Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68268
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱錦洲
dc.contributor.authorPo-Lun Loen
dc.contributor.author羅博倫zh_TW
dc.date.accessioned2021-06-17T02:16:12Z-
dc.date.available2021-01-04
dc.date.copyright2018-01-04
dc.date.issued2017
dc.date.submitted2017-10-11
dc.identifier.citation[1] Pines, D. J. and Bohorquez, F., “Challenges facing future micro-air-vehicle development,” Journal of aircraft, Vol. 43, No. 2, 2006, pp. 290–305.[2] Chao, H., Cao, Y., and Chen, Y., “Autopilots for small unmanned aerial vehicles: a survey,” International Journal of Control, Automation and Systems, Vol. 8, No. 1,2010, pp. 36–44.[3] Anderson, K. and Gaston, K. J., “Lightweight unmanned aerial vehicles will revolutionize spatial ecology,” Frontiers in Ecology and the Environment, Vol. 11, No. 3,2013, pp. 138–146.[4] Webb, T. P., Prazenica, R. J., Kurdila, A. J., and Lind, R., “Vision-based state estimation for autonomous micro air vehicles,” Journal of Guidance Control and Dynamics, Vol. 30, No. 3, 2007, pp. 816–826.[5] Allred, J., Hasan, A. B., Panichsakul, S., Pisano, W., Gray, P., Huang, J., Han, R.,Lawrence, D., and Mohseni, K., “Sensorflock: an airborne wireless sensor network of micro-air vehicles,” Proceedings of the 5th international conference on Embedded networked sensor systems, ACM, 2007, pp. 117–129.[6] Dryanovski, I., Morris, W., and Xiao, J., “Multi-volume occupancy grids: An efficient probabilistic 3D mapping model for micro aerial vehicles,” Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, IEEE, 2010, pp.1553–1559.[7] McMasters, J. and Henderson, M., “Low-speed single-element airfoil synthesis,”Technical Soaring, Vol. 6, No. 2, 1980, pp. 1–21.Mueller, T. J., “Aerodynamic measurements at low Reynolds numbers for fixed wing micro-air vehicles,” Tech. rep., NOTRE DAME UNIV IN DEPT OF AEROSPACE AND MECHANICAL ENGINEERING, 2000.[9] Pornsin-Sirirak, T. N., Tai, Y., Nassef, H., and Ho, C., “Titanium-alloy MEMS wing technology for a micro aerial vehicle application,” Sensors and Actuators A: Physical,Vol. 89, No. 1, 2001, pp. 95–103.[10] Stanford, B., Ifju, P., Albertani, R., and Shyy, W., “Fixed membrane wings for micro air vehicles: Experimental characterization, numerical modeling, and tailoring,”
Progress in Aerospace Sciences, Vol. 44, No. 4, 2008, pp. 258–294.[11] Chao, H., Cao, Y., and Chen, Y., “Autopilots for small unmanned aerial vehicles: a survey,” International Journal of Control, Automation and Systems, Vol. 8, No. 1, 2010, pp. 36–44.[12] Pelletier, A. and Mueller, T. J., “Low Reynolds number aerodynamics of low-aspectratio,thin/flat/cambered-plate wings,” Journal of Aircraft, Vol. 37, No. 5, 2000,pp. 825–832.[13] Torres, G. E. and Mueller, T. J., “Low-aspect-ratio wing aerodynamics at low Reynolds numbers,” AIAA journal, Vol. 42, No. 5, 2004, pp. 865–873.[14] Xiao, T., Li, Z., Deng, S., Ang, H., and Zhou, X., “Numerical study on the flow
characteristics of micro air vehicle wings at low Reynolds numbers,” International Journal of Micro Air Vehicles, Vol. 8, No. 1, 2016, pp. 29–40.[15] Kuwaharaf, K. and Takami, H., “Computation of dynamic stall of a NACA-0012 airfoil,” AIAA journal, Vol. 25, No. 3, 1987.[16] Huang, L., Huang, P., LeBeau, R., and Hauser, T., “Numerical study of blowing and suction control mechanism on NACA0012 airfoil,” Journal of aircraft, Vol. 41,No. 5, 2004, pp. 1005–1013.[17] Timmer, W., “Two-dimensional low-Reynolds number wind tunnel results for airfoil NACA 0018,” Wind engineering, Vol. 32, No. 6, 2008, pp. 525–537.[18] Gerakopulos, R., Boutilier, M. S., and Yarusevych, S., “Aerodynamic characterization of a NACA 0018 airfoil at low Reynolds numbers,” AIAA paper, Vol. 4629,2010, pp. 2010.[19] Swalwell, K., Sheridan, J., Melbourne, W., et al., “The effect of turbulence intensity on stall of the NACA 0021 aerofoil,” 14th Australasian fluid mechanics conference,2001, pp. 10–14.[20] McVay, E., Lang, A., Gamble, L., and Bradshaw, M., “Examining Dynamic Stall for an Oscillating NACA 4412 Hydrofoil,” APS Division of Fluid Dynamics Meeting Abstracts, 2013.[21] Xin, H., Rui, G., JIN, J.-f., LIU, Y.-r., Yi, M., Qian, C., and ZHENG, Y., “Numerical simulation and aerodynamic performance comparison between seagull aerofoil and NACA 4412 aerofoil under low-reynolds,” Advances in Natural Science, Vol. 3,No. 2, 2010, pp. 244–250.[22] Baker, J. P. and Gilbert, B. L., “Flatback airfoil wind tunnel experiment,” 2008.[23] Davis, W. R., Kosicki, B. B., Boroson, D. M., and Kostishack, D., “Micro air vehicles for optical surveillance,” Lincoln Laboratory Journal, Vol. 9, No. 2, 1996, pp. 197–214.[24] Pinkerton, R. M., “The variation with Reynolds number of pressure distribution over an airfoil section,” 1938.[25] Coles, D. and Wadcock, A. J., “Flying-hot-wire study of flow past an NACA 4412 airfoil at maximum lift,” AIAA J, Vol. 17, No. 4, 1979, pp. 321–329.[26] Gharali, K. and Johnson, D. A., “Dynamic stall simulation of a pitching airfoil under unsteady freestream velocity,” Journal of Fluids and Structures, Vol. 42, 2013,pp. 228–244.[27] Geissler, W. and van der Wall, B. G., “Dynamic stall control on flapping wing airfoils,” Aerospace Science and Technology, Vol. 62, 2017, pp. 1–10.[28] Hsiun, C.-M. and Chen, C.-K., “Aerodynamic characteristics of a two-dimensional airfoil with ground effect,” Journal of Aircraft, Vol. 33, No. 2, 1996, pp. 386–392.[29] Steinbach, D., “Comment on” Aerodynamic Characteristics of a Two-Dimensional Airfoil with Ground Effect”,” Journal of Aircraft, Vol. 34, No. 3, 1997, pp. 455.[30] Ahmed, M. R. and Sharma, S., “An investigation on the aerodynamics of a symmetrical
airfoil in ground effect,” Experimental Thermal and Fluid Science, Vol. 29,No. 6, 2005, pp. 633–647.[31] Luo, S. and Chen, Y., “Ground effect on flow past a wing with a NACA0015 crosssection,” Experimental Thermal and Fluid Science, Vol. 40, 2012, pp. 18–28.[32] Barber, T., “Aerodynamic ground effect: a case study of the integration of CFD and experiments,” International Journal of Vehicle Design, Vol. 40, No. 4, 2006,pp. 299–316.[33] Firooz, A. and Gadami, M., “Turbulence flow for NACA 4412 in unbounded flow and ground effect with different turbulence models and two ground conditions:fixed and moving ground conditions,” Conference on Boundary and Interior Layers, Vol. 98, Germany: University of Gottingen, 2006, pp. 164–161.[34] Ahmed, M. R., Takasaki, T., and Kohama, Y., “Aerodynamics of a NACA4412 airfoil in ground effect,” AIAA journal, Vol. 45, No. 1, 2007, pp. 37.[35] Qu, Q., Wang, W., Liu, P., and Agarwal, R. K., “Airfoil aerodynamics in ground effect for wide range of angles of attack,” AIAA Journal, 2015.[36] Chen, Y.-S. and Schweikhard, W. G., “Dynamic ground effects on a two-dimensional flat plate,” Journal of Aircraft, Vol. 22, No. 7, 1985, pp. 638–640.[37] Nuhait, A. and Zedan, M., “Numerical simulation of unsteady flow induced by a flat plate moving near ground,” Journal of Aircraft, Vol. 30, No. 5, 1993, pp. 611–617.[38] Qu, Q., Jia, X., Wang, W., Liu, P., and Agarwal, R. K., “Numerical study of the aerodynamics of a NACA 4412 airfoil in dynamic ground effect,” aerospace Science and Technology, Vol. 38, 2014, pp. 56–63.[39] Qin, Y., Liu, P., Qu, Q., and Guo, H., “Numerical study of aerodynamic forces and flow physics of a delta wing in dynamic ground effect,” Aerospace Science and Technology,Vol. 51, 2016, pp. 203–221.[40]Cosyn, P. and Vierendeels, J., “Numerical investigation of low-aspect-ratio wings at low Reynolds numbers,” Journal of Aircraft, Vol. 43, No. 3, 2006, pp. 713–722.[41] Park, K. and Lee, J., “Influence of endplate on aerodynamic characteristics of low aspect-ratio wing in ground effect,” Journal of mechanical science and technology,Vol. 22, No. 12, 2008, pp. 2578–2589.[42] Jamei, S., Maimun, A., Mansor, S., Azwadi, N., and Priyanto, A., “Numerical investigation on aerodynamic characteristics of a compound wing-in-ground effect,”Journal of Aircraft, Vol. 49, No. 5, 2012, pp. 1297–1305.[43] Demir, H., Özden, M., Genç, M. S., and Çağdaş, M., “Numerical investigation of flow on NACA4412 aerofoil with different aspect ratios,” EPJ Web of Conferences,Vol. 114, EDP Sciences, 2016, p. 02016.[44] HOARAU, Y., BRAZA, M., Ventikos, Y., Faghani, D., and Tzabiras, G., “Organized modes and the three-dimensional transition to turbulence in the incompressible flow around a NACA0012 wing,” Journal of Fluid Mechanics, Vol. 496, 2003, pp. 63–72.[45] Wahidi, R., Lai, W., Hubner, J. P., and Lang, A., “Volumetric three-component velocimetry and PIV measurements of Laminar Separation Bubbles on a NACA4412 Airfoil,” 16th Int. Symp of Applications of Laser Techniques of Fluid Mechanics,2012.[46] McAlister, K. and Carr, L., “Water tunnel visualizations of dynamic stall,” Journal of Fluids Engineering, Vol. 101, No. 3, 1979, pp. 376–380.[47] Harvey, J. and Perry, F. J., “Flowfield produced by trailing vortices in the vicinity of the ground,” AIAA journal, Vol. 9, No. 8, 1971, pp. 1659–1660.[48] Hah, C. and Lakshminarayana, B., “Measurement and prediction of mean velocity and turbulence structure in the near wake of an airfoil,” Journal of Fluid Mechanics,Vol. 115, 1982, pp. 251–282.[49] Rhie, C. and Chow, W., “Numerical study of the turbulent flow past an airfoil withtrailing edge separation,” AIAA Journal(ISSN 0001-1452), Vol. 21, 1983, pp. 1525-1532.[50] Koochesfahani, M. M., “Vortical patterns in the wake of an oscillating airfoil,” AIAA journal, 2012.[51] Mahon, S. and Zhang, X., “Computational analysis of pressure and wake characteristics of an aerofoil in ground effect,” Journal of Fluids Engineering, Vol. 127,No. 2, 2005, pp. 290–298.[52] Bimbato, A. M., Pereira, L. A. A., and Hirata, M. H., “Study of the vortex sheding flow around a body near a moving ground,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 99, No. 1, 2011, pp. 7–17.[53] Ward, J. W., “The behaviour and effects of laminar separation bubbles on aerofoils in incompressible flow,” The Aeronautical Journal, Vol. 67, No. 636, 1963, pp. 783-790.[54] Braun, S. and Kluwick, A., “Blow-up and control of marginally separated boundary layers,” Philosophical Transactions of the Royal Society of London A: Mathematical,Physical and Engineering Sciences, Vol. 363, No. 1830, 2005, pp. 1057–1067.[55] Li, S., Zhou, D., Zhang, Y., and Qu, Q., “Aerodynamic Investigation of RAE2822 Airfoil in Ground Effect,” Procedia Engineering, Vol. 126, 2015, pp. 174–178.[56] CLq, C. and CL e, C., “Dynamic Ground Effect on the Longitudinal Stability of Airplanes during the Landing,” 2014.[57] Droandi, G., Gibertini, G., and Zanotti, A., “Perpendicular blade–vortex-interaction over an oscillating airfoil in light dynamic stall,” Journal of Fluids and Structures,Vol. 65, 2016, pp. 472–494.[58] SUH, Y. B. and OSTOWARI, C., “Drag reduction factor due to ground effect,” Journal of Aircraft, Vol. 25, No. 11, 1988, pp. 1071–1072.[59] Myose, R., Papadakis, M., and Heron, I., “Gurney flap experiments on airfoils,wings, and reflection plane model,” Journal of Aircraft, Vol. 35, No. 2, 1998,pp. 206–211.[60] Park, K., Hong, C. H., Kim, K. S., and Lee, J., “Effect of endplate shape on performance and stability of wings-in ground (WIG) craft,” World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial,Mechatronic and Manufacturing Engineering, Vol. 2, No. 11, 2008, pp. 1235–1241.[61] Jia, Q., Yang, W., and Yang, Z., “Numerical study on aerodynamics of banked wing in ground effect,” International Journal of Naval Architecture and Ocean Engineering,Vol. 8, No. 2, 2016, pp. 209–217.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68268-
dc.description.abstract實際上,飛行器在著陸的過程中,其與地面之距離將不斷的變化。因此,在降落過程應將受到為動態地面效應(Dynamic Ground Effect)的影響。本研究將利用循環式水洞搭配輸送帶系統,來針對的定翼型微型飛行器進行近地效應分析。本論文,首先對於不同攻角、雷諾數與展弦比之結果做分析,再探討靜態(Static Effect)分析與動態分析結果之差異,最後由數值計算之結果與張建成教授所提出的力元理論做比對與驗證。本實驗將針對NACA4412的翼型做探討,其規格為弦長5cm而展弦比為2、3與4的模型翼。文中將探討6~25之攻角以及雷諾數5000、6000、7500、9000與10000等條件下進行近地效應之模擬。由結果分析可知,不論動態或靜態分析,其近地效應約從1.00c處開始影響,而在0.5c以下影響更劇烈。在相同雷諾數的環境下,靜態分析存在臨界攻角而動態則無明顯的臨界攻角(以下),此差異來自於靜態與動態在高攻角條件下兩者在翼面分離渦旋的情況不同。在適當的攻角條件下,升力大小隨雷諾數提升而增加,而高攻角條件下則無此趨勢。在不同展弦比的結果中顯示,展弦比長的力的能夠在低雷諾數下得到更多升力來源。在較低攻角的條件下,可由靜態分析結果來分析真實情況;而在高攻角的條件下,應由動態分析來探討,否則將存在30%~40%之間的誤差。zh_TW
dc.description.abstractThis study is aimed to investigate the influence of ground effect during the landing process of the airfoil NACA 4412 under static and dynamic experimental force measurements in a water tunnel that has moving ground simulation with numerical validations. Airfoils of 5‑cm chord length (C) and 3° pitch angle (θ) at various aspect ratios (AR=2, 3, & 4) are vertically immersed in the water with a narrowed‑neck support linked between the load cell above water surface and the airfoil beside the conveyor belt. The conveyor belt is designed to synchronize with the inflow velocity (U) in order to remove the boundary effects generated by the velocity difference at the side wall, and is capable of matching Reynolds numbers (Re) from 5,000 to 10,000 as utilize in the present study. The forces exerted on the airfoil are measured by a 2‑D load cell under the two prescribed situations, namely static ground effect (SGE) and dynamics ground effect (DGE).In SGE, the forces exerted on the airfoil are measured statically at various clearance and angle of attacks α=θ+γ, where γ is chosen to match with those in the DGE. As in DGE, the forces are measured at a continuous descending motion of normalized constant velocity vf=vf*∕U=tan(γ) towards the ground (moving conveyor), so‑called dynamic. It is emphasized that γ is the inflow angle relative to the descending airfoil determined by vf, and α in DGE is varied from 6° to 25° (with θ=3°).The results show that the ground effect in either SGE or DGE is essential to the airfoil only when the clearance decreases below a unit chord length (C), and the influence becomes rather tremendous as the clearance deceases below 0.5C. Next, it is found that the lift coefficient CL increases with increasing α in SEG and DGE cases under the same Re. However, the increment of CL ceases when a critical α is achieved in SGE. When α is low‑to‑moderate, CL is shown to increase with increasing Re in both SGE and DGE cases. In addition, the lift curve with respect to the clearance in SGE and DGE are almost the same when α is low‑to‑moderate, and thus the results in SGE can be reasonably applied to that in DGE. However, when dealing with α beyond a certain angle, the analysis of DGE must be taken into account in order to prevent an error that could reach about 30 to 40%.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:16:12Z (GMT). No. of bitstreams: 1
ntu-106-R04543075-1.pdf: 145360615 bytes, checksum: 463e9c9dad280d3c648d648dee878819 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 微型飛行器之簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 微型飛行器之文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 不同翼型之文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 失速攻角之文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 近地效應之文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7.1 近地效應前言. . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7.2 早期的近地效應分析. . . . . . . . . . . . . . . . . . . . . . . 9
1.7.3 靜態近地效應(Static Ground Effect) . . . . . . . . . . . . . . . 9
1.7.4 動態近地效應(Dynamic Ground Effect) . . . . . . . . . . . . . 13
1.7.5 近地效應結語. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.8 低展弦比之文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.9 流場分析文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.10 總結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
第二章基礎理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 參數介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 因次參數與無因次參數介紹. . . . . . . . . . . . . . . . . . . 19
2.2.2 無因次參數. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 NACA 系列翼型介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 低雷諾數流. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
第三章數值方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 網格產生. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 網格類型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 網格設定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 控制方程式介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 連續方程式. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 動量守恆方程式. . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 數值方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 分離求解器. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 空間離散. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.3 時間離散. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.4 壓力-速度耦合關係的處理. . . . . . . . . . . . . . . . . . . . 38
第四章實驗介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 實驗設備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 循環式水洞水槽(Water Tunnel) . . . . . . . . . . . . . . . . . 43
4.2.2 模型機翼NACA4412 . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.3 雙軸荷重元(Load Cell) . . . . . . . . . . . . . . . . . . . . . 45
4.2.4 IAI 機械手臂與控制器. . . . . . . . . . . . . . . . . . . . . . 46
4.2.5 輸送帶設備. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.6 雷射系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.7 CCD 攝像機. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 實驗架設與流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.1 測試段之整體架設. . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 線性手臂流程. . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.3 荷重元流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.4 雷射流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.5 實驗整體流程. . . . . . . . . . . . . . . . . . . . . . . . . . . 51
第五章結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 定雷諾數分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.1 靜態分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.2 動態分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 定攻角分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.1 靜態分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.2 動態分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 動態與靜態近地效應之比對. . . . . . . . . . . . . . . . . . . . . . . 72
5.5 不同展弦比分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.6 顯影比較. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.7 實驗與模擬比對. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.8 壓力分佈討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.8.1 機翼表面壓力分佈. . . . . . . . . . . . . . . . . . . . . . . . 86
第六章結論與未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
附錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
dc.language.isozh-TW
dc.subjectNACA4412zh_TW
dc.subject數值計算zh_TW
dc.subject近地效應zh_TW
dc.subject實驗量測zh_TW
dc.subject有限翼zh_TW
dc.subject低雷諾數zh_TW
dc.subject低展弦比zh_TW
dc.subjectNumerical calculationsen
dc.subjectFinite wingen
dc.subjectlow Reynolds numbersen
dc.subjectLow aspect ratioen
dc.subjectGround effecten
dc.subjectExperimental measurementen
dc.title低雷諾數下有限翼近地效應之實驗與數值模擬分析zh_TW
dc.titleExperimental and Numerical Analysis of Finite Wing in
Ground Effect at Low Reynolds Numbers
en
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.coadvisor張建成
dc.contributor.oralexamcommittee陳建甫,蘇正瑜,宮春斐
dc.subject.keyword近地效應,NACA4412,低展弦比,低雷諾數,有限翼,實驗量測,數值計算,zh_TW
dc.subject.keywordGround effect, Low aspect ratio,low Reynolds numbers,Finite wing,Experimental measurement,Numerical calculations,en
dc.relation.page106
dc.identifier.doi10.6342/NTU201704259
dc.rights.note有償授權
dc.date.accepted2017-10-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
141.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved