請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68285完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃文達,楊棋明 | |
| dc.contributor.author | Ting-Yun Cheng | en |
| dc.contributor.author | 鄭婷云 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:16:37Z | - |
| dc.date.available | 2023-01-04 | |
| dc.date.copyright | 2018-01-04 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-09-28 | |
| dc.identifier.citation | 許明晃,黃文達,楊志維,張新軒,蔡養正,楊棋明。(2003)。甘藷葉片反射光譜分析與色素含量之遙測估算。中華農藝(13),99-110。
楊志維,黃文達,楊棋明。(2012)。水稻葉片葉綠素生合成與降解途徑之研究。桃園區農業改良場研究彙報(71),17-34。 Abosi, A. O., & Raseroka, B. H. (2003). In vivo antimalarial activity of Vernonia amygdalina. British Journal of Biomedical Science, 60(2), 89-91. Ajaiyeoba, E. O., Oladepo, O., Fawole, O. I., Bolaji, O. M., Akinboye, D. O., Ogundahunsi, O. A. T., Falade, C. O., Gbotosho, G. O., Itiola, O. A., Happi, T. C. and Ebong, O. O., (2003). Cultural categorization of febrile illnesses in correlation with herbal remedies used for treatment in Southwestern Nigeria. Journal of Ethnopharmacology, 85(2), 179-185. Aleza, P., Garcia-Lor, A., Juárez, J., & Navarro, L. (2016). Recovery of citrus cybrid plants with diverse mitochondrial and chloroplastic genome combinations by protoplast fusion followed by in vitro shoot, root, or embryo micrografting. Plant Cell, Tissue and Organ Culture (PCTOC), 126(2), 205-217. Ballester, C., Zarco-Tejada, P. J., Nicolás, E., Alarcón, J. J., Fereres, E., Intrigliolo, D. S., & Gonzalez-Dugo, V. (2017). Evaluating the performance of xanthophyll, chlorophyll and structure-sensitive spectral indices to detect water stress in five fruit tree species. Precision Agriculture, 1-16. Bourget, C. M. (2008). An introduction to light-emitting diodes. HortScience, 43(7), 1944-1946. Calatayud, A., & Barreno, E. (2004). Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid peroxidation. Plant Physiology and Biochemistry, 42(6), 549-555. Cao, G., Russell, R. M., Lischner, N., & Prior, R. L. (1998). Serum antioxidant capacity is increased by consumption of strawberries, spinach, red wine or vitamin C in elderly women. The Journal of nutrition, 128(12), 2383-2390. Chang, F., & Troughton, J. (1972). Chlorophyll a/b ratios in C3-and C4-plants. Photosynthetica 6:57-65. Chen, C.-C., Huang, M.-Y., Lin, K.-H., Wong, S.-L., Huang, W.-D., & Yang, C.-M. (2014). Effects of light quality on the growth, development and metabolism of rice seedlings (Oryza sativa L.). Research Journal of Biotechnology, 9(4), 15-24. Chen, H.-Y., Li, C., & Yang, C. (2003). Analysis of the chlorophyll biosynthesis and degradation pathways in a chlorophyll-deficient mutant of Sansevieria trifasciata. Journal of the agriculture association of china 4, 278-287. COURT, W. A., & Elliot, J. (1978). Influence of nitrogen, phosphorus, potassium, andmagnesium on the phenolic constituents of flue-cured tobacco. Canadian Journal of Plant Science, 58(2), 543-548. Croft, H., Chen, J. M., & Zhang, Y. (2014). The applicability of empirical vegetation indices for determining leaf chlorophyll content over different leaf and canopy structures. EcologicalComplexity,17, 119-130. Demmig‐Adams, B., Adams III, W. W., Barker, D. H., Logan, B. A., Bowling, D. R., & Verhoeven, A. S. (1996). Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum, 98(2), 253-264. Di Renzo, L., Di Pierro, D., Bigioni, M., Sodi, V., Galvano, F., Cianci, R., La Fauci, L. and De Lorenzo, A. (2007). Is antioxidant plasma status in humans a consequence of the antioxidant food content influence? European review for medical and pharmacological Sciences, 11(3), 185-192. Dong, C., Fu, Y., Liu, G., & Liu, H. (2014). Growth, photosynthetic characteristics, antioxidant capacity and biomass yield and quality of wheat (Triticum aestivum L.) exposed to LED light sources with different spectra combinations. Journal of agronomy and crop science, 200(3), 219-230. Egedigwe, C. A., Ejike, C. E. C. C., Ijeh, I. I., Herbert, U., Onwuka, G. I., & Asumugha, V. U. (2016). Anti-obesity potentials of aqueous and methanol extracts of Vernonia amygdalina Del. leaves in high-fat diet fed rats. African Journal of Traditional, Complementary and Alternative Medicines, 13(2), 86-93. Ejoh, R. A., Nkonga, D. V., Inocent, G., & Moses, M. C. (2007). Nutritional components of some non-conventional leafy vegetables consumed in Cameroon. Pakistan journal of Nutrition, 6(6), 712-717. Ferreira, I. C., Baptista, P., Vilas-Boas, M., & Barros, L. (2007). Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food chemistry, 100(4), 1511-1516. Filella, I., Amaro, T., Araus, J. L., & Peñuelas, J. (1996). Relationship between photosynthetic radiation‐use efficiency of barley canopies and the photochemical reflectance index (PRI). Physiologia plantarum, 96(2), 211-216. Filella, I., Porcar-Castell, A., Munné-Bosch, S., Bäck, J., Garbulsky, M. F., & Peñuelas, J. (2009). PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle. International Journal of Remote Sensing, 30(17), 4443-4455. doi:10.1080/01431160802575661 Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of aging. Nature, 408(6809), 239-247. Gamborg, O. L., Murashige, T., Thorpe, T. A., & Vasil, I. K. (1976). Plant tissue culturemedia. In Vitro, 12(7), 473-478. Gamon, J. A., Penuelas, J., & Field, C. B. (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of environment, 41(1), 35-44. Gamon, J., Serrano, L., & Surfus, J. (1997). The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia, 112(4), 492-501. Gamon, J., & Surfus, J. (1999). Assessing leaf pigment content and activity with a reflectometer. New Phytologist, 143(1), 105-117. Garcia-Salas, P., Morales-Soto, A., Segura-Carretero, A., & Fernandez-Gutierrez, A. (2010). Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules, 15(12), 8813-8826. Ghasemi, K., Ghasemi, Y., & Ebrahimzadeh, M. A. (2009). Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. Pak J Pharm Sci, 22(3), 277-281. Giday, M., Asfaw, Z., & Woldu, Z. (2009). Medicinal plants of the Meinit ethnic group of Ethiopia: an ethnobotanical study. Journal of Ethnopharmacology, 124(3), 513-521. Gitelson, A., & Merzlyak, M. N. (1994). Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. Journal of Plant Physiology, 143(3), 286-292. Gitelson, A., & Merzlyak, M. N. (1996). Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. Journal of plant physiology, 148(3-4), 494-500. Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine: Oxford University Press, USA. Hasan, S. R., Hossain, M. M., Akter, R., Jamila, M., Mazumder, M. E. H., & Rahman, S. (2009). DPPH free radical scavenging activity of some Bangladeshi medicinal plants. Journal of medicinal plants research, 3(11), 875-879. Heinonen, O. P., & Albanes, D. (1994). The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. The New England journal of medicine (USA). Hendry, G. A., Houghton, J. D., & Brown, S. B. (1987). The degradation of chlorophyll—a biological enigma. New Phytologist, 107(2), 255-302. Ho, W. Y., Yeap, S., San Liang, W., Beh, B. K., Mohamad, N., & Alitheen, N. B. (2015). In vitro antioxidant and in vivo hepatoprotective effect on Ethanol-mediated liver damage of spray dried Vernonia amygdalina water extract. Pak. J. Pharm. Sci, 28(1), 15-22. Howard, C. B., Mcdowell, R., Feleke, K., Deer, E., Stamps, S., SINGH, V., & PERVIN, S. (2016). Chemotherapeutic Vulnerability of Triple-negative Breast Cancer Cell-derived Tumors to Pretreatment with Vernonia amygdalina Aqueous Extracts. Anticancer Research, 36(8), 3933-3943. Hsu, M. H., Huang, W. D., Yang, Z. W., Tsai, Y., Yang, C. M., & Chang, S. (2003). Study on the chlorophyll biosynthetic and degradative pathway in the leaves of three sweet potatoes. ChineseAgronomyJournal, 3, 87-98. Huang, C., Zhang, L., Wang, D., Wu, T., & Tong, Q. (2013). Decomposition of volume scattering, polarized light and chlorophyll fluorescence by in-situ polarization measurement. In Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International (pp. 2188-2191). IEEE. Huffman, M. A., & Seifu, M. (1989). Observations on the illness and consumption of a possibly medicinal plant Vernonia amygdalina (Del.), by a wild chimpanzee in the Mahale Mountains National Park, Tanzania. Primates, 30(1), 51-63. Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembrane. Methods Enzymol. 148, 350-382. Johkan, M., Shoji, K., Goto, F., Hashida, S.-n., & Yoshihara, T. (2010). Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience, 45(12), 1809-1814. Kahn, A., Avivi-Bleiser, N., & Von Wettstein, D. (1976). Genetic regulation of chlorophyll synthesis analyzed with double mutants in barley. Genetics and biogenesis of chloroplasts and mitochondria. Bücher, Th., Neupert, W., Sebald, W., Werner, S., eds, 119-131. Khalafalla, M. M., Elgaali, E. I., & Ahmed, M. M. (2007). In vitro multiple shoot regeneration from nodal explants of Vernonia amygdalina-an important medicinal plant. Afr Crop Sci, vol 8, 747-752. Kim, S. J., Hahn, E. J., Heo, J. W., & Paek, K. Y. (2004). Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae, 101(1), 143-151. Kim, S.J., Zaidul, I.S.M., Maeda, T., Suzuki, T., Hashimoto, N., Takigawa, S., Noda, T., Matsuura-Endo, C. and Yamauchi, H., (2007). A time-course study of flavonoids in the sprouts of tartary (Fagopyrum tataricum Gaertn.) buckwheats. Scientia Horticulturae, 115(1), 13-18. King, J. (1991). The genetic basis of plant physiological processes: Oxford University Press. Kopsell, D. A., Sams, C. E., Barickman, T. C., & Morrow, R. C. (2014). Sprouting broccoli accumulate higher concentrations of nutritionally important metabolitesunder narrow-band light-emitting diode lighting. Journal of the American Society for Horticultural Science, 139(4), 469-477. Koshimizu, K., Ohigashi, H., & Huffman, M. A. (1994). Use of Vernonia amygdalina by wild chimpanzee: possible roles of its bitter and related constituents. Physiology & behavior, 56(6), 1209-1216. Koshimizu, K., Ohigashi, H., Huffman, M. A., Nishida, T., & Takasaki, H. (1993). Physiological activities and the active constituents of potentially medicinal plants used by wild chimpanzees of the Mahale Mountains, Tanzania. International Journal of Primatology, 14(2), 345-356. Kujala, T. S., Loponen, J. M., Klika, K. D., & Pihlaja, K. (2000). Phenolics and betacyanins in red beetroot (Beta v ulgaris) root: Distribution and effect of cold storage on the content of total phenolics and three individual compounds. Journal of Agricultural and Food Chemistry, 48(11), 5338-5342. Lebovitz, R. M., Zhang, H., Vogel, H., Cartwright, J., Dionne, L., Lu, N., Huang, S. and Matzuk, M. M., (1996). Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proceedings of the National Academy of Sciences, 93(18), 9782-9787. Lee, S. H., Tewari, R. K., Hahn, E. J., & Paek, K. Y. (2007). Photon flux density and light quality induce changes in growth, stomatal development, photosynthesis and transpiration of Withania somnifera (L.) Dunal. plantlets. Plant Cell, Tissue and Organ Culture, 90(2), 141-151. Lee, S. W., Seo, J. M., Lee, M. K., Chun, J. H., Antonisamy, P., Arasu, M. V., Suzuki, T., Al-Dhabi, N. A. and Kim, S. J., (2014). Influence of different LED lamps on the production of phenolic compounds in common and Tartary buckwheat sprouts. Industrial Crops and Products, 54, 320-326. Lin, K. H., Huang, M. Y., Huang, W. D., Hsu, M. H., Yang, Z. W., & Yang, C. M. (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae, 150, 86-91. doi:10.1016/j.scienta.2012.10.002 Lin, Y., Li, J., Li, B., He, T., & Chun, Z. (2011). Effects of light quality on growth and development of protocorm-like bodies of Dendrobium officinale in vitro. Plant Cell, Tissue and Organ Culture (PCTOC), 105(3), 329-335. Magder, S. (2006). Reactive oxygen species: toxic molecules or spark of life? Critical Care, 10(1), 208. Martineau, V., Lefsrud, M., Tahera-Naznin, M., & Kopsell, D. (2012). Comparison of supplemental greenhouse lighting from light emitting diode and high pressure sodium light treatments for hydroponic growth of Boston lettuce. HortScience, 47(4), 477-482. Matile, P., Hortensteiner, S., Thomas, H., & Krautler, B. (1996). Chlorophyll breakdown in senescent leaves. Plant physiology, 112(4), 1403-1409. McFeeters, R. F., Chichester, C. O., & Whitaker, J. R. (1971). Purification and properties of chlorophyllase from Ailanthus altissima (Tree-of-Heaven). Plant physiology, 47(5), 609-618. Mengxi, L., Zhigang, X., Yang, Y., & Yijie, F. (2011). Effects of different spectral lights on Oncidium PLBs induction, proliferation, and plant regeneration. Plant Cell, Tissue and Organ Culture (PCTOC), 106(1), 1-10. Miranda, D., Fischer, G., Mewis, I., Rohn, S., & Ulrichs, C. (2014). Salinity effects on proline accumulation and total antioxidant activity in leaves of the cape gooseberry (Physalis peruviana L.). Journal of Applied Botany and Food Quality, 87, 67-73. Morrow, R. C. (2008). LED lighting in horticulture. HortScience, 43(7), 1947-1950. Murashige, T. (1974). Plant propagation through tissue cultures. Annual review of plant physiology, 25(1), 135-166. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3), 473-497. Nilsson, H. (1995). Remote sensing and image analysis in plant pathology. Annual review of phytopathology, 33(1), 489-528. Ohashi-Kaneko, K., Matsuda, R., Goto, E., Fujiwara, K., & Kurata, K. (2006). Growth of rice plants under red light with or without supplemental blue light. Soil Science and Plant Nutrition, 52(4), 444-452. Olschowski, S., Geiger, E. M., Herrmann, J. V., Sander, G., & Grüneberg, H. (2016). Effects of red, blue, and white LED irradiation on root and shoot development of Calibrachoacuttings in comparison to high pressure sodium lamps. Acta Horticulturae(1134), 245-250. Opabode, J., & Adebooye, O. (2005). Application of biotechnology for the improvement of Nigerian indigenous leaf vegetables. Afr. J. Biotechnol, 4(3), 138-142. Oyaizu, M. (1988). Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi, 35(11), 771-775. Parker, W. D., Boyson, S. J., & Parks, J. K. (1989). Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Annals of Neurology, 26(6), 719-723. Pelletier, G., Primard, C., Vedel, F., Chetrit, P., Remy, R., & Renard, M. (1983). Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Molecular and General Genetics, 191(2), 244-250. Porra, R. J., Thompson, W. A., & Kriedemann, P. E. (1989). Determination of accurateextinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 975(3), 384-394. Quak, F. (1972). Review of heat treatment and meristem tip culture as methods to obtain virus-free plants (No. 635). Instituut voor Plantenziektenkundig Onderzoek. Rahimzadeh-Bajgiran, P., Munehiro, M., & Omasa, K. (2012). Relationships between the photochemical reflectance index (PRI) and chlorophyll fluorescence parameters and plant pigment indices at different leaf growth stages. Photosynthesis research, 113(1-3), 261-271. Shiga, T., Shoji, K., Shimada, H., Hashida, S.-n., Goto, F., & Yoshihara, T. (2009). Effect of light quality on rosmarinic acid content and antioxidant activity of sweet basil, Ocimum basilicum L. Plant biotechnology, 26(2), 255-259. Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of agricultural and food chemistry, 40(6), 945-948. Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81(2), 337-354. Solovchenko, A., Khozin-Goldberg, I., Cohen, Z., & Merzlyak, M. (2009). Carotenoid-to-chlorophyll ratio as a proxy for assay of total fatty acids and arachidonic acid content in the green microalga Parietochloris incisa. Journal of Applied Phycology, 21(3), 361-366. Tuan, P. A., Thwe, A. A., Kim, Y. B., Kim, J. K., Kim, S. J., Lee, S., Chung, S. O. and Park, S. U. (2013). Effects of white, blue, and red light-emitting diodes on carotenoid biosynthetic gene expression levels and carotenoid accumulation in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.). Journal of Agricultural and Food Chemistry, 61(50), 12356-12361. Winkel-Shirley, B. (2002). Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology, 5(3), 218-223. Yang, C. M., Hsu, J. C., & Chen, Y. R. (1993). Light-and temperature-sensitivity of chlorophyll-deficient and virescent mutants. Taiwania, 38(3&4), 49-56. Yang, C. M., Hsu, J. C., & Shih, C. F. (1994). Response of chlorophyll a/b ratios in Yuan-Yang Lake bryophytes to the alteration of light intensity. Proceedings of The National Science Council, ROC, B 18, 134-137. Zhang, A., Fang, Y., Wang, H., Li, H., & Zhang, Z. (2011). Free-radical scavenging properties and reducing power of grape cane extracts from 11 selected grape cultivars widely grown in China. Molecules, 16(12), 10104-10122. Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food chemistry, 64(4), 555-559. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68285 | - |
| dc.description.abstract | 桃葉斑鳩菊(Vernonia Amygdalina)為一種非洲常見的灌木植物,在當地除作蔬菜之外亦有許多民俗醫療用途,近代醫學亦對其進行許多藥用研究,發現桃葉斑鳩菊具有高抗氧化力,且有治療癌症、糖尿病、肝受損、肥胖等疾病的功能,為一極具發展潛力之作物。空氣、水、光為植物的生長必要條件,已知不同光質對於植物的生理反應與代謝產物會有不同的影響,在溫或植物工廠中為易於控制的生長條件,可利用其創造作物更高的利用價值。本研究利用紅、藍、綠、紅藍混光之 LED燈與螢光燈等,對桃葉斑鳩菊進行處理,以探討不同光質對其產量、抗氧化能力、色素含量與葉綠素螢光反應的影響,也期望利用葉片反射光譜建立非破壞性檢測色素與抗氧化能力的系統,並建立其微體繁殖系統以供未來生產之使用。研究結果顯示,在藍光處理下的株高、地上部與地下部之乾重最高,綠光處理則為最低。呼應葉綠素螢光指數中光系統Ⅱ的量子產能 Y(Ⅱ)與光系統Ⅱ開放程度 qP 一樣是藍光最高而綠光最低,可知藍光的光合效能較高而綠光較低,故有不同的生物累積量。色素方面,藍光會促進葉綠素與類胡蘿蔔素的生合成,而紅光與紅藍混光處理的色素含量最低。葉綠素螢光數據最大光合潛能 Fv/Fm 中顯示各處理下的植株都未遭遇逆境,但紅光與紅藍混光處理的植株健康程度相對較低。在抗氧化力方面,清除DPPH 的能力以綠光與紅藍混光處理最高,還原力則是紅藍混光處理最高;抗氧化物質含量的部分,總酚在處理之間無顯著差異,而紅光與紅藍混光處理下的植株類黃酮含量較其他處理為低。本研究中發現葉綠素代謝途徑也會受光質影響,在紅光處理下,Chl→Chlide→Pho 為主要途徑而Chl→Phe→Pho 為次要途徑,其他處理則相反,顯示紅光可能會影響葉綠素代謝途徑中的酵素活性而改變途徑。反射光譜檢測部分,NDVI 對 Car/Chl、NPQ、還原力,PRI 對單一色素、DPPH 清除能力的相關性都有達顯著水準,可做非破壞性檢測之應用。最後,在微體繁殖系統立中,發現在0.5 mg L-1 BA + 0.5 mg L-1 NAA 之下會誘導最多的地上部生成,而若提高NAA 的比例則會促進地下部發育,且利用側芽先培養無菌苗,後續再利用無菌苗來培養成株會有更高的效率。總結而言,在藍光處理下可以得到最多的生物量,且植株健康狀態最佳;紅光與紅藍混光處理的健康程度相對較低,但紅藍混光處理下的植株可能會有較高的抗氧化能力。紅光處理也會顯著影響葉綠素代謝途徑,且不同光照處理可能會對葉片結構造成影響,進而影響其葉面反射率。因此可知桃葉斑鳩菊具有很強的抗氧化力,且藉由不同光質處理確實會對其生長及生理代謝等造成影響,使光質成為可以利用的調控因子,應用於培養高品質的植株。 | zh_TW |
| dc.description.abstract | Vernonia amygdalina is a shrub or small tree that grow through tropical Africa. Beside of being used as green vegetable, it has been found pharmacologically use. In recent years, lots of study about Vernonia amygdalina ‘s medical usage have been done. Studies found that this plant has a tremendous antioxidant ability, and it also has efficacy on disease such as cancer, diabetes, liver damage and obesity, which is valuable for development.
Air, water and light are necessary factors for plant growth, and light quality has different influence to plant’s physiology and biosynthesis metabolites, which is a factor that is easy to control in greenhouse or plant factory, and could be used to produce higher value than normal plants. In our study, we used red(R), blue(B), green(G), red + blue(RB) as treatments and fluorescence light(FL), to investigate the influences of different qualities of light on Vernonia amygdalina’s biomass, antioxidant ability, pigment content and chlorophyll fluorescence parameters. We also want to find if reflectance spectra and vegetation indices could be used for antioxidant ability or pigments’ prediction. Finally, to produce higher quality plant, build up the micropropagation method of Vernonia amygdalina is our target, too. The results showed that shoot elongation and biomass were induced under blue fluorescence light(B) and were the smallest under green fluorescence light(G). Respond to the highest quantum yield for photochemical energy conversion in PSII (Y(Ⅱ)) and photochemical quenching (qP) under blue fluorescence light, make the highest photosynthetic efficiency and green fluorescence light was the lowest. B could induce pigments synthesis, while R and RB were in contrast. Maximum quantum efficiency(Fv/Fm)showed that all treatment did not experienced stress, but R and R+B were lower than other treatments, showed that these two were relatively unhealthy than others. As the effect to antioxidant efficiency, DPPH scavenging ability were higher under G and RB, while the reducing power was the highest under RB. Total phenolic content has no significant difference between treatments, and flavonoids contents were the lowest under R and RB. Different wavelengths mediated the chlorophyll (Chl) degradation pathway of the leaves. Chl→Chlide→Pho was the major route and Chl→Phe→Pho was the minor route under R. Calculated vegetation indices NDVI correlated well with Car/Chl, NPQ, and reducing power; PRI correlated well with pigments and DPPH scavenging ability. Finally, we found that under 0.5 mg L-1 BA + 0.5 mg L-1 NAA could induce the most shoots, and if higher the NAA ratio could induced more roots. Use nodal as explant to induced antibacterial shoot, and use the antibacterial shoots as explants to induced more shoots and roots would be a more efficiency method. In general, we can get not only the most biomass but also the healthiest plant under B. The plant under R and RB are relatively unhealthy, but could get the highest antioxidant ability. R could significantly influence the degradation pathway of chlorophyll. Different light quality may make the structure of the leaves change, and also the reflectance. We know that Vernonia amygdalina has strong antioxidant ability, and it physiology and metabolite would be influence under different light quality, which make it become a controlling factor, to use to grow high quality plant. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:16:37Z (GMT). No. of bitstreams: 1 ntu-106-R04621115-1.pdf: 2211434 bytes, checksum: 2ab16578dd76fe716c481a9965ffa909 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝 ....... ⅰ
摘要 ...... ⅱ Abstract ....... ⅳ 第一章 前言 ......... 1 一、桃葉斑鳩菊 ...... 1 二、植物的抗氧化能力 .... 1 三、光質對植物生理之影響 .. 3 四、葉綠素代謝途徑 .... 5 五、反射光譜之非破壞性檢測應用 .. 6 六、微體繁殖 ... 7 七、實驗目的 .... 8 第二章 材料與方法 ... 10 一、試驗材料 ... 10 (一)植株培養 ... 10 (二)微體繁殖無菌苗備製 ... 10 (三)培養基成份 ... 11 (四)微體繁殖栽培方法 ... 11 二、光質處理 ... 11 三、反射光譜測量 ... 12 四、葉綠素螢光 ... 12 五、抗氧化相關之項目 ... 13 (一)DPPH 自由基清除能力 ... 13 (二)還原力測定 ... 14 (三)類黃酮含量測定(Flavonoid content) .... 15 (四)總酚含量測定(Total phenolic content) ... 15 六、葉綠素降解 ..... 15 七、統計方法 ... 17 第三章 結果 .... 18 一、抗氧化力 ... 18 二、抗氧化物 .... 18 三、葉綠素螢光參數 ... 18 四、生物量測量 ... 19 五、葉綠素代謝途徑產物分析 ... 19 六、反射光譜 ... 20 七、微體繁殖系統 ... 20 第四章 討論 ... 22 一、抗氧化物與抗氧化能力 ... 22 二、葉綠素螢光指數 ... 23 三、葉綠素代謝途徑 ... 24 四、反射光譜分析 ... 26 五、組織培養系統 ... 29 第五章 結論 ... 30 第六章 參考文獻 ... 32 圖一、LED 紅光處理之光譜。 ... 40 圖二、LED 綠光處理之光譜。... 40 圖三、LED 藍光處理之光譜。... 41 圖四、螢光燈對照組之光譜。 ... 41 圖五、在不同光質處理下之桃葉斑鳩菊甲醇萃取液還原力測定 BHT 當量濃度。... 42 圖六、不同光質處理下之桃葉斑鳩菊甲醇萃取液清除DPPH 能力BHT 當量濃度。... 42 圖七、不同光質處理之桃葉斑鳩菊地上部總酚含量。 ... 43 圖八、不同光質處理下之桃葉斑鳩菊地上部類黃酮含量。 ... 43 圖九、不同光質對葉綠素螢光指數Fv/Fm 之影響。 ... 44 圖十、不同光質處理下之桃葉斑鳩菊葉片,Y(Ⅱ)之光曲線。 .... 45 圖十一、不同光質處理下之桃葉斑鳩菊葉片,qP 之光曲線。 ... 46 圖十二、不同光質處理下之桃葉斑鳩菊葉片,NPQ/4 之光曲線。... 47 圖十三、不同光質處理下之桃葉斑鳩菊,葉綠素螢光儀Y(Ⅱ)即時螢光影像及數值。... 48 圖十四、不同光質處理下之桃葉斑鳩菊,葉綠素螢光儀NPQ 即時螢光影像及數值。... 49 圖十五、不同光質處理前後之桃葉斑鳩菊株高。... 50 圖十六、不同光質處理下之桃葉斑鳩菊地上部之鮮重與乾重。 ... 50 圖十七、不同光質處理下之桃葉斑鳩菊根乾重。... 51 圖十八、不同光質處理下之桃葉斑鳩菊葉片中吡啉莫耳百分比。 ... 51 圖十九、不同光質處理下桃葉斑鳩菊葉片中葉綠素a 與葉綠素 b 之比值。... 52 圖二十、不同光質處理下之桃葉斑鳩菊葉片中總葉綠素含量。 ... 52 圖二十一、不同光質處理下之桃葉斑鳩菊葉片中類胡蘿蔔素含量。 ... 53 圖二十二、不同光質處理下桃葉斑鳩菊葉片中類胡蘿蔔素與葉綠素比值。 ... 53 圖二十三、不同光質處理下桃葉斑鳩菊葉片中脫植醇葉綠素(Chlorophyllide, Chlide) 含量。... 54 圖二十四、不同光質處理下桃葉斑鳩菊葉片中脫鎂葉綠素(Pheophytin, Phe)含量。... 54 圖二十五、不同光質處理下桃葉斑鳩菊葉片中脫植醇葉綠素a 與 b 比值。 ........ 55 圖二十六、不同光質處理下桃葉斑鳩菊葉片中脫鎂葉綠素a 與 b 比值。 ............ 55 圖二十七、不同光質處理下桃葉斑鳩菊葉片中脫植醇葉綠 a 與脫鎂葉綠 a 比值。... 56 圖二十八、不同光質處理下桃葉斑鳩菊葉片中脫植醇葉綠素 b 與脫鎂葉綠 b 比值。... 56 圖二十九、不同光質處理下桃葉斑鳩菊葉片之反射光譜。 ... 57 圖三十、不同光質處理下桃葉斑鳩菊葉片反射光譜之一次微分數值。... 58 圖三十一、不同光質處理下桃葉斑鳩菊葉片反射光譜之標準差數值。 ... 59 圖三十二、植生指數與色素關係散佈圖。 ... 63 圖三十三、植生指數與葉綠素螢光參數散佈圖。... 64 圖三十四、植生指數與抗氧化力、抗氧化物含量散佈圖。 ... 65 圖三十五、桃葉斑鳩菊微體繁殖於不同生長調節劑配方培養下地上部誘導結果。... 66 圖三十六、桃葉斑鳩菊微體繁殖於不同生長調節劑配方培養下地下部誘導結果。... 66 圖三十七、桃葉斑鳩菊在不同組合濃度之生長調節劑下之微體繁殖誘導結果。. 67 表一、植生指數與色素迴歸分析之決定係數(R2)。.....58 表二、植生指數與葉綠素螢光參數迴歸分析之決定係數(R2)。..59 表三、植生指數與抗氧化力、抗氧化物質迴歸分析之決定係數(R2)。...60 | |
| dc.language.iso | zh-TW | |
| dc.subject | 反射光譜 | zh_TW |
| dc.subject | 抗氧化力 | zh_TW |
| dc.subject | LED | zh_TW |
| dc.subject | 光質 | zh_TW |
| dc.subject | 桃葉斑鳩菊 | zh_TW |
| dc.subject | 葉綠素螢光 | zh_TW |
| dc.subject | chlorophyll fluorescence | en |
| dc.subject | light quality | en |
| dc.subject | LED | en |
| dc.subject | antioxidant | en |
| dc.subject | reflectance spectra | en |
| dc.subject | Vernonia amygdalina | en |
| dc.title | 光質對桃葉斑鳩菊(Vernonia amygdalina)之光生理與抗氧化能力影響 | zh_TW |
| dc.title | The effect of light quality on photophysiology and antioxidant activities in Vernonia amygdalina | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許明晃,黃盟元 | |
| dc.subject.keyword | 桃葉斑鳩菊,光質,LED,抗氧化力,反射光譜,葉綠素螢光, | zh_TW |
| dc.subject.keyword | Vernonia amygdalina,light quality,LED,antioxidant,reflectance spectra,chlorophyll fluorescence, | en |
| dc.relation.page | 67 | |
| dc.identifier.doi | 10.6342/NTU201702125 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-09-29 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
