt, P., Brezet, H. 2010. The sustainability of bamboo products for local and Western European applications. LCAs and land-use. Journal of Cleaner Production, 18(13), 1260-1269. Wang, J., Chen, T. H., Chang, H. C., Chung, H. Y., Li, T. I., Liu, C. P. 2009. The Structures, Aboveground Biomass, Carbon Storage of Phyllostachys pubescens Stands in Huisun Experimental Forest Station and Shi-Zhuo. Quarterly Journal of Forest Research, 31(4), 17-26. Wang, J., Chen, T. H., Chen, S. Y., Chung, H. Y., Liu, E. U., Li, T. I., Liu, C. P. 2010. Estimating Aboveground Biomass and Carbon Sequestration of Moso Bamboo Grown under Selection Cutting after Two Years. Quarterly Journal of Forest Research, 32(3), 35-43. Wang, Y. C. 2004. Estimates of Biomass and Carbon Sequestration in Dendrocalamus Latiflorus Culms. Forest Products Industries, 23(1), 13-22. Worldbank. 2008. World Development Report 2008, Agriculture for Development. The World Bank. Yen, T. M., Ji, Y. J., Lee, J. S. 2010. Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. Forest Ecology and Management, 260(3), 339-344. Zea Escamilla, E., Habert, G. 2014. Environmental impacts of bamboo-based construction materials representing global production diversity. Journal of Cleaner Production, 69, 117-127. Zheng, W. J. 2013. Free Discussion about Principle and Application of Monte Carlo Method. Research Bulletin of KDARES, 23(1), 26-41. Zimmermann, H. J. 2000. An application-oriented view of modeling uncertainty. European Journal of Operational Research, 122(2), 190-198. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68295 | - |
| dc.description.abstract | 自工業革命以來,人類追求繁榮發展卻造成了環境汙染、生態破壞及氣候變遷等現象,其中又以溫室氣體所引起的全球暖化最為嚴重,為了削減與緩和此環境災害,世界各國以減少溫室氣體排放為目標努力。台灣有豐富的竹資源,竹類具有生長快速、輪伐期短等特性,而作為利用時竹材之拉力強度與鋼可相互媲美,又竹材具有碳貯存之功能,因此若能妥善經營利用竹資源,不但可確保自然生態環境的永續經營、填補資源之短缺,且作為替代資源可以帶來環境衝擊減量之效益。本研究是以竹材加工產品為對象,收集竹材於生產過程中資源的投入及產出,透過生命週期評估方法評估生產竹材利用時各階段的環境衝擊及竹材在碳貯存與二氧化碳減量上的貢獻,並且探討竹材在取代其他材料使用時的優勢及劣勢。研究結果顯示,竹材之生產主要以機械加工處理為主,因此機械的電力消耗及生產效率是影響生命週期潛在環境衝擊的關鍵因素。加工處理所造成的環境衝擊主要來自於熱壓積層、乾燥及藥劑使用等階段,對於可吸入性無機物質、全球暖化、非再生能源等項目造成較高的衝擊,而熱處理竹材積層板之整體環境衝擊較漂白竹材積層板高。將竹材積層板與其他材料相比可知,鋁材所造成的環境衝擊最高,混凝土除了在氣候變遷之損害項目較竹材積層板高以外,其所造成的環境衝擊皆較其他材料低,而竹材積層板則在氣候變遷的損害項目上具有衝擊減量的正面效益。竹材積層板之碳貯存效果可以抵消加工過程中所造成的碳排放,故使用竹材積層板對溫室氣體減排具有正面的環境效益。雖然竹材積層板在全球暖化及氣候變遷項目具有減量的效益,然而在其他衝擊項目也造成了相當的衝擊,故決策者應考量此部分所造成的環境影響,可更新選用較節能、生產效率高之設備,或檢視生產供應鏈之配置以提升效率,更進一步降低加工所造成的環境衝擊。 | zh_TW |
| dc.description.abstract | Phenomena of environmental pollution, ecological damage and climate change which has resulted from human activities, since the industrial revolution. The most significant issue is global warming caused by greenhouse gases. For the purpose of reducing and mitigating these environmental disasters, the whole world tries to reduce greenhouse gas emissions. Owing to a suitable climate and environment for the bamboo growth, it is rich in bamboo resource both in species and area in Taiwan. The growth patterns of bamboos are different from timber and unique characteristics include fast growth, high production and rapid maturation from shoot to culm. In trials of tensile strength, bamboo outperforms most other materials, reinforcement steel included. Bamboo is also an important part of carbon storage. If we can manage and utilize bamboo resource appropriately, it will ensure the sustainable management of ecosystem, fill the shortage of resource and produce available products which have less environmental impact. This study focuses on production chains which produce plybamboo for utilizing. The production chains are investigated using a Life Cycle Assessment(LCA) approach, which takes into account all the input and output flows occurring along the production chain. The results show that major processing of the plybamboo production is mechanical processing. Therefore, the energy consumption and productivity are the key factors of potential environmental impact. The other results show that plybamboo production chain had high impact in impact categories of respiratory inorganics, global warming and non-renewable energy. The impact of the processing mainly originates from the step of hot pressing, drying and chemicals using. The comparative results show that plybamboo had low environmental imapct, but it had more impact than concrete. Concerning carbon storage of the plybamboo, utilizing plybamboo has environmental benefit in impact categories of climate change and global warming. Although the plybamboo has low impact in impact categories of climate change and global warming, it has high impact in other impact categories. Therefore, policy makers should consider the highest impact of the above-mentioned processing step, and use energy-saving and high productivity equipments to reduce the environmental impact. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:16:53Z (GMT). No. of bitstreams: 1 ntu-105-R03625035-1.pdf: 3256283 bytes, checksum: 7151e5be9d2c3a3718707939cb4011be (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 中文摘要 i
英文摘要 ii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究架構 3 第二章 文獻回顧 4 2.1 竹林資源 4 2.1.1 環境問題與保護 4 2.1.2 竹林資源分布及發展 4 2.1.3 竹材利用對溫室氣體減量之貢獻 7 2.1.4 竹材對永續資源利用之貢獻 11 2.2 生命週期評估 13 2.2.1 生命週期評估發展與應用 13 2.2.2 生命週期衝擊評估方法 17 2.2.3 木質材料於生命週期評估之應用 19 2.3 不確定性分析 23 2.3.1 不確定性 23 2.3.2 不確定性分類 23 2.3.3 蒙地卡羅模擬方法 24 第三章 材料與方法 25 3.1 生命週期評估方法 25 3.1.1 目標與範疇界定 25 3.1.2 盤查分析 26 3.2 不確定性分析 31 第四章 結果與討論 33 4.1 生命週期評估 33 4.1.1 竹材積層板之生命週期評估結果 33 4.1.2 竹材積層板與其他板材比較 40 4.2 不確定性分析 45 第五章 結論與建議 51 5.1 結論…….. 51 5.2 建議…… 52 參考文獻 53 | |
| dc.language.iso | zh-TW | |
| dc.subject | 竹材利用 | zh_TW |
| dc.subject | 環境效益 | zh_TW |
| dc.subject | 竹材積層板 | zh_TW |
| dc.subject | 碳排放 | zh_TW |
| dc.subject | 生命週期評估 | zh_TW |
| dc.subject | Life Cycle Assessment (LCA) | en |
| dc.subject | Carbon emissions | en |
| dc.subject | Environmental benefit | en |
| dc.subject | Plybamboo | en |
| dc.subject | Bamboo utilization | en |
| dc.title | 以生命週期評估探討竹材利用之環境效益 | zh_TW |
| dc.title | Utilizing Bamboo Material Investigation on Environmental Benefit by Life Cycle Assessment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭英倫,藍浩繁,張芳志 | |
| dc.subject.keyword | 生命週期評估,碳排放,環境效益,竹材積層板,竹材利用, | zh_TW |
| dc.subject.keyword | Life Cycle Assessment (LCA),Carbon emissions,Environmental benefit,Plybamboo,Bamboo utilization, | en |
| dc.relation.page | 57 | |
| dc.identifier.doi | 10.6342/NTU201704197 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-09-21 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
