請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68282
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐源泰 | |
dc.contributor.author | Liang-Chieh Wu | en |
dc.contributor.author | 吳亮頡 | zh_TW |
dc.date.accessioned | 2021-06-17T02:16:33Z | - |
dc.date.available | 2021-01-04 | |
dc.date.copyright | 2018-01-04 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-09-29 | |
dc.identifier.citation | 第六章、參考文獻
1. 劉揆亮,呂愈敏,顧芳。2010。益生菌在炎症性腸病中的應用。世界華人消化雜誌 18:3891-3895。 2. 朱秀敏,曹萌。2010。滅活益生菌的研究進展。中國微生態學雜誌 22:175-178。 3. 楊錫強。2010。益生菌對免疫功能的影響。實用兒科臨床雜誌 25:623-625。 4. 汪孟娟,陳廷濤,姜淑英,熊順強,魏華。2010。豆豉生產過程中菌群的動態變化研究.中國菌物學會學術年會論文。 5. Anandharaj M, Sivasankari B, Parveen Rani R. 2014. Effects of probiotics, prebiotics, and synbiotics on hypercholesterolemia: a review. Chinese journal of biology. 6. Atreya R, Finotto S, Mudter J, Mullberg J, Jostock T, Holtmann M, Kishimoto T, Galle PR, Rose-John S, Neurath MF. 2000. Blockade of IL-6 transsignaling abrogates established experimental colitis in mice by suppression of T cell resistance against apoptosis. Gastroenterology 118:A863. 7. Atreya R, Mudter J, Finotto S, Müllberg J, Jostock T, Wirtz S, Schütz M, Bartsch B, Holtmann M, Becker C. 2000. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nature medicine 6:583. 8. Baron M. 2009. A patented strain of Bacillus coagulans increased immune response to viral challenge. Postgraduate medicine 121:114-118. 9. Baumgart DC, Carding SR. 2007. Inflammatory bowel disease: cause and immunobiology. The lancet 369:1627-1640. 10. Benson KF, Redman KA, Carter SG, Keller D, Farmer S, Endres JR, Jensen GS. 2012. Probiotic metabolites from Bacillus coagulans GanedenBC30TM support maturation of antigen-presenting cells in vitro. World journal of gastroenterology 18:1875. 11. Chopra I, Roberts M. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and molecular biology reviews 65:232-260. 12. Chuang L, Wu KG, Pai C, Hsieh PS, Tsai JJ, Yen JH, Lin MY. 2007. Heat-killed cells of lactobacilli skew the immune response toward T helper 1 polarization in mouse splenocytes and dendritic cell-treated T cells. Journal of agricultural and food chemistry 55:11080-11086. 13. Coleman R, Lowe PJ, Billington D. 1980. Membrane lipid composition and susceptibility to bile salt damage. Biochimica et biophysica acta (BBA)-biomembranes 599:294-300. 14. Connell SR, Tracz DM, Nierhaus KH, Taylor DE. 2003. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrobial agents and chemotherapy 47:3675-3681. 15. Curnow SJ, Scheel-Toellner D, Jenkinson W, Raza K, Durrani OM, Faint JM, Rauz S, Wloka K, Pilling D, Rose-John S. 2004. Inhibition of T cell apoptosis in the aqueous humor of patients with uveitis by IL-6/soluble IL-6 receptor trans-signaling. The Journal of immunology 173:5290-5297. 16. De Roock W, De Vriendt V, Normanno N, Ciardiello F, Tejpar S. 2011a. KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. The lancet oncology 12:594-603. 17. De Roock S, Van Elk M, Hoekstra MO, Prakken BJ, Rijkers GT, De Kleer IM. 2011b. Gut derived lactic acid bacteria induce strain specific CD4+ T cell responses in human PBMC. Clinical nutrition 30:845-851. 18. Del Re B, Sgorbati B, Miglioli M, Palenzona D. 2000. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Letters in applied microbiology 31:438-442. 19. Dinarello CA. 2009. Immunological and inflammatory functions of the interleukin-1 family. Annual review of immunology 27:519-550. 20. Ding YZ, Zhang SY, Liu P, Yuan W, Liang JY, Zhao Z, Zhang Y-D. 2009. Microbiological and biochemical changes during processing of the traditional chinese food douzhi. Food control 20:1086-1091. 21. Duc LH, Hong HA, Barbosa TM, Henriques AO, Cutting SM. 2004. Characterization of Bacillus probiotics available for human use. Applied and environmental microbiology 70:2161-2171. 22. Duerkop BA, Vaishnava S, Hooper LV. 2009. Immune responses to the microbiota at the intestinal mucosal surface. Immunity 31:368-376. 23. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. 2005. Diversity of the human intestinal microbial flora. science 308:1635-1638. 24. EU Commission. 2000. White paper on food safety. Commission of the european communities, Bruxelles, COM (1999) 719. 25. Errington J. 2003. Regulation of endospore formation in Bacillus subtilis. Nature reviews. Microbiology 1:117. 26. Ferreira dos Santos T, Alves Melo T, Almeida ME, Passos Rezende R, Romano CC. 2016. Immunomodulatory Effects of Lactobacillus plantarum Lp62 on Intestinal Epithelial and Mononuclear Cells. BioMed research international 2016. 27. Fitzpatrick LR, Small JS, Greene WH, Karpa KD, Keller D. 2011. Bacillus Coagulans GBI-30 (BC30) improves indices of Clostridium difficile-Induced colitis in mice. Gut pathogens 3:16. 28. Fitzpatrick LR, Small JS, Greene WH, Karpa KD, Farmer S, Keller D. 2012. Bacillus coagulans GBI-30, 6086 limits the recurrence of Clostridium difficile-Induced colitis following vancomycin withdrawal in mice. Gut pathogens 4:13. 29. Fontana L, Bermudez-Brito M, Plaza-Diaz J, Munoz-Quezada S, Gil A. 2013. Sources, isolation, characterisation and evaluation of probiotics. British journal of nutrition 109:S35-S50. 30. Fraternale A, Brundu S, Magnani M. 2015. Polarization and repolarization of macrophages. Journal clinical cell immunology 6:2. 31. From C, Pukall R, Schumann P, Hormazábal V, Granum PE. 2005. Toxin-producing ability among Bacillus spp. outside the Bacillus cereus group. Applied and environmental microbiology 71:1178-1183. 32. Fuller R. 1989. Probiotics in man and animals. J Appl Bacteriol. 66(5):365-378. 33. Gallo A, Passaro G, Gasbarrini A, Landolfi R, Montalto M. 2016. Modulation of microbiota as treatment for intestinal inflammatory disorders: An uptodate. World journal of gastroenterology 22:7186. 34. Goldin BR. 1998. Health benefits of probiotics. The British Journal of Nutrition 80:203-207. 35. Han KJ, Lee NK, Park H, Paik HD. 2015. Anticancer and anti-inflammatory activity of probiotic Lactococcus lactis NK34. J Microbiol Biotechnol 25:1697-1701. 36. Hofmann AF. 1994. The Liver: Biology and pathobiology Raven Press. Ltd., New York. 37. Hofmann AF, Eckmann L. 2006. How bile acids confer gut mucosal protection against bacteria. Proceedings of the National Academy of Sciences of the United States of America 103:4333-4334. 38. Hun L. 2009. Bacillus coagulans significantly improved abdominal pain and bloating in patients with IBS. Postgraduate medicine 121:119-124. 39. Hyronimus B, Le Marrec C, Urdaci M. 1998. Coagulin, a bacteriocin-like-inhibitory substance produced by Bacillus coagulans I. Journal of Applied Microbiology 85:42-50. 40. Janeway CA, Travers P, Walport M, J SM. 2008. Immunobiology, 7 edn. 41. Jean B. Patel, Franklin R. Cockerill III, Patricia A. Bradford, George M. Eliopoulos, Janet A. Hindler, Stephen G. Jenkins, James S. Lewis II, Brandi Limbago, Linda A. Miller, David P. Nicolau, Mair Powell, Jana M. Swenson, Maria M. Traczewski, John D. Turnidge, Melvin P. Weinstein, Barbara L. Zimmer. 2015. M100-S25 Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement In: Institute CaLS, ed. 42. Jensen GS, Benson KF, Carter SG, Endres JR. 2010. GanedenBC 30™ cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro. BMC immunology 11:15. 43. Jeong JH, Jang S, Jung BJ, Jang KS, Kim BG, Chung DK, Kim H. 2015. Differential immune-stimulatory effects of LTAs from different lactic acid bacteria via MAPK signaling pathway in RAW 264.7 cells. Immunobiology 220:460-466. 44. Jiang C, Shi J, Liu Y, Zhu C. 2014. Inhibition of Aspergillus carbonarius and fungal contamination in table grapes using Bacillus subtilis. Food Control 35:41-48. 45. Jones SA. 2005. Directing transition from innate to acquired immunity: defining a role for IL-6. The Journal of Immunology 175:3463-3468. 46. Juven B, Meinersmann R, Stern N. 1991. A review: antagonistic effects of lactobacilli and pediococci to control intestinal colonization by human enteropathogens in live poultry. Journal of applied microbiology 70:95-103. 47. Kaiser G. 2011. Protein synthesis inhibitors: macrolides mechanism of action animation. Classification of agents Pharmamotion. The Community College of Baltimore County. 48. Keller D, Farmer S, McCartney A, Gibson G. 2010. Bacillus coagulans as a probiotic. Food science and technology bulletin: Functional foods 7:103-109. 49. Khalighi A, Behdani R, Kouhestani S. 2016. Probiotics: A comprehensive review of their classification, mode of action and role in human nutrition. Probiotics and prebiotics in human nutrition and health. 50. Kopf M, Baumann H, Freer G, Freudenberg M, Lamers M, Kishimoto T, Zinkernagel R, Bluethmann H. 1994. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368:339. 51. Kos B, Šušković J, Vuković S, Šimpraga M, Frece J, Matošić S. 2003. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. Journal of applied microbiology 94:981-987. 52. Kuda T, Kawahara M, Nemoto M, Takahashi H, Kimura B. 2014. In vitro antioxidant and anti-inflammation properties of lactic acid bacteria isolated from fish intestines and fermented fish from the Sanriku Satoumi region in Japan. Food research international 64:248-255. 53. Kuda T, Noguchi Y, Ono M, Takahashi H, Kimura B, Kamita R, Eto T, Kato M, Kawahara M. 2014. In vitro evaluation of the fermentative, antioxidant, and anti-inflammation properties of Lactococcus lactis subsp. lactis BF3 and Leuconostoc mesenteroides subsp. mesenteroides BF7 isolated from Oncorhynchus keta intestines in Rausu, Japan. Journal of functional foods 11:269-277. 54. Lawrence T, Natoli G. 2011. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nature reviews. Immunology 11:750. 55. Lee HK, Choi SH, Lee CR, Lee SH, Park MR, Kim Y, Lee MK, Kim GB. 2015. Screening and Characterization of Lactic Acid Bacteria Strains with Anti-inflammatory Activities through in vitro and Caenorhabditis elegans Model Testing. Korean journal for food science of animal resources 35:91. 56. Lee NK, Kim SY, Han KJ, Eom SJ, Paik HD. 2014. Probiotic potential of Lactobacillus strains with anti-allergic effects from kimchi for yogurt starters. LWT-Food science and technology 58:130-134. 57. Lee S, Lee J, Jin YI, Jeong JC, Chang YH, Lee Y, Jeong Y, Kim M. 2017. Probiotic characteristics of Bacillus strains isolated from Korean traditional soy sauce. LWT-Food science and technology 79:518-524. 58. Li N, Russell WM, Douglas-Escobar M, Hauser N, Lopez M, Neu J. 2009. Live and heat-killed Lactobacillus rhamnosus GG: effects on proinflammatory and anti-inflammatory cytokines/chemokines in gastrostomy-fed infant rats. Pediatric Research 66:203-207. 59. Mackowiak PA. 2013. Recycling Metchnikoff: probiotics, the intestinal microbiome and the quest for long life. Frontiers in public health 1. 60. Majeed M, Nagabhushanam K, Natarajan S, Sivakumar A, Eshuis-de Ruiter T, Booij-Veurink J, de Vries YP, Ali F. 2016. Evaluation of genetic and phenotypic consistency of Bacillus coagulans MTCC 5856: a commercial probiotic strain. World journal of microbiology and biotechnology 32:60. 61. Male D, Brostoff J, Roth DB. 2008. Immunology, 7 edn. 62. McGroarty JA. 1993. Probiotic use of lactobacilli in the human female urogenital tract. FEMS Immunology and medical microbiology 6:251-264. 63. McKane L, Kandel J. 1995. Microbiology: Essentials and Applications, 2 edn. 64. Meireles A, Gonçalves AL, Gomes IB, Simões LC, Simões M. 2015. Methods to study microbial adhesion on abiotic surfaces. AIMS Bioengineering 2:297-309. 65. Metchnikoff E. 1907. The prolongation of life; optimistic studies, London: Heinemann. 66. Mishra C, Lambert J. 1996. Production of anti-microbial substances by probiotics. Asia Pacific journal of clinical nutrition 5:20-24. 67. Mollace V, Muscoli C, Masini E, Cuzzocrea S, Salvemini D. 2005. Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacological reviews 57:217-252. 68. Moncada S, Higgs E. 2006. Nitric oxide and the vascular endothelium. In: The vascular endothelium I. Springer, 213-254. 69. Monte MJ, Marin JJ, Antelo A, Vazquez-Tato J. 2009. Bile acids: Chemistry, physiology, and pathophysiology. World journal gastroenterol 15:804-816. 70. Pagnini C, Saeed R, Bamias G, Arseneau KO, Pizarro TT, Cominelli F. 2010. Probiotics promote gut health through stimulation of epithelial innate immunity. Proceedings of the national academy of sciences 107:454-459. 71. Peran L, Camuesco D, Comalada M, Bailon E, Henriksson A, Xaus J, Zarzuelo A, Galvez J. 2007. A comparative study of the preventative effects exerted by three probiotics, Bifidobacterium lactis, Lactobacillus casei and Lactobacillus acidophilus, in the TNBS model of rat colitis. Journal of applied microbiology 103:836-844. 72. Park SY, Kim Y. 2009. Surfactin inhibits immunostimulatory function of macrophages through blocking NK-κB, MAPK and Akt pathway. International immunopharmacology 9:886-893. 73. Perdigon G, Alvarez S, Rachid M, Agüero G, Gobbato N. 1995. Immune system stimulation by probiotics. Journal of dairy science 78:1597-1606. 74. Pizzorno JE. 2013. Textbook of natural medicine, Elsevier Health Sciences. 75. Pommerville JC. 2014. Fundamentals of microbiology: body systems edition, Jones & Bartlett Publishers. 76. Pradhan B, Guha D, Ray P, Das D, Aich P. 2016. Comparative analysis of the effects of two probiotic bacterial strains on metabolism and innate immunity in the RAW 264.7 murine macrophage cell line. Probiotics and antimicrobial proteins 8:73-84. 77. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. 2004. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229-241. 78. Mingeot-Leclercq MP, Glupczynski Y, and Tulkens PM. 1999. Aminoglycosides: activity and resistance. Antimicrob. Agents Chemother 43:727-737. 79. Reynolds PE. 1989. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. European journal of clinical microbiology and infectious diseases 8:943-950. 80. Rolfe RD. 2000. The role of probiotic cultures in the control of gastrointestinal health. The journal of nutrition 130:396S-402S. 81. Round JL, Mazmanian SK. 2009. The gut microbiome shapes intestinal immune responses during health and disease. Nature reviews. Immunology 9:313. 82. Sanders ME. 2008. Probiotics: definition, sources, selection, and uses. Clinical infectious diseases 46:S58-S61. 83. Scales WE, Vander AJ, Brown MB, Kluger MJ. 1988. Human circadian rhythms in temperature, trace metals, and blood variables. Journal of applied physiology 65:1840-1846. 84. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. 2011. The pro-and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et biophysica acta (BBA)-molecular cell research 1813:878-888. 85. Sharma J, Al-Omran A, Parvathy S. 2007. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15:252-259. 86. Sim I, Koh JH, Kim DJ, Gu SH, Park A, Lim YH. 2015. In vitro assessment of the gastrointestinal tolerance and immunomodulatory function of Bacillus methylotrophicus isolated from a traditional korean fermented soybean food. Journal of applied microbiology 118:718-726. 87. Slieman TA, Nicholson WL. 2001. Role of Dipicolinic Acid in Survival ofBacillus subtilis Spores Exposed to Artificial and Solar UV Radiation. Applied and environmental microbiology 67:1274-1279. 88. Szajewska H, Kotowska M, Mrukowicz JZ, Arma M, Mikolajczyk W. 2001. Efficacy of Lactobacillus GG in prevention of nosocomial diarrhea in infants. The journal of pediatrics 138:361-365. 89. Transparency market research. 2016. Launch of New Functional Food Products Supports Positive Growth of Global Probiotic Market, TMR States. Available from: (https://www.transparencymarketresearch.com/pressrelease/global-probiotics-market.htm) Accessed 2017 July. 90. Velraeds M, Van der Mei H, Reid G, Busscher HJ. 1996. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates. Applied and environmental microbiology 62:1958-1963. 91. Wang Y, Zhang H, Zhang L, Liu W, Zhang Y, Zhang X, Sun T. 2010. In vitro assessment of probiotic properties of Bacillus isolated from naturally fermented congee from Inner Mongolia of China. World journal of microbiology and biotechnology 26:1369-1377. 92. Wayne P. 2015. Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing. 93. Xavier R, Podolsky D. 2007. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427. 94. Zareie M, Johnson-Henry K, Jury J, Yang PC, Ngan BY, McKay DM, Soderholm JD, Perdue MH, Sherman PM. 2006. Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut 55:1553-1560. 95. Zhang Y, Liu C, Dong B, Ma X, Hou L, Cao X, Wang C. 2015. Anti-inflammatory activity and mechanism of surfactin in lipopolysaccharide-activated macrophages. Inflammation 38:756-764. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68282 | - |
dc.description.abstract | 益生菌被定義為在一定數量下對宿主具有功效之活的微生物,近年在無論是在醫藥或健康食品方面都被廣泛的研究,其相關產品之種類、功能與市場規模也逐年增長,顯示益生菌產業非常具有發展潛力。
本研究主要目的在於從醃漬或發酵之園產加工食品中分離篩選出具有抗發炎功效之潛力產孢益生菌株,分別從市售之鹽漬蘿蔔、豆豉、豆腐乳及醃薑中以95℃高溫熱水浴篩選出具有產孢能力之菌株共28株。為篩選出能符合益生菌篩選條件之菌株,後續以抑制受誘導之巨噬細胞生成一氧化氮與細胞存活性試驗 (MTS assay) ,作為抗發炎功效之初步篩選指標;同時模擬人體胃、腸道之環境,以pH 2.5酸性等張溶液及膽鹽溶液測試菌株能否對其具有一定程度之耐受性。初步篩選後,共5株菌符合篩選標準且均為從豆豉中分離之菌株,認定為潛力益生菌株,並以此5株菌進行第二部分實驗。 對潛力菌株之生長條件進行分析,5株菌最適生長條件均為pH 9、37℃,以不同有機溶劑分析菌株細胞表面性質,D1在乙酸乙酯與氯仿中的溶解率分別達到54.66和63.21%,為分離菌株中最高者。在細胞聚合性方面,D1與D7之細胞聚合率均高於30%,D7在靜置3小時後聚合率達到35.7%,為所有菌株中細胞聚合率最高者。將菌株之16S rDNA與美國國家生物技術資訊中心資料庫進行比對後發現均為Bacillus屬之微生物,也確認所有潛力菌株均為產孢菌。同時也分析了潛力菌株對於抗生素之抗性,發現潛力菌株普遍對四環黴素具有較高之抗性,推測可能該屬之菌本身具有抑制四環黴素之生理機制。 潛力菌株在不同起始濃度下具有不同的抗發炎效果,故以不同起始濃度之潛力菌株與受到誘導之小鼠癌化巨噬細胞株Raw 264.7進行共培養,並同時與商業菌株Bacillus coagulans GBI-30, 6086進行比較,在抑制一氧化氮生成方面,D1與D7於起始菌與細胞數比值為10之下一氧化氮生成量較未受脂多醣 (Lipopolysaccharide, LPS) 誘導之組別更低,對一氧化氮合成酶(inducible nitric oxide synthase, iNOS) 亦有相同抑制效果,推測菌株之抑制機制可能與調控iNOS之基因表現有關。最後,測定潛力菌株與受誘導細胞共培養後之前發炎細胞激素腫瘤壞死因子-α (Tumor necrosis factor-α, TNF-α) 、介白素1β (Interleukin-1β, IL-1β) 與介白素6 (Interleukin-6, IL-6) 之生成量,發現D9a能抑制99%以上之TNF-α與IL-6生成,D4菌株則能抑制85%以上之IL-1β生成,相較於商業菌株BC30之生成量,抑制率明顯高出許多。 從豆豉中分離,並經過篩選選定之5株潛力菌株,具有可作為益生菌之特性,且能抑制免疫細胞在受到外來抗原誘導之後一氧化氮及前發炎細胞激素之生成,認為具有抗發炎潛力,日後可繼續開發成益生菌產品,而其確切之抗發炎機制也可再深入探討研究。 | zh_TW |
dc.description.abstract | According to the definition of probiotics in WHO (2002), “Live micro-organisms which, when administered in adequate amounts, confer a health benefit on the host.” Many researches have studied probiotics for medicine or health supplements in recent years. The products of probiotics have many types and functions; the global market of probiotics are growing too. It shows probiotics have great potential in the future.
This research aims to isolate potential spore-forming probiotic strains with anti-inflammatory activity from fermented or pickled horticultural foods. 28 spore-forming strains have been isolated from douchi, pickled radish, sufu and pickled ginger by 95℃ water bath. Then tested the ability of inhibiting LPS-induced macrophage Raw 264.7 producing NO and cell viability by MTS assay to preliminary indicate of strain’s anti-inflammatory activity. Also we tested tolerance to pH 2.5 buffered solution and 0.3% bile salt medium represent whether strain survive through the gastrointestinal tract. After preliminary screening, we chose 5 strains as potential strain and proceeded the second part experiment. pH 9 and 37℃ are the most moderate condition of all potential strains. We use different organic solvents to investigate cell hydrophobicity. Strain D1 had highest solubility 54.66 and 63.21% in ethyl acetate and chloroform respectively. Cell aggregation have positive correlation with the ability of adhesion to intestinal surface. Strain D1 and D7 has the best aggregation property over 30% after 3h. Comparing strain 16S rDNA with NCBI, and confirm all of our strains are Bacillus species. All the potential strains have highly resistance to tetracycline which may cause by expressing anti-tetracycline gene in Bacillus. Potential strains have anti-inflammatory activity with different initial concentration. Strain D1 and D7 with initial concentration 10 have the best NO inhibiting activity. The production even lower than the control. Potential strains have the same inhibition activity to nitric oxide synthase mRNA expression. Finally, potential strains can also inhibit pro-inflammatory cytokine generation. Strain D9a can inhibit over 99% Tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6) generation with initial concentration 10, and all the potential Strain can inhibit over 80% Interleukin-1β (IL-1β) generation. Compared with the commercial strain BC30, our strains have better anti-inflammatory activity. In conclusion, our 5 strains isolated from douchi have great potential to be probiotics with anti-inflammatory activity. The research can continue to develop the strains into commercial products or further investigate the mechanism of its anti-inflammatory activity. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:16:33Z (GMT). No. of bitstreams: 1 ntu-106-R04628201-1.pdf: 4332685 bytes, checksum: c5d46ae974e112489bb910a50e7fff8a (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 目 錄
中文摘要 3 Abstract 5 目 錄 7 表目錄 10 第一章、前言 14 第二章、文獻探討 16 第一節、醃漬與發酵食品 16 第二節、益生菌簡介 16 一、益生菌定義 16 二、益生菌種類 17 三、益生菌功效 19 四、產孢益生菌 21 五、Bacillus屬 21 六、商業菌株 21 第三節、免疫系統防禦機制 24 一、先天性免疫與後天性免疫 24 二、腸道免疫系統 25 第四節、益生菌對於腸炎症 28 一、腸炎症簡介 28 二、益生菌抑制腸炎症 28 第五節、細胞發炎模型 29 一、Raw264.7巨噬細胞 29 二、巨噬細胞發炎相關之細胞激素 29 三、LPS誘導發炎模型 32 四、LPS誘導巨噬細胞一氧化氮生成 32 第三章、材料與方法 35 第一節、實驗架構 35 第二節、實驗材料與設備 37 一、儀器設備 37 二、樣品來源 38 第三節、菌株純化 41 一、分離產孢菌株 41 二、純化培養 41 三、菌種保存 41 四、菌種鑑定 42 第四節、潛力益生菌篩選 43 一、耐酸性試驗 43 二、耐膽鹽試驗 44 三、抗生素敏感性檢測 44 四、細胞聚合試驗 45 五、細胞表面性質試驗 45 第六節、Raw264.7小鼠巨噬細胞培養 46 一、細胞活化、培養與繼代 46 第七節、細胞發炎模型 47 一、一氧化氮生成抑制試驗 47 二、細胞存活率 47 三、細胞激素生成試驗 48 第八節、mRNA表現量分析 49 一、細胞RNA抽取 49 二、Reverse Transcription PCR 50 三、特定片段PCR與半定量 51 四、膠體電泳分析 52 第九節、統計分析 52 第四章、結果討論 53 第一部分、潛力菌株篩選 53 一、抑制一氧化氮生成 55 二、菌株耐酸性試驗 59 三、菌株耐膽鹽試驗 62 四、細胞存活性試驗 65 第二部分、潛力菌株分析 68 一、最適生長條件 68 二、細胞表面性質 74 三、細胞聚合性 75 四、遺傳親緣分析 76 五、抗生素敏感性試驗 76 六、MTS細胞存活性 80 七、抑制一氧化氮生成 80 八、iNOS基因表現 81 九、細胞激素生成 82 第五章、結論 111 第六章、參考文獻 112 | |
dc.language.iso | zh-TW | |
dc.title | 豆豉中產孢益生菌之篩選及其抗發炎活性探討 | zh_TW |
dc.title | Evaluation of Anti-inflammatory Activity of Spore-forming Probiotics Isolated from Fermented Soybeans (Douchi) | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳思節,曾文聖,劉滿海 | |
dc.subject.keyword | 小鼠癌化巨噬細胞,一氧化氮,脂多醣,前發炎細胞激素,誘導型一氧化氮合成?, | zh_TW |
dc.subject.keyword | Raw 264.7,Nitric oxide,Lipopolysaccharide,Pro-inflammatory cytokine,inducible nitric oxide synthase, | en |
dc.relation.page | 122 | |
dc.identifier.doi | 10.6342/NTU201704226 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-09-29 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 4.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。