Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68214
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周承復
dc.contributor.authorHsin-Yu Chenen
dc.contributor.author陳欣鈺zh_TW
dc.date.accessioned2021-06-17T02:14:55Z-
dc.date.available2020-01-27
dc.date.copyright2018-01-27
dc.date.issued2017
dc.date.submitted2017-10-29
dc.identifier.citation[1] Open data. http://opendata.cwb.gov.tw. The Central Weather Bureau.
[2] Met Office what is the difference between rain and showers? http://www.
metoffice.gov.uk/learning/rain/rain-and-showers, July 2016.
[3] 105AS-8.5.1-IE-b1. The Establishment of Automated Irrigation Water Quality Monitoring System and Classified Management of Water and Soil Resources. 建立灌溉水質自動監測網及分級管理農業水土資源.
[4] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.
[5] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational
learning theory, pages 144–152. ACM, 1992.
[6] D. Britz. WildML recurrent neural networks tutorial, part3-backpropagation through time and vanishing gradients. http://www.wildml.com, August 2015.
[7] J. Brownlee. Machine Learning Mastery time series forecasting with the long short- term memory network in python. http://machinelearningmastery.com, April
2017.
[8] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/ ̃cjlin/libsvm.
[9] S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. PhD thesis, diploma thesis, institut fur informatik, lehrstuhl prof. brauer, technische universitatmunchen, 1991.
[10] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,9(8):1735–1780, 1997.
[11] A. Munoz. Machine learning and optimization. Courant Institute of Mathematical Sciences, New York, NY.
[12] C. Olah. colah’s blog understanding lstm networks. http://colah.github.io/
posts/2015-08-Understanding-LSTMs, August 2015.
[13] USEPA. Water Quality Analysis Simulation Program(WASP). https://www.epa.gov/exposure-assessment-models.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68214-
dc.description.abstract為了解決食安之問題,相關單位透過管理平台回收現地水質連續自動監測數據,加強對農業生產環境之掌握,然而現行採用的現場自動化重金屬測站檢測成本昂貴,除了無法廣設監測站,頻繁地進行採樣亦有其困難之處,造成測站所獲得的訊息可能會有空窗期。
本論文之目標為利用有限的資訊建立一套預警系統,使用機器學習以及深度學習之技術,針對水中重金屬濃度的一系列分析,來預測其灌溉水可能被污染的時間點,以能夠及早進行任何有利環境之行動。預警系統分成以下部分,首先是預測重金屬含量是否超過標準,利用來自於測站的水質資料,使用機器學習模型進行灌溉水質的超標預測;然而上述辦法卻無法有效掌握水質濃度隨著時間之變化,於是加入了深度學習時間序列的分析,來為重金屬濃度的趨勢預測;天氣狀況亦也是會影響工廠偷排廢棄物的因素之一,因此於系統中加入氣象預測資訊,包含降雨機率、天氣描述。最後綜合以上之特性,利用預測結果得出一個預警分數,監控平台的管理者可依照其分數來決定其接下來的行動,而經過一系列的驗證,可發現上述模型皆獲得有效之預測。
zh_TW
dc.description.abstractTo solve the problem of food safety, related departments have taken some actions to enhance the management of the production environment. They collect water quality data through sampling stations. However, the expense of the heavy metal sampling is costly and thus unable to construct a wide range of heavy metal sampling stations. Besides, they also can not collect data frequently.
Therefore, the main purpose of the thesis is to solve the above problem by establishing a supervision mechanism. The mechanism predicts whether the water will be polluted by machine learning, and then informs the supervisor to take actions. First, the mechanism predicts the excess of heavy metal concentration. This part is trained by the data of the water quality stations through machine learning techniques. But it is hard to know the difference of the concentration between different time. The time series characteristic of RNN has added to the solve the disadvantage to estimate the concentration. In addition to the above part, we also take the weather forecast into consideration. Finally, calculating a score after making predictions, and getting a comprehensive performance through combining the above parts. The result shows that the models have good performances.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:14:55Z (GMT). No. of bitstreams: 1
ntu-106-R04922109-1.pdf: 2258690 bytes, checksum: add5466c0e5d9d6ba9e669a218b33ff5 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsAcknowledgments ii
Abstract iii
List of Figures viii
List of Tables ix
Chapter 1 Introduction 1
1.1 Food Safety ................................ 1
1.2 Agricultural Production ......................... 2
1.3 Data Resource............................... 3
1.4 Target................................... 3
Chapter 2 Related Work 5
2.1 Chicago Foodborne............................ 5
2.2 Food Safety System in Chengdu..................... 6
2.3 WSAP................................... 6
2.4 Sankuaicuo Branch ............................ 7
Chapter 3 Preliminary 10
3.1 Machine Learning............................. 10
3.1.1 Support Vector Machine ..................... 11
3.1.2 Random Forest .......................... 12
3.2 Recurrent Neural Network ........................ 13
3.2.1 LSTM networks.......................... 14
Chapter 4 Methodology 17
4.1 Prediction of Exceeding Standard .................... 18
4.2 Concentration Forecast.......................... 20
4.3 Climate Properties ............................ 21
4.3.1 Weather Description ....................... 22
4.3.2 Probability of Precipitation ................... 23
4.4 Risk Index................................. 23
Chapter 5 Evaluation 26
5.1 Performance Metrics ........................... 26
5.1.1 Recall and Precision ....................... 26
5.1.2 Feature Importance........................ 30
5.1.3 RMSE............................... 33
5.2 Mechanism Validation .......................... 35
Chapter 6 Conclusion & Future Work 37
Bibliography 39
dc.language.isoen
dc.subject機器學習zh_TW
dc.subject長短期記憶zh_TW
dc.subject水污染zh_TW
dc.subject農業環境zh_TW
dc.subject食品安全zh_TW
dc.subjectFood Safetyen
dc.subjectAgricultural Environmenten
dc.subjectWater Pollutionen
dc.subjectMachine Learningen
dc.subjectLSTMen
dc.title強化農業生產環境安全的水質監控機制zh_TW
dc.titleEnhancing Agricultural Production by Developing Water Monitoring Mechanismsen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡芸琤,林俊宏,林裕彬,吳曉光
dc.subject.keyword食品安全,農業環境,水污染,機器學習,長短期記憶,zh_TW
dc.subject.keywordFood Safety,Agricultural Environment,Water Pollution,Machine Learning,LSTM,en
dc.relation.page40
dc.identifier.doi10.6342/NTU201702506
dc.rights.note有償授權
dc.date.accepted2017-10-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved