請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68202完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃慶怡 | |
| dc.contributor.author | Pin-Hong Chen | en |
| dc.contributor.author | 陳品宏 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:14:40Z | - |
| dc.date.available | 2018-01-04 | |
| dc.date.copyright | 2018-01-04 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-11-08 | |
| dc.identifier.citation | 1. Ameri, T., G. Dennler, C. Lungenschmied and C. J. Brabec (2009). Energy & Environmental Science 2(4): 347-363.
2. Coakley, K. M. and M. D. McGehee (2004). Chemistry of Materials 16(23): 4533-4542. 3. Cheng, Y. J., S. H. Yang and C. S. Hsu (2009). Chemical Reviews 109(11): 5868-5923. 4. Dimitrakopoulos, C. D. and P. R. L. Malenfant (2002). Advanced Materials 14(2): 99-+. 5. Hoppe, H. and N. S. Sariciftci (2004). Journal of Materials Research 19(7): 1924-1945. 6. Spanggaard, H. and F. C. Krebs (2004). Solar Energy Materials and Solar Cells 83(2-3): 125-146. 7. Thompson, B. C. and J. M. J. Frechet (2008). Angewandte Chemie-International Edition 47(1): 58-77. 8. Gunes, S., H. Neugebauer and N. S. Sariciftci (2007). 'Conjugated polymer-based organic solar cells.' Chemical Reviews 107(4): 1324-1338. 9. Lu, L. Y., W. Chen, T. Xu and L. P. Yu (2015). Nature Communications 6: 7. 10. Lu, L. Y., M. A. Kelly, W. You and L. P. Yu (2015). Nature Photonics 9(8): 491-500. 11. Chen, J. W. and Y. Cao (2009). Accounts of Chemical Research 42(11): 1709-1718 12. Roncali, J. (2009). Accounts of Chemical Research 42(11): 1719-1730. 13. Lu, L. Y., T. Y. Zheng, Q. H. Wu, A. M. Schneider, D. L. Zhao and L. P. Yu (2015). Chemical Reviews 115(23): 12666-12731.. 14. Deibel, C. and V. Dyakonov (2010). Reports on Progress in Physics 73(9): 39. 15. Dennler, G., M. C. Scharber and C. J. Brabec (2009). Advanced Materials 21(13): 1323-1338. 16. Blom, P. W. M., V. D. Mihailetchi, L. J. A. Koster and D. E. Markov (2007). Advanced Materials 19(12): 1551-1566. 17. Walzer, K., B. Maennig, M. Pfeiffer and K. Leo (2007). Chemical Reviews 107(4): 1233-1271. 18. Peumans, P., V. Bulovic and S. R. Forrest (2000). Applied Physics Letters 76(19): 2650-2652. 19. Mishra, A. and P. Bauerle (2012). Angewandte Chemie-International Edition 51(9): 2020-2067. 20. Peumans, P., S. Uchida and S. R. Forrest (2003). Nature 425(6954): 158-162. 21. Zhang, Q., B. Kan, F. Liu, G. K. Long, X. J. Wan, X. Q. Chen, Y. Zuo, W. Ni, H. J. Zhang, M. M. Li, Z. C. Hu, F. Huang, Y. Cao, Z. Q. Liang, M. T. Zhang, T. P. Russell and Y. S. Chen (2015). Nature Photonics 9(1): 35-41. 22. Roncali, J., P. Leriche and P. Blanchard (2014). Advanced Materials 26(23): 3821-3838. 23. van der Poll, T. S., J. A. Love, T. Q. Nguyen and G. C. Bazan (2012). Advanced Materials 24(27): 3646-3649. 24. Peumans, P., A. Yakimov and S. R. Forrest (2003). Journal of Applied Physics 93(7): 3693-3723. 25. Chiu, S. W., L. Y. Lin, H. W. Lin, Y. H. Chen, Z. Y. Huang, Y. T. Lin, F. Lin, Y. H. Liu and K. T. Wong (2012). Chemical Communications 48(13): 1857-1859. 26. Du, C. M., Y. J. Ji, J. W. Xue, T. J. Hou, J. X. Tang, S. T. Lee, and Y. Y. Li. 2015. Scientific Reports, 5: 13. 27. Nam, Y. M., J. Huh, and W. H. Jo. 2010. Solar Energy Materials and Solar Cells, 94: 1118-24. 28. Scharber, M. C., and N. S. Sariciftci. 2013. Progress in Polymer Science, 38: 1929-40 29. Lee, C. K., C. W. Pao and C. W. Chu (2011). Energy & Environmental Science 4(10): 4124-4132. 30. Lin, Y. Z., Y. F. Li and X. W. Zhan (2012). Chemical Society Reviews 41(11): 4245-4272. 31. Che, X. Z., X. Xiao, J. D. Zimmerman, D. J. Fan and S. R. Forrest (2014). Advanced Energy Materials 4(18): 7. 32. Gay, J. G. and B. J. Berne (1981). Journal of Chemical Physics 74(6): 3316-3319. 33. Berardi, R., C. Fava and C. Zannoni (1995). Chemical Physics Letters 236(4-5): 462-468. 34. Berardi, R., C. Fava and C. Zannoni (1998). Chemical Physics Letters 297(1-2): 8-14. 35. Hansen, N. and A. Ostermeier (2001). Evolutionary Computation 9(2): 159-195. 36. Hansen, N. and S. Kern (2004). Evaluating the CMA evolution strategy on multimodal test functions. Parallel Problem Solving from Nature - Ppsn Viii. X. Yao, E. Burke, J. A. Lozano et al. Berlin, Springer-Verlag Berlin. 3242: 282-291. 37. Hansen, N., S. D. Muller and P. Koumoutsakos (2003). Evolutionary Computation 11(1): 1-18. 38. Hansen, N., R. Ros, N. Mauny, M. Schoenauer and A. Auger (2011). Applied Soft Computing 11(8): 5755-5769. 39. Igel, C., N. Hansen and S. Roth (2007). Evolutionary Computation 15(1): 1-28. 40. Jebalia, M., A. Auger and N. Hansen (2011). Algorithmica 59(3): 425-460. 41. Suttorp, T., N. Hansen and C. Igel (2009). Machine Learning 75(2): 167-197. 42. Chen, Y. H., L. Y. Lin, C. W. Lu, F. Lin, Z. Y. Huang, H. W. Lin, P. H. Wang, Y. H. Liu, K. T. Wong, J. G. Wen, D. J. Miller and S. B. Darling (2012). Journal of the American Chemical Society 134(33): 13616-13623. 43. Cho, I., S. H. Kim, J. H. Kim, S. Park and S. Y. Park (2012). Journal of Materials Chemistry 22(1): 123-129. 44. Gu, G., P. E. Burrows, S. Venkatesh, S. R. Forrest and M. E. Thompson (1997). Optics Letters 22(3): 172-174. 45. Gu, G., D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest and M. E. Thompson (1997). Optics Letters 22(6): 396-398. 46. Schulze, K., C. Uhrich, R. Schuppel, K. Leo, M. Pfeiffer, E. Brier, E. Reinold and P. Bauerle (2006). Advanced Materials 18(21): 2872-+. 47. Yokoyama, D. (2011). Journal of Materials Chemistry 21(48): 19187-19202. 48. Yook, K. S., S. O. Jeon, S. Y. Min, J. Y. Lee, H. J. Yang, T. Noh, S. K. Kang and T. W. Lee (2010). Advanced Functional Materials 20(11): 1797-1802. 49. Agrawal, V., G. Arya, and J. Oswald. 2014. Macromolecules, 47: 3378-89. 50. Mayo, S. L., B. D. Olafson and W. A. Goddard (1990). Journal of Physical Chemistry 94(26): 8897-8909. 51. Watkins, E. K. and W. L. Jorgensen (2001). Journal of Physical Chemistry A 105(16): 4118-4125. 52. Lu, L. Y., T. Y. Zheng, T. Xu, D. L. Zhao and L. P. Yu (2015). Chemistry of Materials 27(2): 537-543. 53. Muller, P. and A. Saul (2004). Surface Science Reports 54(5-8): 157-258. 54. Peng, Z. M. and H. Yang (2009). Nano Today 4(2): 143-164. 55. Ross, F. M., J. Tersoff and R. M. Tromp (1998). Physical Review Letters 80(5): 984-987. 56. Teichert, C. (2002). Physics Reports-Review Section of Physics Letters 365(5-6): 335-432. 57. Tersoff, J. and F. K. Legoues (1994). Physical Review Letters 72(22): 3570-3573. 58. Venables, J. A. (1994). Surface Science 299(1-3): 798-817. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68202 | - |
| dc.description.abstract | 本論文中運用Gay-Berne力場對有機光電小分子進行粗粒化轉換,用以模擬真空蒸鍍製造小分子太陽能電池主動層的過程,並從得出之結果探討不同分子比例對主動層結構的影響。在真空蒸鍍的系統中分子連續烙下沉積、並且透過與表面分子的交互作用不斷累積成BHJ結構,為了放大形成的結構並拉長模擬的時間,此系統中應用了粗粒化的概念並採用非等向的力場形式進行模擬。三維橢球型的Gay-Berne力場因此被導入系統之中,由Gay-Berne力場描述的分子間作用力主導了分子的運動模式,並間接引導了整體結構的形成。實驗中建立了多組粗粒化分子動力模擬系統,對於不同系統中產生的結果,就有機太陽能電池的角度檢視其連續性、分子分布、結構型態等要素,探討在分子比例各不同的條件下形成結構的差異,並研究藉由基板應力產生的異化沉積結構操作薄膜型態的可能性。本論文開發的模擬方法也可以延伸到有機發光二極體的發光層材料的微觀結構研究,從而能夠協助有機光電領域的實驗團隊開發出新一代更為高效的有機太陽能電池或有機發光元件。 | zh_TW |
| dc.description.abstract | In this thesis, we constructed a ellipsoid-based coarse-grained model to study the mesoscale morphology evolution of DPDCPB:C70 small molecule organic solar cells during vacuum co-deposition processes. We coarsed the DPDCPB small molecule donor molecules, and the C70 acceptor molecules into three bonded ellipsoids and one single ellipsoid, respectively. The interactions between ellipsoids are described by the anisotropic Gay-Berne force field. By employing the covariant matrix evolutionary strategy (CMAES), we successfully parameterized the Gay-Berne potential by reproducing the potential energy surfaces from respective all atom atomistic simulations. With the parameterized Gay-Berne potential, for the first time, we are able to carry out molecular simulations of the vacuum co-deposition processes with system size compatible with experiments owing to the significantly reduced system degrees of freedom from coarse-graining. We studied the effects of DPDCPB:C70 deposition ratios, as well as the DPDCPB capping layer residual strains (densities) on the resultant composite film growth modes. Our simulation results indicate that C70 can easily aggregate into clusters regardless of concentrations (C70 deposition ratios). As a result, C70 clusters form the backbone of the film and the growth mode of C70 clusters literally determines the DPDCPB:C70 film morphologies. The residual strain induced by C70 supporting layer beneath the capping layer promote the three-dimensional growth mode of C70, leading to DPDCPB:C70 films with high surface roughness. In contrast, by relaxing the stress in the lateral dimensions, the three-dimensional growth modes can be noticeably suppressed. Hence, we also demonstrates the possibilities of manipulating film morphologies by applying lateral strains in the substrates. This thesis not only provides insights into morphology evolution during vacuum co-deposition processes of small molecule organic solar cells but also pave the pathway toward investigating the mesoscale structures of organic electronic devices such as the organic light emitting diodes (OLEDs). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:14:40Z (GMT). No. of bitstreams: 1 ntu-106-R04549025-1.pdf: 4423565 bytes, checksum: e3313f23fd191ef9a167a89a2a33a22b (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii 目錄 v 圖目錄 vi 表目錄 ix 第1章 前言 1 第2章 模擬方法 11 2.1. 全原子資料蒐集 12 2.2. Gay-Berne力場擬合 15 2.3. CMAES(Covariant Matrix Adaptation Evolution Strategy)演算法 18 2.4. 真空蒸鍍的模擬 22 2.5. 模擬系統 26 第3章 結果與討論 29 3.1. DPDCPB粗粒化模型分子結構的擬合 29 3.2. Gay-Berne方程式擬合的結果 34 3.3. DPDCPB+C70混摻系統形貌演變 38 3.3.1. DPDCPB基板預加形變的影響 39 3.3.2. DPDCPB基板弛豫預加形變後的影響 52 第4章 結論 57 參考文獻 59 | |
| dc.language.iso | zh-TW | |
| dc.subject | 有機小分子;有機光電;小分子太陽能電池;粗粒化;動力模擬;真空蒸鍍 | zh_TW |
| dc.subject | small organic molecule;organic photoelectric;small molecule organic solar cell;coarse grained;molecule dynamic;simulation;vacuumed deposit | en |
| dc.title | 以粗粒化技術模擬有機小分子太陽能電池在
真空蒸鍍過程中其主動層之結構衍變 | zh_TW |
| dc.title | Simulation of Morphology Evolution of Active Layer in the Small Molecule Organic Solar Cell in Vacuumed Deposit Process with Coarse Grained Techniques | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 包淳偉 | |
| dc.contributor.oralexamcommittee | 趙聖德 | |
| dc.subject.keyword | 有機小分子;有機光電;小分子太陽能電池;粗粒化;動力模擬;真空蒸鍍, | zh_TW |
| dc.subject.keyword | small organic molecule;organic photoelectric;small molecule organic solar cell;coarse grained;molecule dynamic;simulation;vacuumed deposit, | en |
| dc.relation.page | 63 | |
| dc.identifier.doi | 10.6342/NTU201704347 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-11-09 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 4.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
